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A B S T R A C T

Background: Sleep disturbances have been linked to generalized anxiety disorder (GAD) symptoms. However, 
cross-sectional studies, linearity assumptions, and limited predictor sets preclude identifying which unique sleep 
disturbance markers precede GAD symptoms. We thus harnessed machine learning (ML) to determine objective 
and subjective sleep disturbance predictors of nine-year GAD symptoms.
Methods: Community adults (N = 1054) underwent baseline surveys, clinical interviews, and seven-day sleep 
actigraphy protocols. GAD symptoms were reassessed nine years later. Seven ML models were examined with 44 
baseline predictors. Partial dependence and Shapley additive explanation plots were created as interpretable ML 
approaches with the best-performing random forest model using nested cross-validation. Sensitivity analyses 
included and excluded GAD sleep items.
Results: The final multivariable predictive algorithm performed well (R2 = 69.7 %, 95 % confidence interval 
[67.3 %–71.9 %]), thus explaining over half the variance in the outcome. These self-reported sleep disturbances 
predicted GAD symptoms in descending order of relative importance: sleep disturbances, poorer sleep quality, 
longer sleep onset latency, daytime dysfunction, habitual sleep inefficiency, and sleep medication use. These rest- 
phase actigraphy markers predicted nine-year GAD symptoms: higher maximum and total activity counts. Longer 
total sleep time during the sleep phase and higher average sleep bouts during the active phase also predicted 
nine-year GAD severity.
Conclusions: Outcomes highlight the importance of combining actigraphy and self-report sleep assessments. 
Future studies should determine the degree to which these patterns extend to the within-person level to develop 
early prevention, treatment, and precision mental health strategies for individuals at risk of, or with, increased 
GAD severity.

1. Introduction

Generalized anxiety disorder (GAD) is a common mental disorder 
marked by excessive and uncontrollable worry linked to myriad symp
toms, such as concentration issues, irritability, and muscle tension, over 
at least the past six months (American Psychiatric Association, 2022). 
Epidemiological studies have indicated that the global lifetime preva
lence rates of GAD range from 1.6 % to 5.0 % across 27 countries with 
varying income levels (Ruscio et al., 2017; Watterson et al., 2017). 
Persistent and severe GAD symptoms have been associated with worse 
mental health comorbidities, physical health, and psychosocial func
tioning (Patriquin & Mathew, 2017; Shin & Newman, 2019). Thus, 

determining the distal risk factors (i.e., long-term preceding variables) 
of GAD is crucial for developing optimal prevention and treatment 
approaches.

Sleep disturbances might be critical distal risk factors of pathological 
worry and related GAD symptoms. However, the unique pathways via 
which sleep disturbances predict persistent worry remain understudied. 
One plausible mechanism involves dysregulations in daily activity-rest- 
sleep cyclical routines, which actigraphy wearables could capture 
seamlessly while complementing self-reports of sleep quality. Homeo
static sleep disturbances, such as longer self-reported sleep onset latency 
(SOL) and higher total sleep time (TST), might forecast long-term 
increased GAD by maintaining hyperarousal symptoms (Kalmbach 
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et al., 2018). Simultaneously, reduced activity counts during active 
wake phases and rest or sleep fragmentation during delimited rest or 
sleep phases might signal circadian disarray. Such sleep disturbances are 
germane to well-established frameworks of anxiety disorders, since 
decreased diurnal physical activity and erratic rest and sleep phases 
have been associated with cognitive dysfunction (Kong et al., 2023), 
emotion dysregulation (Palmer et al., 2024), increased arousal (Baker 
et al., 2017), and repetitive negative thinking (Clancy et al., 2020). 
Although actigraphy wearables do not directly assess endogenous 
circadian stages (e.g., melatonin levels), they can indicate 
circadian-governed routine behaviors through activity and sleep pat
terns during active wake, rest, and sleep phases. Together, combining 
self-report and actigraphy indices of daily activity, rest, and sleep rou
tines could help identify unique markers of sleep disturbance predictive 
of long-term GAD severity.

Although existing data partly support these theories, most evidence 
has been cross-sectional, which limits directional inference. A meta- 
analysis of 55 studies found a consistent negative association between 
worry and sleep quality, but the cross-sectional focus of research on SOL, 
TST (Clancy et al., 2020), and related indices (Konjarski et al., 2018) 
precludes causal conclusions (Rubin, 2008). Experience-sampling 
studies show that sleep disturbances often (Thielsch et al., 2015; Zhou 
et al., 2024b), although not always (McGowan et al., 2016), precede 
higher worry; however, most span only days, limiting insight into 
long-term effects. Reviews suggest that actigraphy-based measures 
reveal more consistent bidirectionality between sleep and affective 
disturbances across populations (Hickman et al., 2024; Ten Brink et al., 
2022). Poorer sleep quality also predicts future worry across months and 
years among adolescents (Richardson et al., 2024; Xiao et al., 2023), 
adults (Nguyen et al., 2022), and student nurses (Xu et al., 2020). 
Although self-reports remain useful, they overlook cyclical 
activity-rest-sleep indices captured by actigraphy. Overall, sleep dis
turbances across metrics plausibly confer distal risk for GAD symptoms.

