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Abstract 

Objective 

Experiencing discrimination is associated with faster biological aging, as reflected in telomere 

shortening and DNA methylation. However, the impact of discrimination on brain aging processes 

remains unclear. Here, we tested whether individuals who reported at least one major lifetime 

discrimination event would exhibit steeper age-related associations in microstructural metrics within 

whole-brain white matter and the hippocampus, consistent with accelerated brain microstructural 

aging, compared to those with no such experiences. 

Methods 

We analyzed multi-shell diffusion-weighted MRI data from the Midlife in the United States 

(MIDUS) cohort (n = 147, mean age = 65 years, range 48–95) to assess brain microstructure using 

complementary statistical and biophysical diffusion models. Diffusion kurtosis imaging 

representation was used to derive diffusion tensor imaging (DTI) and white matter tract integrity 

(WMTI) measures. Additional microstructural health indices were derived using the neurite 

orientation dispersion and density imaging (NODDI) model. Permutation analyses of linear models 

were run within the whole-brain white matter and bilateral hippocampi, adjusting for sex, race, and 

education. 

Results 

Participants who reported at least one major discriminatory experience during their lifetime exhibited 

accelerated age-associated changes in white matter microstructural measures, including higher mean 

and radial diffusivities, extra-axonal radial diffusivity, and free water fraction compared to those with 

no such experiences. 

Conclusions 
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These converging findings from complementary measures of brain microstructure suggest that major 

discrimination experiences may contribute to accelerated brain microstructural aging. 

Keywords: major lifetime discrimination, aging, diffusion weighted imaging, brain microstructure, 

MIDUS. 

Abbreviations: 

BIPOC: Black, Indigenous, and People of Color, CSF: cerebrospinal fluid, DKI: diffusion kurtosis 

imaging, DTI: diffusion tensor imaging, DWI: diffusion weighted imaging, FA: fractional 

anisotropy, FOV: field of view, FWE: family-wise error, MD: mean diffusivity, MIDUS: Midlife in 

the United States, MK: mean kurtosis, MRI: magnetic resonance imaging, NODDI: neurite 

orientation dispersion and density imaging, PALM: permutation analyses of linear models, PET: 

positron emission tomography, RD: radial diffusivity, RK: radial kurtosis, TE: echo time, TR: 

repetition time, WMTI: white matter tract integrity 
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1 Introduction 

Discrimination is a social determinant of health with profound negative impacts, including increased 

risk for cardiovascular disease, depression, psychological distress, suicidal ideation, and mortality 
1
. 

Experiencing discrimination is stressful. The biological weathering hypothesis suggests that exposure 

to psychosocial stressors such as discrimination can accelerate the aging process, increasing 

vulnerability to disease and early mortality 
2
. For example, experiencing discrimination is positively 

associated with both heightened threat appraisals and greater negative affective reactivity to stress 

that mediate worse physical and mental health outcomes 20 years later 
3
. However, whether 

experiences of discrimination can prematurely age the brain remains to be studied. 

Major discriminatory events—such as being fired from a job, hassled by the police, or denied a 

promotion due to an individual characteristic such as age, gender, race, ethnicity, disability—are 

widespread in the United States. At least one-third of the population reports experiencing major 

discrimination during their lifetime 
4, 5

. Discrimination has detrimental consequences that are 

particularly relevant to aging. Age is one of the strongest risk factors for many neurodegenerative 

conditions, yet the pace of biological aging may differ from chronological age 
6
. Major 

discrimination has been associated with greater biological aging, as indicated by shorter telomere 

length 
7
. Individuals who reported more frequent or multiple forms of discrimination showed older 

biological ages and a faster pace of aging, based on blood DNA methylation markers 
8
. Other adverse 

outcomes associated with discrimination, and relevant to aging, include smaller hippocampal volume 

9
 and poorer cognition, including worse episodic memory 

10
 and reduced executive function 

11
. 

 

Age is also strongly associated with declining brain health among older individuals, with reductions 

in volumes of most brain structures, especially the hippocampus, accelerating from the fifties 
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onwards 
12, 13

. Even before volumetric changes or neurodegenerative conditions become detectable in 

the hippocampus and other brain regions, subtle microstructural changes can be identified using 

diffusion weighted magnetic resonance imaging (DWI) 
14, 15

. However, the association between 

major discrimination and brain microstructure in the context of aging has not yet been examined. 

By leveraging the diffusion properties of water molecules, DWI can be used to derive measures that 

are sensitive to cellular microstructure such as changes caused by edema or necrosis 
16

. Statistical 

models based on signal representations, such as diffusion tensor imaging (DTI) and diffusion kurtosis 

imaging (DKI), can be applied to each voxel to obtain measures dependent on the normal distribution 

of water displacement, including: (1) fractional anisotropy (FA), reflecting the extent of diffusivity in 

a preferential direction such as along axonal fibers, (2), mean diffusivity (MD), the average 

diffusivity in all directions, and (3) radial diffusivity (RD), the diffusivity perpendicular to axonal 

fibers, or complementary measures such as (4) mean kurtosis (MK) and (5) radial kurtosis (RK) that 

indicate deviations from the normal displacement distribution. 