Examining both self-reported and actigraphy sleep disturbances as 
predictors of long-term GAD symptoms is essential for myriad reasons. 
This holistic method captures complex relations between objective and 
subjective indices of sleep disturbances. Subjective self-reports often 
emphasize individual appraisals of fatigue, insomnia, and restlessness, 
which are frequently observed in GAD; however, objective actigraphy 
wearables may not correlate with these perspectives (Melo et al., 2021). 
The potential lack of correlation between subjective restlessness and 
objective movement, as assessed by actigraphy wearables, has been 
termed the “reactivity paradox” (Pastre & Lopez-Castroman, 2022). 
Thus, while subjective (self-report) measures of sleep disturbance can 
provide insights into an individual’s perceptions and experience of sleep 
difficulties, actigraphy wearables can offer more objective information 
on sleep-wake circadian patterns and rhythms, which might be 
compromised in those at risk of future GAD symptoms. These patterns 
may be more subtle and thus may not always enter a person’s conscious 
awareness, yet may plausibly impact risk for GAD. For instance, actig
raphy could detect decreased sleep-wake rhythms and reduced physical 
activity that might not be evident from self-reports (Difrancesco et al., 
2019; Franklin et al., 2021). Overall, integrating objective and subjec
tive measures enhances the ability to study the prognostic value of sleep 
disturbances in predicting long-term GAD symptoms.

On that note, using both actigraphy and self-report measures of sleep 
disturbances to predict long-term GAD symptoms is crucial for 
comprehensively understanding sleep-related risk factors for GAD. This 
approach considers the impact of both subjective perceptions and more 
objective biological metrics. Such data inevitably results in a high- 
dimensional predictor set. Traditional ordinary least squares regres
sion is ill-suited to manage collinearities among variables in a high- 
dimensional predictor set (Tomaschek et al., 2018). Machine learning 
(ML) is a data-driven technique within the suite of precision medicine 
methods and is a valuable alternative to circumvent these issues by 
effectively handling multicollinearity (Rosenbusch et al., 2021). 

Moreover, other benefits of using ML rather than ordinary least squares 
regression to examine how sleep disturbances predict future GAD 
symptoms include its ability to model higher-order interactions and 
complex nonlinear associations (Sajno et al., 2022). These ML strengths 
are key, as research has shown that the relations between sleep distur
bances and worry symptoms could be nonlinear and dependent on other 
variables (McWood et al., 2022; Shimizu et al., 2020). Furthermore, ML 
enables clinicians and researchers to determine whether an observed 
pattern generalizes to novel data using nested cross-validation, which 
separates training and test data subsets (Zhou et al., 2024a). To this end, 
such prognostication efforts can better inform prevention and treatment 
approaches, indicating whether an actionable ‘prognostic calculator’ 
(Oliver et al., 2021) can be built to predict long-term GAD symptoms if 
such patterns are replicated in external validation studies (Collins et al., 
2024).

Objective actigraphy and subjective self-reports capture myriad 
markers of sleep disturbance, each offering quantitative and qualitative 
insights into sleep experiences that may be distal risk factors for GAD 
symptoms. Actigraphy could capture activity (or movement) counts at 
rest, sleep, and active wake phases. Wearable actigraphy sensors also 
measure SOL, TST, sleep efficiency, and wake after sleep onset (WASO), 
providing consistent observations that usually concur with poly
somnography recordings (Smagula et al., 2016; Smith et al., 2018). 
Subjective self-reports, including sleep diaries, provide essential data on 
sleep quality appraisals that may or may not correlate highly with 
actigraphy outcomes (Fabbri et al., 2021; Pierson-Bartel & Ujma, 2024). 
Both indices are vital in discerning the long-term effects of sleep dis
turbances, including future GAD symptoms.

Given research, theory, and calls to advance precision psychiatry 
aims (van Dellen, 2024), the present study used ML to determine 
objective and subjective sleep disturbance predictors of nine-year GAD 
symptoms in a community adult sample. Our aims were twofold. First, 
we expected that the multivariable model, incorporating a 
high-dimensional set of actigraphy-indexed and self-reported sleep 
disturbance variables, would predict nine-year GAD symptoms with a 
meaningful R-squared (R²) statistic of at least 10 % (Hypothesis 1; Gao, 
2023). Hypothesis 1 is crucial, as an acceptable model fit is a prereq
uisite for interpreting both linear and nonlinear relationships among 
predictors and the GAD severity outcome. Second, we hypothesized that 
actigraphy and self-reported variables capturing various aspects of sleep 
disturbances would predict higher nine-year GAD severity (Hypothesis 
2). Accurately interpreting these relations is essential to theory devel
opment. Moreover, our multivariable ML analyses adjusted for relevant 
clinical and sociodemographic covariates to prevent p-hacking and 
related issues (Fitzpatrick et al., 2024).

2. Method

2.1. Participants

Community-dwelling adults enrolled in the Midlife Development in 
the United States (MIDUS) Biomarker project (N = 1054) were included 
in the present secondary data analysis (Ryff et al., 2021, 2019). At Wave 
1 (W1; 2004–2006), the mean age of the sample was 55.32 (SD = 11.78, 
range = 34.00–84.00). Regarding gender, whereas 577 (54.7 %) were 
women, the remaining 477 (45.3 %) were men. Education levels 
comprised no high school education (51, 4.8 %), completed high school 
education (238, 22.6 %), some college education (301, 28.6 %), finished 
college, university, or post-graduate education (214, 20.3 %), and the 
remaining did not disclose (250, 23.7 %). Racial demographics included 
White individuals (988, 93.7 %), African Americans, Asian Americans, 
Native Americans or Pacific Islanders, or other racial identities (66, 
6.3 %). The proportions of participants with a GAD diagnosis were 
2.09 % (22/1054) and 2.37 % (25/1054) at W1 and W2, respectively.
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2.2. Eligibility criteria

Inclusion criteria comprised the following: participation in the initial 
MIDUS project (Brim et al., 2020); self-reported ability to travel for a 
biomarker data collection protocol with minimal health or logistical 
risks; voluntary informed consent (Love et al., 2010). Exclusion criteria 
included medical illnesses that increased travel risks, a recent travel 
schedule, and shift work patterns. These exclusions maximized the 
quality of the actigraphy and sleep diaries for community-dwelling 
adults, ensuring they captured population-level variations in 
sleep-wake patterns (Aqua et al., 2024; Schreiber & Dautovich, 2019).