 

Advanced biophysical models, such as neurite orientation dispersion and density imaging (NODDI) 

and white matter tract integrity (WMTI), represent the underlying tissue microstructure by separating 

each voxel into compartments with restricted and hindered diffusion of water molecules representing 

diffusion of water molecules within axons or in extra-cellular space 
17, 18

. For example, the NODDI 

model estimates (1) neurite density index, representing density of axons and dendrites (collectively 

called neurites), (2) orientation dispersion index, which indicates if these neurites are tightly packed 

or spread out, and (3) proportion of cerebrospinal fluid (CSF) estimated as the free water fraction 
18

. 

The WMTI model estimates measures such as: (1) axonal water fraction, related to axonal density, 

(2) intra-axonal diffusivity, capturing restricted diffusion within myelinated axons and (3) extra-

axonal diffusivities, including hindered diffusion alongside the axon (typically higher than intra-

axonal diffusivity) and perpendicular to the axon (typically lower than along the axon) 
17

. 
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Taken together, the above measures provide complementary and overlapping information and are 

sensitive to brain microstructural changes in myelination and axonal density, across the lifespan, 

from early brain development 
19

 to aging and neurodegenerative conditions 
20, 21

. A comprehensive 

assessment using multiple microstructural metrics can reveal distinct patterns of findings that, when 

considered together, can help infer specific biological processes that underlie associations with the 

predictor of interest (e.g., 
22

), such as experiencing a major lifetime discriminatory event. 

 

Using complementary parameters from statistical models (DTI and DKI), and biophysical models 

(WMTI and NODDI), we investigated brain microstructural features associated with age across a 

wide age range and examined how experiencing at least one major discriminatory event compared to 

no experiences of major discrimination moderated age associations with DWI measures. Brain 

regions showing converging findings across multiple DWI models and measures robustly reflects 

moderation of age-related changes with a discrimination experience. We specifically examined 

microstructural features in two regions of interest: 1. The whole brain white matter, and 2. The 

hippocampus, given its previous associations suggesting vulnerability to both age and discrimination 

experiences. We hypothesized that experiencing at least one major discrimination event would be 

associated with steeper age-related associations in microstructural metrics within whole-brain white 

matter and the hippocampus, consistent with accelerated brain microstructural aging. 

2 Materials and Methods 

2.1 Study Overview 

We used data from the Midlife in the United States (MIDUS) longitudinal study, which recruited 

baseline participants aged 25-74 years in 1995/96 and followed them at multiple timepoints. An 
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oversample of Black/African American participants from Milwaukee, Wisconsin was added during 

the second follow-up (MIDUS2; 2004-2009). MIDUS seeks to understand the interplay of 

sociodemographic, psychosocial, and neurobiological determinants of health and disease among 

aging adults. MIDUS data are publicly available for use by scientists around the world 

(https://midus.wisc.edu/). During the third follow-up of the MIDUS Core sample, multi-shell DWI 

data were acquired for the first time by the MIDUS Neuroscience Project (MIDUS3; 2017-2022). All 

participants travelled to Madison, Wisconsin and were scanned on the same MRI scanner. Only 

MIDUS3 data were used for the cross-sectional analyses reported in the present work. Approval was 

obtained from relevant institutional review boards. Participants were briefed on study procedures, 

screened for MRI compatibility, and provided informed consent prior to data collection. 

2.2 Participant characteristics 

Participants (n = 147) were between the ages of 48-95 (mean = 65.03, median = 64, SD = 9.35) 

years. There were 87 females (59%) and 40 Black, Indigenous, and People of Color (BIPOC, 27.2%) 

in the sample. Among the BIPOC group, most participants were Black (80%) with very few reporting 

other racial minorities (2 Native American /Alaska Native, 2 Asian American, and 4 Other). There 

were 64 participants with a college degree (43.5%), 45 with some college education (30.6%), and 38 

with a high school education or less (25.9%). 

2.3 Major Experiences of Discrimination assessment 

The Major Experiences of Discrimination Scale was administered at MIDUS3 
23, 24

. The scale 

assesses major discriminatory experiences across multiple settings, including academics (discouraged 

from continuing education), employment (denied promotion), financial services (prevented from 

renting or buying a home), health care (denied or provided inferior medical care), and social hostility 

(hassled by the police). Table S1, Supplemental Digital Content, 
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http://links.lww.com/PSYMED/B161, presents the full list of 11 questions included in the scale. 

Participants responded to each item by providing the frequency (number of times) they experienced 

this type of discrimination over their lifetime, and the item responses were summed to create a total 

score. The scale has been validated and used widely in prior research 
25–27

. In the current sample, 

scores ranged from 0 to 9, with a median of 0 and a mean score of 1.177. Participants were 

categorized into two groups: those who reported no major experiences of discrimination (no 

discrimination group; score = 0), and those who reported experiencing at least one major 

discriminatory event (major discrimination group; score  1). Table S2, Supplemental Digital 

Content 1, http://links.lww.com/PSYMED/B161, presents sample characteristics stratified by major 

discrimination group status. Individuals identifying as BIPOC were significantly more likely to 

report having experienced major discrimination compared to White participants. No other group 

differences reached statistical significance. Within the segment of the sample (n = 64; 43.5%) that 

reported experiencing at least one major discriminatory event, the median score was 2 and the mean 

was 2.7. Individual responses to the major lifetime discrimination questions spanned several 

categories (17 hassled by the police, 17 fired, 13 participants reported being discouraged from higher 

education, 12 denied or provided inferior service, 9 denied a bank loan, 8 prevented from rent/buying 

a home, 5 denied or provided inferior medical care, 3 denied a scholarship and 2 prevented from 

remaining in a neighborhood). Available attributions for overall discrimination experience, not 

specific to major discrimination, were diverse in both BIPOC and White participants with some 

overlap. Table S3, Supplemental Digital Content 1, http://links.lww.com/PSYMED/B161, presents 

attributions of overall discrimination experience stratified by race. 

2.4 DWI data acquisition 

A multi-shell spin-echo, echo-planar imaging sequence was used to collect DWI data on a 3 Tesla 

GE MR750 scanner with a Nova 32 channel head coil. Three shells of different diffusion-weighting 
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strengths were acquired at b-values of 500, 800 and 2000 s/mm
2
 with 9, 18, and 36 directions, 

respectively. There were six reference scans without any diffusion encoding (b=0 s/mm
2
). Other 

parameters included: repetition time/echo time (TR/TE) = 7000/91 ms; field of view (FOV) = 256 

mm; 75 slices; voxel resolution = 2x2x2 mm
3
. 

2.5 DWI analysis 

Figure S1 (Supplementary Digital Content 1, http://links.lww.com/PSYMED/B161) provides an 

overview of the multi-model analysis approach used in the study. 

 

2.5.1 Pre-processing and estimation of brain microstructure metrics 

The DESIGNER guidelines were used for preprocessing the data 
28

. The preprocessing steps included 

the removal or mitigation of artifacts such as noise, Gibb’s ringing, distortion because of eddy 

currents, and B1 and ―Rician‖ bias correction using tools in FSL v6.0 
29

, ANTS 
30

, and MRtrix3 
31

. 

Following weighted least-squares optimization for voxel-wise estimation of the diffusion kurtosis 

tensor and the diffusion tensor 
32

 in a joint estimation based on the Taylor series decomposition of the 

signal, image maps of the DKI and DTI metrics were generated. The WMTI model parameters were 

computed from the estimates of the kurtosis tensor. Gaussian smoothing of 2 voxels (full width half 

maximum of 4.7096) was uniformly used for DTI and NODDI maps. To address spatial variation in 

kurtosis estimates, spatially adaptive smoothing was applied to the DKI and WMTI measures 
22

 as 

follows. A mask was created using a threshold MK < 0.3 and was smoothed to effectively obtain a 

―weighting‖ map. Then each of the DKI and WMTI metric maps was smoothed and divided by the 

smoothed weighting mask resulting in smoothed metrics that downweigh the influence of the low-

MK/noisy DKI estimates (also known in the literature as ―black holes‖) 
33–35

. This approach was used 

as a refinement to the typical solution of isotropic smoothing of the DKI metrics inspired by the T-

Copyright © 2026 Society for Biopsychosocial Science and Medicine Unauthorized reproduction of the article is prohibited.

ACCEPTED

http://links.lww.com/PSYMED/B161


SPOON method 
36

 which aims to reduce the influence of misregistration errors in voxel-based 

analysis. 

 

Additionally, the multi-tissue NODDI model 
37

 was fit to the DWI data to derive voxel-wise 

estimates of corresponding measures. The multi-tissue response functions used in estimating the 

NODDI parameters help account for the different tissue types (white matter, gray matter, and CSF) in 

mitigating biases in the derived measures 
37

. Quality control was performed visually to ensure proper 

orientations of the images, brain masking, and to ensure the quality of the estimated parameter maps 

looks typical and appropriate without artifacts such as black holes. All parameter maps were warped 

to a study specific population template that was estimated using individual subject FA and MD maps 

from all the participants 
38

. Parameter maps from all participants were grouped measure-wise and 

merged for statistical analyses. 

 

2.5.2 Statistical analyses and visualization 

Permutation analyses of linear models (PALM) examined differences in DWI microstructure metrics 

by major lifetime discrimination experience 
39

. For primary analyses, models examined the 

moderating influence of discrimination group status (major lifetime discrimination group vs. no 

major lifetime discrimination group) on age-associated changes in microstructure (i.e., included a 

discrimination group × age interaction term) adjusting for sociodemographic covariates: sex (male, 

female), race (White, BIPOC), educational attainment level (high school or less, some college, 

college degree). The analyses were restricted to voxels in two regions of interest (ROIs) using the 

following approach: (1) White matter skeleton in the whole brain mask provided with FSL 
40

 was 

warped to the study population template space and binarized. Note that the skeleton was not applied 

within the TBSS framework 
41

 but was instead used purely as a voxel mask for the analyses. (2) 
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Bilateral hippocampal regions from the Harvard-Oxford subcortical atlas 
42

 were warped to the study 

population template space. Analyses were run using analytical tail acceleration and 500 permutations. 