2.3. Procedures

2.3.1. Overview
All participants completed a biomarker data collection protocol, 

including a seven-day passive actigraphy wearable assessment at W1 
(Love et al., 2010). The W1 assessment also included a survey of sub
jective sleep disturbances and clinical interviews assessing GAD and 
related symptoms with the Composite International Diagnostic 
Interview-Short Form (CIDI-SF; Kessler et al., 1998a; Kessler & Üstün, 
2004). The CIDI-SF used herein aligns with the Diagnostic and Statistical 
Manual of Mental Disorders, Third Edition-Revised (DSM-III-R; 
Wittchen, 1994). More details are given in the Measures subsection.

2.3.2. Sleep actigraphy protocol
Participants received a sleep actigraphy wearable (Mini Mitter 

Actiwatch-64 activity monitor) for seven days, which tracked activity 
movements in active wake, rest, and sleep phases. To standardize the 
protocol, the actigraphy watches were worn from Tuesday morning at 
home, following the two-day MIDUS biomarker data collection site visit, 
until the following Tuesday morning (Kim et al., 2016). Rest and sleep 
bouts were also captured in the active wake, rest, and sleep phases 
(Bisson & Lachman, 2023). Participants also completed daily sleep di
aries to record the start and end of rest phases (Lee et al., 2025). Daytime 
naps were not captured by the actigraphy but were recorded in the daily 
sleep diaries, in which individuals reported the length of each nap 
(Devine & Wolf, 2016). Comparatively, nighttime patterns were recor
ded by the actigraphy. Although mood variables were also collected 
daily (Zainal et al., 2024a), they were not central to the present research 
aims and thus excluded from the current analyses. These sleep distur
bance indices were recorded during the active wake, rest, and sleep 
phases: activity counts, sleep bouts, sleep efficiency, SOL, TST, WASO, 
wake bouts, and wake time (counts and percentages; Lee, 2022). Sleep 
efficiency was computed as the ratio of sleep time in bed, derived from 
the actigraphy-based sleep epochs. SOL indicated the epoch-based 
duration between self-reported bedtime and the first sustained sleep 
period. WASO reflected the total epoch-based awake time between sleep 
onset and ultimate awakening. TST measured the epoch-based sleep 
duration from sleep onset to ultimate awakening. The MIDUS project 
initially referred to TST as “time dozing before rising,” but this label was 
later changed to TST for greater clarity and consistency with the broader 
literature.

Additionally, we did not calculate within-person variability in
dicators (e.g., standard deviation of sleep metrics) for any actigraphy or 
self-reported sleep indices. The average value of each actigraphy vari
able was instead computed across the seven-day data collection time
frame. This decision was based on our objective of capturing everyone’s 
normative sleep-wake and rest-disruption patterns, consistent with our 
emphasis on trait-level attributes that can predict nine-year GAD 
severity. Further, adding several variability indices would have 
expanded the high-dimensional predictor set, potentially exacerbating 
collinearity and redundancy and compromising model interpretability 
and predictive accuracy. Therefore, despite their informative value, 
variability metrics were not included for better alignment with the 
present hypotheses and the reasons stated here.

Several definitions in the MIDUS project deserve clarification. ‘Ac
tivity counts’ is defined as the quantified frequency and intensity of 
wrist movements in a specific epoch (30 s to 1 min) through a built-in 
accelerometer (Chung, 2017). Validated algorithms (e.g., Cole-Kripke) 
identified sleep-wake status were applied to process and record these 
counts. ‘Sleep bouts’ is operationalized as periods of sleep identified by 
the algorithms, delimited by wakeful episodes (Devine & Wolf, 2016). A 
sleep bout is thus referred to as a continuous, uninterrupted period 
where the individual is estimated to be sleeping, and the counts of such 
bouts inform about sleep fragmentation and continuity. This method 
aligns with previous MIDUS applications that processed actigraphy data 
to yield summary metrics based on activity counts, validated algorithms, 
and standardized scoring procedures (Lee, 2022; Lee et al., 2025).

2.4. Measures

W1 and W2 GAD symptoms. Participants stated if they experienced 
the following symptoms in the past 12 months linked to worrying about 
half the days or most days based on the CIDI-SF interview (Kessler et al., 
1998a, 1998b): (i) restlessness; (ii) on edge, keyed up, or nervous; (iii) 
irritability; (iv) concentration issues; (v) memory problems; (vi) low 
energy; (vii) easily fatigued; (viii) muscle aches or tension. Each item’s 
score ranged from 1 (never) to 4 (most days). A dimensional GAD severity 
score was computed through the summation of all item scores. Two sleep 
items (trouble falling asleep and staying asleep) were removed to pre
vent tautological analyses, and sensitivity analyses were conducted 
while prioritizing the analysis that excluded them. Past research showed 
that this continuous CIDI-SF GAD scale had good internal consistency 
(Cronbach’s α =.98 at both W1 and W2 herein), excellent convergent 
validity, and strong discriminant validity (Ng et al., 2024).

Additionally, the CIDI-SF provided a categorical measure of GAD 
based on the DSM-III-R criteria. Individuals who expressed worrying 
excessively almost every day in the past 12 months while experiencing 
three or more of the above-stated symptoms were diagnosed with GAD. 
The categorical measure has been shown to have good sensitivity to 
change and construct validity (Zainal & Newman, 2019).

W1 Panic disorder (PD) symptoms. Given their comorbidity with 
GAD symptoms (Herr et al., 2014), PD symptoms were included as 
covariates. Participants similarly responded to the CIDI-SF interview 
(Kessler et al., 1998a, 1998b) by endorsing if they experienced any of 
these symptoms linked to cued or non-cued panic attacks or spells in the 
past 12 months: (i) heart palpitations; (ii) chest or stomach discomfort, 
pain, or tightness; (iii) sweating; (iv) shaking or trembling; (v) chills or 
hot flashes; and (vi) sense of unreality with surroundings. Each item was 
rated as 0 (absent) or 1 (present). Previous studies suggested that this 
continuous CIDI-SF PD scale had good internal consistency (α = .86 
herein) and strong construct validity (Zainal & Newman, 2022a, 2022b).

W1 Major depressive disorder (MDD) symptoms. As the co- 
occurrence between MDD and GAD has been well established (Zhou 
et al., 2017), MDD symptoms were also adjusted for as confounders. 
Participants responded to the CIDI-SF interview (Kessler et al., 1998a, 
1998b) stating whether these MDD symptoms associated with depressed 
mood or loss of pleasure for at least two weeks were present in the past 
12 months: (i) loss of interest; (ii) easily fatigued or atypically low en
ergy; (iii) appetite gain or loss; (iv) trouble falling or staying asleep; (v) 
concentration issues; (vi) feelings of worthlessness; and (vii) thoughts 
about death. Each item was recorded as 0 (absent) or 1 (present). Prior 
work implied that this continuous CIDI-SF MDD scale showed high in
ternal consistency (α = .85 herein) and good construct validity (Sarkar 
et al., 2024; Zainal et al., 2024a).

W1 Alcohol use disorder (AUD) and substance use disorder 
(SUD) symptoms. Prior research has shown that AUD (Ivan et al., 2014) 
and SUD (Soraya et al., 2022) symptoms could be comorbid with GAD 
symptoms. AUD symptoms were measured with the Alcohol Screening 
Test (Selzer, 1971). Participants responded if they had such alcohol use 
issues in the past 12 months: (i) emotional or psychological 
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disturbances; (ii) strong cravings, desires, or urges that were hard to 
resist; (iii) at least a month or more of using alcohol or recovering from 
its impacts; (iv) higher tolerance by using more to attain similar impacts; 
and (v) increased risks of injury. Each item was coded as 0 (absent) or 1 
(present). Previous studies have implied that the AUD symptom scale has 
good internal consistency (α = .70 herein) and strong construct validity 
(Win et al., 2021; Zainal et al., 2024a).

In addition, SUD symptoms were measured on a seven-item scale 
developed by the MIDUS researchers (Turiano et al., 2012). Participants 
stated if they experienced these symptoms linked to substance use (e.g., 
stimulants, prescription painkillers, nerve pills, marijuana, inhalants, 
hallucinogens) in the past 12 months: (i) increased risks of injury; (ii) 
heightened consumption than intended; (iii) emotional or psychological 
disturbances; (iv) excessive time with substance use; (v) higher toler
ance such that more substance use is needed to experience similar ef
fects; (vi) consuming larger amounts; and (vii) academic or work 
impairments. This SUD scale has shown excellent internal consistency (α 
= .81 herein) and good construct validity (Turiano et al., 2012; Zainal 
et al., 2024a).

W1 Pittsburgh Sleep Quality Index (PSQI; Buysse et al., 1989). 
The PSQI measured seven domains of self-reported sleep disturbances in 
the past month: (i) daytime dysfunction; (ii) habitual sleep inefficiency; 
(iii) sleep disturbances; (iv) sleep duration; (v) SOL; (vi) sleep medica
tion consumption; and (vii) subjective poor sleep quality. The PSQI 
scores have shown acceptable internal consistency (α = .70 herein) and 
good construct validity with other insomnia scales (Carpenter & 
Andrykowski, 1998). Details on PSQI cut-points and the proportion of 
participants who met each cut-point are in the online supplemental 
materials (OSM).

W1 Pharmacological and psychological treatment. Pharmaco
logical treatment was defined as self-reported medication use counts in 
the past 30 days for any of the following reasons: anxiety/depression, 
arthritis, birth control, cholesterol, diabetes, headaches, heart condition, 
hormone therapy, lungs, pain, or ulcer (Ryff et al., 2021). Psychological 
treatment was measured with a dimensional scale that counted the 
number of mental health professionals (e.g., counselors, psychiatrists, 
psychologists) participants visited in the past 12 months. Medical 
treatment utilization was operationalized as the self-reported counts of 
visits participants had with medical professionals for check-ups, routine 
appointments, or urgent care in the past 12 months.