Joint inference was carried out for each set of models (DTI, DKI, WMTI and NODDI) using non-

parametric combination, along with simultaneous inference for each individual metric. Threshold-

free cluster enhancement and family-wise error (FWE) correction for multiple comparisons were 

used to control for false positives at an  < .05, and corresponding statistical brain maps were 

generated. The XTRACT HCP Probabilistic Tract Atlas from FSL was used to identify regions with 

significant findings. 

 

To visualize significant associations between microstructure metrics and variables of interest, the 

mean value of each outcome metric was computed from all significant voxels within each ROI for 

each participant. These participant-level averages were then used as summary outcome measures for 

visualization. Corresponding linear models were run, and partial residuals were plotted for significant 

associations. Model coefficients presented in the results section are for descriptive purposes as these 

models utilize data extracted from voxels found significant after statistical testing. Influential outliers 

were defined as those exceeding a threshold of 5% of the F-distribution of Cook’s distance and were 

removed. All results were consistent with and without outlier removal. Visualizations were carried 

out using R statistical software v4.4.0 
43

.  To illustrate spatial convergence across models, 

conjunction maps were generated to visualize the overlap of significant age × discrimination group 

interaction effects across DTI, WMTI, and NODDI metrics. 

3 Results 

Major lifetime discrimination group status significantly moderated the associations between age and 

microstructural measures derived from DTI, WMTI, and NODDI, in both the whole-brain white 

matter skeleton and the hippocampus, after adjusting for the sociodemographic covariates (sex, race, 
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and educational attainment). No significant associations were observed for the DKI parameters. 

Unless otherwise specified, findings reported were consistent with and without inclusion of 

sociodemographic covariates in the models. Table S4, Supplemental Digital Content 1, 

http://links.lww.com/PSYMED/B161, summarizes the significant findings across the tested models. 

All significant models exhibited a sign/directionality consistent with an age-moderation effect 

suggestive of accelerated microstructural aging. None of the models with inverse contrasts were 

statistically significant. Note that counts or frequency of major lifetime discrimination experience 

was not significantly associated with age in this sample (r = -.07, p = .40; see Figure S3, 

Supplemental digital Content 1, http://links.lww.com/PSYMED/B161, but age was significantly 

associated with all white matter metrics reported below (see Table S5, Supplemental digital Content 

1, http://links.lww.com/PSYMED/B161). Considerable overlap was observed in white matter voxels 

showing significant age × discrimination group interactions, as shown in the conjunction map across 

DTI, WMTI, and NODDI models (Figure S2, Supplemental digital Content 1, 

http://links.lww.com/PSYMED/B161). 

 

3.1 Age-Discrimination interactions in whole-brain white matter: statistical models 

Two statistical models were used to examine age-discrimination interactions in the whole-brain white 

matter skeleton: Diffusion Tensor Imaging (DTI) and Diffusion Kurtosis Imaging (DKI). For DTI, 

fractional anisotropy, mean diffusivity, and radial diffusivity were tested, and for DKI, mean kurtosis 

and radial kurtosis were assessed. 

 

Individuals who reported experiencing at least one major discriminatory experience showed higher 

mean diffusivity values with greater age (  = .00362, p < .001, one outlier removed), compared to 

those with no such experiences. These associations were observed across widespread regions, 
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including the anterior and superior thalamic radiations, forceps minor, corticospinal tract, inferior 

fronto-occipital fasciculus, and acoustic and optic radiations (Figure 1A-B).  

 

A similar pattern was observed for radial diffusivity (  = .00428, p < .001), with higher values 

associated with greater age in the anterior and superior thalamic radiations, forceps minor, 

corticospinal tract, inferior fronto-occipital fasciculus, superior longitudinal fasciculus, dorsal 

cingulum subsection, and the acoustic radiation (Figure 1C-D). 

No significant age-discrimination interactions were observed for DKI metrics. 

3.2 Age-Discrimination interactions in whole-brain white matter: biophysical models 

Two biophysical models were used to examine age-discrimination interactions in the whole-brain 

white matter skeleton: Neurite Orientation Dispersion and Density Imaging (NODDI) and White 

Matter Tract Integrity (WMTI). For NODDI, neurite density index, orientation dispersion index, and 

CSF fraction were tested. For WMTI, axonal water fraction, intra-axonal diffusivity, extra-axonal 

radial diffusivity, and extra-axonal tortuosity were assessed. 

 

Individuals who reported at least one major discriminatory experience showed steeper associations 

between age and the NODDI metric CSF fraction (  = .00215, p < .001) compared to those with no 

experiences of discrimination. These associations were observed in widespread regions including the 

anterior and superior thalamic radiations, forceps major, corticospinal tract, inferior fronto-occipital 

fasciculus, superior longitudinal fasciculus, arcuate fasciculus, optic radiation, and the vertical 

occipital fasciculus (Figure 2A-B).  

 

A similar pattern was observed for the WMTI metric extra-axonal radial diffusivity (  = .00348, p < 
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.001, one outlier removed), with higher values associated with greater age in the anterior and superior 

thalamic radiations, forceps minor, corticospinal tract, dorsal cingulum subsection, and the acoustic 

and optic radiations (Figure 2C-D). 