2.5. Data analyses

All analyses were conducted using the R software coding environ
ment (version 4.4.2) for multivariable ML analyses (R Core Team, 2025). 
Across multiple indicators, the associations between actigraphy-indexed 
sleep markers (e.g., total activity counts, sleep efficiency, WASO) and 
PSQI self-reported dimensions (e.g., daytime dysfunction, sleep distur
bances) were small overall. Table S1 in the OSM presents the descriptive 
statistics of all sleep disturbance variables of interest, as well as the 
clinical and demographic covariates included in the predictor set, which 
comprised 44 variables. Table S2 presents the correlation matrix of as
sociations between actigraphy and self-report sleep markers. Most cor
relation coefficients fell below r = .20. These small associations 
highlight that actigraphy and self-report assess distinct perspectives on 
sleep, reflecting objective rest-activity patterns rather than subjective 
appraisals of sleep quality. Therefore, testing these markers separately is 
critical to distinguish their distinct contributions in predicting nine-year 
GAD severity.

Feature engineering steps were carried out independently in the 
training and testing folds before the multivariable ML prediction ana
lyses to avoid data leakage (James et al., 2013). Normalization was 
conducted on continuous variables by standardizing values to a mean of 
0 and a standard deviation (SD) of 1. One-hot encoding was applied to 
nominal variables. Missing data in the predictor set of the training folds 
were handled using random forest (RF) imputation, which was superior 

to multiple imputation by accounting for any existing interactions and 
nonlinearities (Shah et al., 2014), as implemented in the missRanger 
package (Mayer, 2024).

To evaluate the multivariable ML predictive models (Hypothesis 1), 
we conducted a nested cross-validation (NCV) approach (Lewis et al., 
2024). This method enables the optimization of model parameters and 
the attainment of unbiased predictive performance estimates. Essen
tially, the NCV framework comprises inner-fold loops for model selec
tion, training, and tuning, as well as outer-fold loops to assess the extent 
to which the tuned model generalizes to unseen data. This method used 
a random forest (RF) algorithm, a commonly used ensemble approach 
that aggregates predictions from multiple decision trees to improve 
precision and robustness.

Our RF algorithm within the NCV framework was conducted using 
the caret (Kuhn, 2008) and ranger (Wright & Ziegler, 2017) packages. An 
important step in optimizing an ML model is hyperparameter tuning, 
typically done with the expand.grid function for tree-based ML algo
rithms. We systematically varied the tuning grid by altering these three 
parameters: (i) splitrule (the procedures for making choices to split de
cision tree nodes); (ii) mtry (the random decision of the number of 
predictors to retain at each split); and (iii) min.node.size (the minimum 
observations or sample size in a terminal node). These parameters in
fluence how the model strikes a balance between bias and variance 
(Breiman, 2001). Based on recommendations, we aggregated the esti
mated prediction scores across numerous decision trees to yield a final 
prediction score (Namamula & Chaytor, 2022).

To provide context for the RF performance, six other multivariable 
ML algorithms were tested (Pargent et al., 2023). These algorithms 
included linear models: least absolute shrinkage and selection operator 
(LASSO), ridge regression, and elastic net regression. The algorithms 
also included two other tree-based models (decision trees and gradient 
boosting machine [GBM]) and the support vector machine (SVM) that 
could capture both linear and nonlinear associations. More details about 
the tested ML models are expanded in the OSM.

For each tested ML algorithm, both the inner-loop folds (model se
lection, training, and hyperparameter tuning) and the outer-loop folds 
(model testing) were set to 5. To assess the accuracy and stability of 
predictive performance estimates, we carried out 1000 bootstrap 
resampling iterations (Kosko et al., 2024). We calculated the 95 % 
confidence intervals (CIs) for three conventional regression performance 
indices, which are grounded in best practices: (i) root mean square error 
(RMSE); (ii) mean absolute error; (iii) R2 metric. Model calibration plots 
were also constructed to test the degree to which predicted scores cor
responded with observed scores (Huang et al., 2020).

To improve the interpretability of predictor-outcome associations 
(Hypothesis 2), we implemented two interpretable ML (also called 
explainable artificial intelligence [XAI]) methods: partial dependence 
plots (PDPs) and Shapley additive explanations (SHAP; Molnar, 2022). 
PDPs compute the mean change in the predicted outcome value as a 
single predictor variable changes while keeping the remaining variables 
constant (Kyriazos & Poga, 2024). SHAP values, derived from 
game-theoretic principles, quantify the contribution of each predictor 
variable to each prediction at the participant level (Lundberg & Lee, 
2017).

Although PDPs offer the intuitive appeal of average predictor effects, 
SHAP builds on its logic by estimating predictor importance rankings, 
interactions, and nonlinear associations. In particular, we utilized SHAP 
bee swarm plots, which illustrate the sign and magnitude of each pre
dictor’s contribution across individuals, while highlighting the most 
impactful predictors (Kovač et al., 2024; Lundberg et al., 2020). 
Collectively, PDPs and SHAP offer insights into complex ML algorithms, 
such as RF, enabling the transformation of “black box” ML models into 
intuitive instruments.
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3. Results

3.1. Main findings (Hypothesis 1)

Hypothesis 1. assessed how the multivariable ML models could 
constructively forecast W2 GAD severity. Table 1 presents the perfor
mance metrics of the predictive model for all algorithms. The RF algo
rithm yielded the best performance across all performance metrics, 
indicating that it successfully captured the complex associations in the 
W1 data. Note that whereas RMSE and MAE measure the average pre
diction errors (lower is better), R2 represents the percentage of variance 
accounted for (higher is better). The RF model yielded the lowest RMSE 
(0.050, 95 % CI [0.047–0.053]) and MAE (0.038, 95 % CI 
[0.036–0.040]), indicating stronger predictive accuracy than the other 
algorithms. In addition, it achieved the largest R² value (69.7 % 
[67.3 %–71.9 %]), indicating that it accounted for more than half of the 
variance in W2 GAD severity.

Calibration plots (Figure S1 in the OSM) were also examined to 
assess the degree to which predicted values corresponded with actual 
scores. Calibration is defined as the extent to which the model’s fore
casted scores match real-world outcome values. Error-based indices for 
the calibration analyses were consistently close to 0 (MAE: 0.079; RMSE: 
0.060; R2 metric: 25.6 %), indicating good calibration. Together, these 
results offer support for Hypothesis 1.

3.2. Predictor-outcome relations (Hypothesis 2)

Hypothesis 2. examined the pattern of associations between W1 
variables and W2 GAD severity. To enhance interpretability, we employ 
two visualization approaches typical in XAI: PDPs (Fig. 2) and SHAP bee 

swarm plots (Fig. 3). PDPs display the mean association between a 
predictor variable and the outcome. Comparatively, SHAP plots offer a 
ranked order of variable importance that captures both linear and 
nonlinear patterns as well as higher-order interactions.

3.2.1. Main patterns
Self-reported sleep disturbances ranked highly in predicting W2 GAD 

severity (# indicated relative importance): more sleep disturbances 
(#4), subjective poor sleep quality (#5), longer sleep latency (#6), 
daytime dysfunction (#7), greater habitual sleep inefficiency (#10), and 
sleep medication consumption (#18). Two actigraphy-indexed rest 
phase variables ranked highly in predicting W2 GAD severity: higher 
maximum (#12) and total (#13) activity counts. Only one sleep phase 
variable–longer TST (#14)–and one active phase variable–higher 
average sleep bouts (#20)–predicted higher W2 GAD severity.

3.2.2. Sensitivity analyses
These patterns remained after adjusting for these covariates: GAD 

severity (#1), panic disorder severity (#2), MDD severity (#3), age 
(#8), mental health professional visits (#9), gender (#16), past 30-day 
medication counts (#17), and past 12-month medical professional visits 
(#17). Sensitivity analyses aligned with the initial findings when sleep 
was added to the GAD symptom severity measures (Table S3; 
Figures S2–S4). Collectively, these outcomes supported Hypothesis 2, 
affirming that both actigraphy-based and self-reported sleep distur
bances were essential predictors of W2 GAD severity.

4. Discussion

The present study used recommended ML methods to identify the 
objective and subjective sleep disturbance predictors of nine-year GAD 
symptoms. In support of Hypothesis 1, our multivariable predictive ML 
model showed strong predictive performance, as indicated by the R2 

value, with narrow 95 % CIs (69.7 % [67.3 %–71.9 %]), offering con
fidence in the estimates (Gao, 2023). Findings also aligned with Hy
pothesis 2, revealing that various indices of objective actigraphy and 
subjective self-reported sleep disturbance variables consistently pre
dicted higher nine-year GAD severity. The relative importance of sub
jective over objective sleep disturbance predictors of nine-year GAD 
symptoms extended data that subjective indices had precedence in 
mediating the relation between pre-sleep worrying and later emotional 
well-being (Werner et al., 2025).

Our findings of W1 sleep disturbances preceding and predicting 
higher W2 GAD severity concur with cognitive-behavioral and neuro
biological frameworks that posit sleep to both trigger and maintain 
anxiety disorders. Cognitive theories suggest that daytime dysfunction, 
poorer subjective sleep quality, and prolonged sleep latency can exac
erbate attentional biases toward threats, increase worry, and reinforce 
safety behaviors (e.g., lengthening the time spent in bed; Akram et al., 
2023; Harvey, 2008; Harvey & Greenall, 2003). These factors inevitably 
perpetuate cyclical experiences of arousal and sleep fragmentation. The 
transdiagnostic model expands on cognitive theories by contextualizing 
sleep disturbances as a common risk mechanism across unique mental 
disorders (Harvey et al., 2011). Increased daytime and nighttime arousal 
vis-à-vis issues with the modulation of cognitive-emotional load would 
aggravate and prolong GAD symptoms. Neurobiologically, the hyper
arousal framework suggests that discontinuities in rest or sleep phases, 
as well as hypersomnia (characterized by longer TST), indicate poor 
regulation of sleep-wake modulation systems. Such dysregulations 
typically manifest as persistent activation of the autonomic, cortical, and 
hypothalamic-pituitary-adrenal (HPA) axis (Riemann et al., 2010). 
Moreover, somatic dysregulation both fragments sleep and interacts 
reciprocally with worry-related threat hypervigilance, consistent with 
data showing that impaired architectures in rapid eye movement (REM) 
and non-REM (NREM) stages can worsen such psychopathological 

Table 1 
Multivariate ML model performance metrics of W1 variables predicting W2 GAD 
severity.