 

While the association with CSF fraction remained consistent, the association with extra-axonal radial 

diffusivity was not significant when sociodemographic covariates were dropped.  

 

No significant age-discrimination interactions were observed for WMTI metrics related to axonal 

water fraction, intra-axonal diffusivity, or extra-axonal tortuosity. Similarly, no significant 

interactions were found for NODDI metrics related to neurite density or orientation dispersion. 

However, a trend-level effect was observed for neurite density (p = .089), which is further discussed 

below. 

 

3.3 Age-Discrimination interactions in hippocampal microstructure 

Analyses within the hippocampal region of interest (ROI), which included both left and right 

hippocampi, examined age-discrimination interactions using diffusion metrics derived from the 

statistical models (DTI, DKI) and biophysical models (NODDI, WMTI). For DTI, mean diffusivity, 

radial diffusivity, and fractional anisotropy were tested. For DKI, mean kurtosis and radial kurtosis 

were assessed. For NODDI, neurite density index, orientation dispersion index, and CSF fraction 

were tested. For WMTI, axonal water fraction, intra-axonal diffusivity, extra-axonal radial 

diffusivity, and extra-axonal tortuosity were assessed. 

 

Older participants who had experienced major discrimination showed higher extra-axonal radial 

diffusivity in the right hippocampus (  = .00694, p < .001; Figure 3A-B), whereas no significant 
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association with age was found in participants without major discrimination experience.  

 

No significant age-discrimination interactions were observed for other metrics in the hippocampal 

ROI. 

 

4 Discussion 

The present study tested the hypothesis that experiences of major lifetime discrimination moderate 

age-related differences in brain health, as indicated by DWI measures of whole brain white matter 

and hippocampal microstructure. Supporting this hypothesis, we found that individuals who reported 

major lifetime discrimination (having experienced at least one severe discriminatory event such as 

being denied a job, a promotion, or a loan due to discrimination) showed steeper relationships 

between age and microstructural health consistent with accelerated brain aging. These effects were 

observed across widespread regions of whole brain white matter as well as in the hippocampus. Older 

age is a powerful predictor of adverse brain microstructural changes. However, major lifetime 

discrimination experience amplified (exacerbated) relationships between age and complementary 

diffusion parameters from both statistical and biophysical diffusion models in white matter and the 

hippocampus. 

 

A growing literature describes the adverse effects of discrimination, including accelerated biological 

aging and increased risk for dementia 
7, 8, 44–46

. These studies suggest multiple mechanisms, such as 

higher cardiometabolic risk, increased inflammation and overall allostatic load, and epigenetic 

dysregulation, by which discrimination may accelerate biological aging. The present study adds to 

this literature by identifying microstructural differences, suggesting that discrimination experience 

may accelerate brain aging. We found that participants who experienced at least one major 
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discriminatory experience in their lifetime had greater values of mean and radial diffusivities with 

age across widespread white matter regions.  These regions also showed greater values of CSF 

fraction and extra-axonal radial diffusivity. As shown by the conjunction analysis in the 

supplementary material, Supplemental digital Content 1, http://links.lww.com/PSYMED/B161, most 

findings across the DWI metrics were in consistent, overlapping regions, suggesting that with greater 

age, participants who reported experiencing one or more major discriminatory events had higher free 

water content in these white matter regions than was evident for participants of the same age who had 

not experienced any such events. Increased brain interstitial water can occur via multiple pathways, 

including higher cerebrovascular pathology 
47

, edema 
48

, neuroinflammation 
49

, or white matter fiber 

shrinkage 
14, 50

. Future research should assess which of these pathways mediate the relationship 

between discrimination and accelerated brain aging. 

 

In a few white matter tracts, such as portions of the forceps minor, significant voxels were 

overlapping for radial diffusivity and extra-axonal radial diffusivity, but not for the CSF fraction. 

Higher values of these radial diffusivity measures, one from DTI and the other a more biophysically 

informed measure from WMTI, indicates greater movement of water perpendicular to the axonal 

fibers, and is suggestive of demyelination 
51, 52

. Additionally, participants who experienced major 

lifetime discrimination had higher values of extra-axonal radial diffusivity in the hippocampus, 

although no other measures were sensitive to this effect. Interpreting this finding as demyelination is 

challenging because WMTI measures are less reliable in regions like the hippocampus, which 

contains white matter bundles but is predominantly gray matter. This is due to water exchange 

between neurites and extracellular space as well as signal contributions from neuronal somas 
53

. The 

hippocampus is also located adjacent to the temporal horn of the lateral ventricles, making it prone to 

CSF contamination, especially with age related atrophy. Nevertheless, biophysical models have 

shown promise in characterizing hippocampal microstructure 
54–56

. Despite these caveats, this result 
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is noteworthy given the important role of the hippocampus in brain health in the context of aging and 

discrimination due to its role in learning and memory, sensitivity to stress and inflammation, and 

vulnerability to volume loss with age and neurodegenerative conditions such as Alzheimer’s disease 

57, 58
. 