Metric Estimate LCI UCI

Least absolute shrinkage and selection operator (LASSO)
RMSE 0.078 0.074 0.082
MAE 0.055 0.052 0.059
R2 0.277 0.215 0.341
Ridge regression
RMSE 0.078 0.074 0.082
MAE 0.056 0.053 0.060
R2 0.271 0.206 0.338
Elastic net regression (ENR)
RMSE 0.078 0.074 0.082
MAE 0.055 0.052 0.059
R2 0.274 0.211 0.342
Decision trees (DCT)
RMSE 0.076 0.072 0.081
MAE 0.054 0.050 0.057
R2 0.304 0.238 0.369
Random forest (RF)
RMSE 0.050 0.047 0.053
MAE 0.038 0.036 0.040
R2 0.697 0.673 0.719
Gradient boosting machine (GBM)
RMSE 0.068 0.064 0.072
MAE 0.049 0.046 0.052
R2 0.440 0.384 0.499
Support vector machine (SVM)
RMSE 0.082 0.077 0.088
MAE 0.051 0.047 0.055
R2 0.222 0.156 0.293

Note. ML, machine learning; W1, wave 1 (2004–2006); W2, wave 2 
(2013–2014); GAD, generalized anxiety disorder; LCI, lower bound of the 95 % 
confidence intervals (CIs) of the bootstrapped model performance metric; UCI, 
upper bound of the 95 % CIs of the bootstrapped model performance metric; 
RMSE, root mean squared error; MAE, mean absolute error; R2, R-squared.
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features (Papadimitriou & Linkowski, 2005; Uhde et al., 2009). Collec
tively, these models might account for the observed pattern in which 
self-reported and actigraphy-based indices of sleep disturbances serve as 
long-term risk factors for higher GAD severity, above and beyond clin
ical and demographic covariates.

The observed outcomes, both actigraphy and self-reported markers 
of sleep disturbances, predicted nine-year GAD severity, aligning with 
and building on previous research across clinical and research samples. 
Aligned with Tsypes et al. (2013), self-reported indices (e.g., daytime 
dysfunction, prolonged sleep latency) meaningfully predicted future 
GAD severity, highlighting that sleep fragmentation markers are not 
solely a correlate but may function as key risk factors. Further, our re
sults concurred with actigraphy research showing that altered sleep 
continuity or timing, especially longer TST, and higher activity during 
rest phases, are associated with elevated worry severity (Carbone et al., 
2023; Peng et al., 2024b). Crucially, by combining actigraphy and 
self-report data, our findings buttressed the assertions of Ivan et al. 
(2014) and Nguyen et al. (2022) that objective and subjective assess
ments provide unique yet complementary perspectives on the 

sleep-worry connection. The observed outcomes reinforce prospective 
interpretations from adolescents and adults, demonstrating that baseline 
sleep disturbances forecast future anxiety above and beyond depressive 
symptoms (Peng et al., 2024a; Tsypes et al., 2013). As in prior research, 
our study precludes strong causal inferences (Blackwell & Glynn, 2018), 
and residual confounding (e.g., emotion dysregulation, recent stressors) 
might partly explain our findings. However, longitudinal sleep-GAD 
severity effects remained after controlling for various covariates. This 
outcome may indicate that the identified sleep disturbance indices are 
reliable risk factors for long-term GAD severity.

Furthermore, it is plausible that distinct sleep components interact to 
influence pathways associated with GAD risk. For example, longer TST 
coupled with reduced sleep efficiency or increased physical activity 
during rest phases may worsen hyperarousal experiences and excessive 
worry. Simultaneously, deviations in both active and rest-phase activity 
counts might worsen circadian misalignment. Future prospective studies 
should assess such interaction effects to determine how actigraphy- 
indexed sleep disturbances confer additive or multiplicative risk for 
nine-year GAD symptom severity.

Fig. 1. Summary of the overall MIDUS project with specific variables collected at each assessment wave Note. MIDUS, Midlife Development in the United States; CIDI-SF, 
Composite International Diagnostic Interview-Short Form; GAD, generalized anxiety disorder; MDD, major depressive disorder; AUD, alcohol use disorder; SUD, 
substance use disorder; PDPs, partial dependence plots; SHAP, Shapley additive explanations.
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In the GAD-related literature, both actigraphy-indexed and self- 
reported sleep-wake indices provide unique and complementary per
spectives on the conceptualization of circadian and sleep disturbances. 
Actigraphy provides objective, naturalistic indicators of circadian 
rhythms, physical activity, sleep duration, and efficiency that can 
identify discontinuities in sleep or rest phases, which may be missed by 
self-report. Examples include how deficits in gross motor activity and 

vigorous physical activity are more pronounced in individuals with co
morbid anxiety and depression (Difrancesco et al., 2019). In community 
adults, actigraphy-indexed data further signal the importance of sleep 
fragmentation as a strong marker of anxiety disorders independent of 
other circadian variables, emphasizing how dysregulated physical ac
tivity may partly explain worry-sleep relations (Luik et al., 2015). 
Experimental data in GAD samples also showed that exercise programs, 

Fig. 2. Partial dependence plots of W1 sleep disturbance variables predicting W2 GAD severity.Note. W1, wave 1 (2004–2006); W2, wave 2 (2013–2014); GAD, 
generalized anxiety disorder; MDD, major depressive disorder; PSQI, Pittsburgh Sleep Quality Index.

Fig. 3. SHAP bee swarm plot of W1 sleep disturbance variables predicting W2 GAD severity. Note. SHAP, Shapley additive explanations; W1, wave 1 (2004–2006); W2, 
wave 2 (2013–2014); GAD, generalized anxiety disorder; MDD, major depressive disorder; PSQI, Pittsburgh Sleep Quality Index. Each data point represents 
participant-level data. Red data points denoted positive predictor-outcome relations, whereas blue data points denoted negative relations, aggregated into a density 
plot for each predictor to depict global and local participant-level conditional predictor effects on the outcome.
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especially resistance training, enhance actigraphy-based and 
self-reported sleep outcomes (e.g., decreased SOL, improved sleep effi
ciency), thereby improving clinical outcomes (Herring et al., 2015). 
Self-reports, on the other hand, may simultaneously capture subjective 
stress severity and fluctuations in subjective insomnia symptoms, which 
can be misaligned with actigraphy data (Difrancesco et al., 2019). 
Nonetheless, despite promising findings from prior reports and the 
current study, reviews indicate that actigraphy remains underutilized in 
the anxiety literature (Pastre & Lopez-Castroman, 2022). The dearth of 
prospective studies and methodological variability compounds this 
issue, limiting its present utility in measurement-based care and routine 
outcome monitoring. Collectively, our findings and prior research 
emphasize the importance of combining subjective self-reports with 
objective actigraphy to holistically study the role of sleep disturbances 
as both distal risk factors and targets for assessment and treatment.

5. Limitations and strengths

The present study outcomes should be interpreted with consider
ation of several limitations. First, future studies should include unmea
sured potential confounds, including factors related to circadian clock 
genes (Bauducco et al., 2020). Second, and related, subsequent research 
should add polysomnography indices (Galbiati et al., 2018) into the 
multivariable predictor set to enrich the detection of the relative 
importance of multimodal sleep disturbance variables. Third, although 
the DSM-III-R and DSM-5 definitions of GAD symptoms were similar to a 
large degree (Abel & Borkovec, 1995; Brown et al., 1995; Starcevic & 
Portman, 2013), replication efforts should use the latest psychometri
cally validated assessments. Fourth, replication attempts should recruit 
more diverse and representative samples to improve the generalizability 
of findings, given that 93.7 % of the sample identified as White. Fifth, 
external validation using an independent community-adult sample 
would increase confidence in the inferences (Cabitza et al., 2021). Sixth, 
although the rest-activity disruption model of worry posits that the 
relationship between sleep disturbances and GAD symptoms is complex 
and bidirectional (Nguyen et al., 2022), the present study focused on the 
prognostication of long-term GAD symptoms. Seventh, our observations 
apply to the between-person level and may thus not extend to the 
within-person domain in both strength and sign, which is critical to 
remember to prevent the ecological fallacy (Curran & Bauer, 2011). 
Intensive longitudinal design work is required to assess the degree to 
which the findings generalize to within-person processes (Molenaar, 
2004). Finally, although the ML models detected patterns between W1 
variables and W2 GAD severity, strong causal inferences cannot be made 
without experimental studies or more thorough causal inference ana
lyses. W1 variables identified as distal risk factors for higher W2 GAD 
severity may still capture correlations from common correlates or un
measured confounders, warranting caution in interpreting these find
ings for prevention and treatment purposes (Brand et al., 2023; Leist 
et al., 2022). However, the study’s strengths included a well-powered 
adult community sample, a robust nested cross-validation ML 
approach, and the use of a large set of sleep disturbance predictors, 
including objective and subjective measures.

6. Clinical implications

When extrapolating clinical implications, it is essential to consider 
that our longitudinal study employed observational methods, which 
preclude strict causal inference and may lead to residual confounding, 
despite extensive covariate adjustment (Hernán & Robins, 2023). To 
assess the potential implications of sleep disturbances for the prevention 
and treatment of long-term GAD symptoms, future studies should 
employ designs that assess bidirectionality, mediation, and portable 
patterns. First, intensive longitudinal designs, possibly through ecolog
ical momentary assessments (EMA), are required to clarify 
within-person trajectories. Multimodal measures that combine 

actigraphy, daily diary, and EMAs should capture arousal, worry, and 
related GAD constructs. Such EMA data could then be analyzed using 
within-person methods, such as dynamic structural equation modeling 
(Rodebaugh et al., 2022) and network-based multilevel vector autore
gressions (Haslbeck et al., 2021). Second, more experiments and efficacy 
trials of scalable cognitive-behavioral therapy for insomnia (Zainal 
et al., 2024b), structured physical exercise (Xie et al., 2021), and 
mindfulness training (Kennett et al., 2021) should be conducted to 
facilitate causal inferences. Follow-up mediational analyses are key for 
uncovering plausible treatment mechanisms, such as executive func
tioning and hyperarousal. Moderators, such as age and sex, should be 
explored to advance precision mental health. Third, external validation 
(Collins et al., 2024) is essential for assessing the generalizability and 
transportability of our multivariable models, a step toward creating 
actionable prognostic tools. Last, implementation science work is 
required to evaluate cost-effectiveness and equity in various clinic, 
community, and corporate settings (Zainal et al., 2025). If these studies 
provide converging evidence that within-person reductions in sleep 
disturbances precede and predict reductions in worry, routine moni
toring of both objective and subjective sleep disturbances within a 
stepped-care framework could be recommended. Until then, any plau
sible clinical implication should be interpreted as hypothesis-generating 
instead of a recommendation.

7. Conclusion

Among a large community-adult sample, a nested cross-validation 
multivariable model integrating actigraphy and self-report markers of 
sleep disturbances accurately predicted nine-year GAD symptoms. 
Interpretable ML methods identified key markers of sleep disturbances. 
These outcomes underscore the predictive value of both subjective and 
objective sleep disturbance indices. However, these patterns yielded 
inferences at the between-person rather than within-person level, hin
dering strong causal inferences and potentially concealing essential 
within-person processes. Future work building on these findings should 
leverage intensive longitudinal designs and suitable within-person 
methods, with an analytic pipeline that includes experimental 
methods and external validation procedures. If similar patterns are 
replicated within persons and across diverse settings, the development 
of actionable prognostic calculators implemented within stratified care 
contexts would be justified.
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