 

The examination of multiple microstructural imaging models and measures of brain health offers 

unique opportunities to identify which biological processes may or may not be involved. For 

example, increased radial diffusivity from DTI is classically suggestive of demyelination. However, 

DTI is non-specific and sensitive to any change that increases perpendicular water motion, including 

increased extra-axonal space. Biophysical models allow us to test the demyelination/axonal loss 

hypothesis more directly. A primary mechanism of demyelination or axonal loss would be expected 

to alter the neurite density index from NODDI. However, we did not find strong evidence that major 

discrimination experience amplified age-related decline in neurite density (the association showed a 

trend, p < .1). Conversely, we found strong, significant effects in measures of the extra-axonal space, 

specifically the CSF fraction from NODDI and extra-axonal radial diffusivity from WMTI. This 

suggests that processes such as demyelination or axonal loss 
59

 could be relevant, but are unlikely to 

be the primary mechanism linking discrimination to brain health. Instead, our findings suggest that 

the radial diffusivity finding is driven by changes in the extra-axonal space, such as increased 

interstitial water, which could be related to neuroinflammation, edema, or impaired glymphatic 

clearance. Larger and/or longitudinal studies will be important to determine whether subtle neurite 

alterations contribute to discrimination-related brain changes, as would the collection of more direct 

imaging modalities such as myelin water imaging
60

. Similarly, major discrimination was not 

significantly associated with the DKI metrics, despite the significant age-linked associations with 

NODDI and WMTI metrics. One possible explanation is that NODDI and WMTI derive biologically 

relevant parameters such as neurite density, orientation dispersion and free water, by 
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compartmentalizing tissue environments within each voxel into intra- (restricted diffusion) and extra- 

(hindered diffusion) axonal spaces. Here, restricted diffusion spaces model thermal motion of water 

that is physically blocked by impermeable or semi-permeable barriers (e.g., axonal membranes), 

while hindered diffusion spaces model free water motion that is not confined but is slowed down due 

to obstacles in the environment (e.g., glial cells, convoluted geometry of extracellular spaces) 
61

. 

DKI, in contrast, estimates signal deviations from Gaussian diffusion without explicitly modeling 

tissue compartments and provides markers of overall microstructural complexity 
62

. The absence of 

DKI effects in our analysis suggests that discrimination-related differences are not generalized 

alterations in tissue complexity but may reflect more specific microstructural alterations (e.g., axonal 

or myelin alterations) that are more sensitively captured by biophysical models such as NODDI and 

WMTI. 

 

The white matter tracts where we observed convergent findings also suggest potential impacts of 

major lifetime discrimination on cognition. The inferior fronto-occipital fasciculus has been linked to 

various cognitive functions, including perception, context-dependent cognitive control, embodied 

cognition, and social cognition
63, 64

. The forceps minor has also been associated with social 

cognition
65

. The anterior thalamic radiation is implicated in embodied cognition, processing speed, 

and set shifting
64, 66

. Taken together, these findings suggest that major discrimination may be 

associated with accelerated age-related cognitive decline. The MIDUS study is currently following 

this sample up for the 4
th

 timepoint, and their longitudinal cognitive and imaging data will provide an 

opportunity to examine the import of these discrimination and age-related microstructural findings 

for cognitive decline. 

 

Because the timing, context, and frequency of discriminatory experiences can vary greatly, adverse 

associations of discrimination with health outcomes may also vary by participant background 
67

. For 
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example, although in a multi-ethnic sample discrimination was associated with higher risk for 

dementia 
44

, a study among only Black Americans did not find any associations with dementia risk 
68

, 

potentially because in that sample, those with higher discrimination experience had higher education 

and income, factors that are protective against cognitive impairment and dementia 
69

. Alternatively, a 

study including only non-Hispanic Black people found that racial discrimination in major life 

domains was associated with smaller hippocampal volumes, and everyday racial discrimination was 

associated with faster accumulation of white matter hyperintensities, although discrimination by all 

causes taken together did not show these associations 
9
. 

 

Sources and attributions of discrimination in the United States may vary by sociodemographic group 

and may differ for daily vs. major lifetime discrimination experiences. Prior studies suggest that 

White individuals often attribute daily discrimination to gender and age, whereas BIPOC individuals 

more commonly attribute it to race, along with age, gender, and sexuality
70, 71

. As noted earlier, some 

evidence suggests that both daily and lifetime racial discrimination may be particularly detrimental to 

brain health, but discrimination regardless of attribution might not show the same effect
9
. As 

described in the supplemental material, Supplemental digital Content 1, 

http://links.lww.com/PSYMED/B161, discrimination attributions (self-reported broadly for both 

daily and lifetime discrimination) were highly variable for both White and BIPOC groups in this 

sample. 

 

Another consideration is that major lifetime experiences of being discouraged from higher education 

and/or denied a scholarship may directly impact educational attainment, and educational attainment 

was included as a covariate in our models. Indeed, a subset of our participants (~11%) reported being 

discouraged from pursuing higher education or denied scholarships. However, most of our findings 

were consistent with and without adjusting for covariates, and educational attainment was not a 
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significant predictor in any of the white matter models, suggesting that this overlap does not bias our 

findings. Education remains important for brain health (and overall health and longevity), and needs 

to be accounted for, especially given the heterogeneity in the sample. Finally, our focus on the 

presence of any major discriminatory experience, regardless of attribution, is intentional, given the 

limited number of participants with both imaging and discrimination data which precludes examining 

specific types or sources of discriminatory experience. Given the potential links between 

discrimination, educational attainment, and other covariates, we interpret adjusted estimates to be 

robust to potential confounding, but conditional on sociodemographic profile (i.e., holding covariates 

constant). Future work with larger samples should explore how sociodemographic factors may 

moderate the effects of discrimination on brain health and how intersectionality may be especially 

important. 

 

Experiences of discrimination contribute significantly to generalized stress, and are associated with 

more chronic conditions, greater functional limitations, and faster epigenetic aging 
8, 46, 72

. One 

plausible pathway linking these effects is inflammation. Discrimination is associated with higher 

systemic inflammation and, in turn, with faster memory decline among older adults 
73

. Markers of 

systemic inflammation can activate proinflammatory signaling pathways in the brain and lead to 

accelerated brain aging 
8, 74

. Additionally, discrimination experiences of any kind may lead to 

heightened vigilance and threat perception, as suggested by higher resting amygdala activity and 

higher amygdala connectivity with regions within the salience network 
75

. Prior experiences of 

discrimination can also prime individuals to anticipate discriminatory behavior even when none 

exists 
76

. Additionally, the presence of concurrent mental health challenges can exacerbate 

outcomes—for example, individuals who experienced both racial discrimination and depressive 

symptoms had lower total brain matter and white matter volumes than those who experienced neither 

77
. 
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Future research needs to better understand how discrimination combines with other stressful life 

experiences to affect accelerated brain aging. Discrimination is only one type of stressor that can 

adversely affect health, and prior research reveals that experiences of discrimination, like other 

stressors, are not randomly distributed: socially disadvantaged populations have higher levels of 

exposure. For example, a study of a probability sample of over 3,000 adults in Chicago found that 

Black/African Americans and US-born Hispanics had higher levels of three indicators of 

discrimination compared to White individuals, and also had higher levels of multiple other stressors 

(major life events [e,g., death of a loved one], financial stress, relationship stress, work stress and 

neighborhood stress); each additional domain of stress was associated with worse physical and 

mental health 
78

. Another priority for future research is to identify how discrimination and other 

stressors combine, starting early in life, and accumulate over time to affect brain functioning and 

aging across the life course. The stress acceleration hypothesis indicates that, in response to 

threatening environments, the brain adapts by expediting neurodevelopment 
79, 80

. For example, youth 

in socioeconomically deprived neighborhoods show reductions in cortical thickness and grey matter 

volume 
81, 82

. Our current understanding is limited regarding how these processes evolve over the life 

course, and how and when we might optimally intervene to reverse or mitigate them. 

 

A critical challenge for those experiencing major discrimination is that they often face inequities in 

resources, rest, and access to preventive care. Individuals from minoritized communities or with low 

socioeconomic status often have significant non-paid caregiving roles that lead to inadequate sleep 

and poorer sleep quality 
83, 84

. Similarly, minoritized communities often experience differences in 

neighborhood quality due to historical segregation, and resulting neighborhood disadvantage has 

been shown to partially account for race differences in sleep 
85

.  Poorer sleep is, in turn, associated 

with a higher overall inflammatory profile 
86, 87

, and mediation analyses suggest that poorer global 
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sleep quality underlies the link between major discrimination experience and inflammation burden 

[66]. Inadequate sleep also leads to detrimental late life cognitive outcomes due to poorer clearance 

of brain metabolites caused by altered functioning of the glymphatic system, a sleep-dependent 

pathway for interstitial fluid drainage 
88

. In this context, our finding of greater age-related increases 

in interstitial water content among individuals exposed to major discrimination is noteworthy. 

Elevated interstitial water, as indexed by higher free water or isotropic volume fraction metrics from 

diffusion imaging, has been interpreted as a marker of altered interstitial fluid dynamics and is 

increasingly linked to neuroinflammation, cellular atrophy, impaired glymphatic clearance, and 

neurodegeneration 
47, 50, 89

. While we did not directly examine sleep or glymphatic function in this 

project, these pathways offer a compelling hypothesis for how psychosocial adversity may contribute 

to brain aging and warrant further longitudinal and multimodal investigation. 

 

Despite the considerable burden on those facing discrimination, it is important to note that 

individuals may have some agency in ameliorating its impact, and some individuals may grow after 

encountering discriminatory events and become more resilient to life’s adversities 
90–92

. Building 

strong sources of social support 
93

, being part of religious or spiritual communities 
94

, engaging in 

active coping strategies such as values affirmation 
95

, and practicing meditation 
96

, may buffer 

against, at least some harmful effects of discrimination. These factors warrant future research in the 

context of brain microstructural changes in aging and potential resilience even in the face of adversity 

and discriminatory experiences. 

 

Our study has several limitations that need to be considered. Firstly, our analyses are cross-sectional 

and do not permit causal inference. Secondly, consistent with existing literature such as in the Health 

and Retirement Study, there were few individuals with high levels of multiple major discriminatory 

experiences in our sample 
74

. We therefore dichotomized discrimination experience into groups who 
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reported experiencing at least one major discriminatory event compared to those who had no major 

experiences of discrimination, and thus we cannot infer dose-dependent effects of discrimination on 

brain-health. Nevertheless, it is likely that the accelerated aging we observe in our sample may be 

considerably worse in a sample with higher levels of major discrimination across their lifetime. 

Thirdly, although diffusion measures from DTI, DKI, WMTI, and NODDI models have all been 

reported to be sensitive to age-related microstructural changes 
20, 62, 97, 98

, they differ in their 

interpretability 
19

. Metrics derived from the statistical models (DTI and DKI) have been widely 

reported to be sensitive to changes due to normal aging and pathological changes, but as they can be 

influenced by multiple processes, they do not permit precise interpretation of the underlying 

biological changes 
16, 99

, whereas biophysical models of diffusion such as NODDI and WMTI using 

multiple compartments provide more interpretable information about neuronal tissue microstructure 

100
. Therefore, the biophysical models do not supersede the statistical ones, rather they refine and 

validate the interpretation. Each of these approaches make assumptions that need to be considered, 

none of them offer a comprehensive picture or are unequivocally better than the others, and newer 

improved models continue to be developed 
53, 101, 102

. Finally, we tested these diffusion models only 

in the whole-brain white matter skeleton and the left and right hippocampal regions, but not within 

the whole-brain grey matter. Future investigations of the association between discrimination and grey 

matter microstructure are warranted. Despite these limitations, the robust converging evidence we see 

from the DTI, NODDI, and WMTI diffusion MRI models, and lack of findings with DKI models, 

offers insights into the likely neurobiological pathways through which discrimination may be 

exerting adverse effects. 

 

The next wave of MIDUS data collection in the same participants includes follow-up assessments of 

the measures included in this study as well as new measures of vascular imaging and both blood-

based and positron emission tomography (PET) biomarkers for Alzheimer’s disease pathology. 
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Similar data have been collected in the MIDUS Refresher cohort, which will further expand the study 

sample. The combined dataset will provide sufficient power to examine interactions between 

discrimination, sex, education, and race. In addition to investigating longitudinal changes in DWI 

metrics 
103, 104

, future investigations using these additional measures will clarify and help determine 

the mediating processes through which discrimination impacts brain health. 

 

In summary, our findings suggest that experiencing at least one major discriminatory event is 

associated with accelerated brain microstructural aging. These data add to the accumulating evidence 

of the detrimental and widespread impacts of experiencing discrimination, ranging from the personal 

to the societal level. It is crucial to develop and disseminate effective tools and supportive 

interventions to reduce the impact of experiencing discrimination at the individual level. However, 

the burden of change should not solely rest on the individuals already coping with discrimination. 

Rather, given the high prevalence of discriminatory experiences, our findings underscore the need for 

policy interventions 
95

 to address and reduce discriminatory experiences that contribute to disparities 

in healthy and active aging, including brain health. 
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Figure 1: Associations between white matter diffusion tensor metrics and age by major lifetime 

discrimination group status. Scatter plots visualizing the moderating influence of major lifetime 

discrimination group status on the voxel-wise relationships between age and (A) mean diffusivity, 

and (C) radial diffusivity within the whole brain white matter mask. Data points are color coded and 

represented as triangles for those who experienced major discrimination, and circles for those who 

did not. Each data point represents the mean of all significant voxels for one individual, adjusted for 

sex, race, and educational attainment. Representative brain slices show voxels with significant 

relationships (at  < .05, family-wise error corrected) for (B) mean diffusivity and (D) radial 

diffusivity. Brain images are in radiological convention (left hemisphere is shown on the right side). 
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Figure 2: Associations of white matter microstructural metrics from biophysical models and 

age by major lifetime discrimination group status. Scatter plots visualizing the moderating 

influence of major lifetime discrimination group status on the voxel-wise relationships between age 

and (A) CSF fraction, and (C) extra-axonal radial diffusivity in the whole brain white matter mask. 

Data points are color coded and represented as triangles for those who experienced discrimination, 

and circles for those who did not. Each data point represents the mean of all significant voxels for 

one individual, adjusted for sex, race, and educational attainment after removing influential outliers, 

if any. There was one influential outlier for the model with extra-axonal radial diffusivity. Results 

were consistent with (  = .0046) and without the outlier (  = .0034). Representative brain slices show 

voxels with significant relationships (at  < .05, family-wise error corrected) for (B) CSF fraction 

and (D) extra-axonal radial diffusivity. Brain images are shown in radiological convention (left 

hemisphere is shown on the right side).  
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Figure 3: Associations of hippocampal microstructure metrics and age by major lifetime 

discrimination group status. (A) Scatter plot visualizing the moderating influence of major lifetime 

discrimination group status on the voxel-wise relationships between age and extra-axonal radial 

diffusivity in the bilateral hippocampal mask, adjusting for sex, race, and educational attainment. 

Data points are color coded and represented as triangles for those who experienced discrimination, 

and circles for those who did not. Each data point represents the mean of all significant voxels for 

one individual. (B) Representative brain slices show voxels with significant relationships (at  < .05, 

family-wise error corrected). 
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