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A B S T R A C T

Background: Major depressive disorder (MDD) is prevalent and poses major public health implications. Auto
nomic nervous system (ANS) dysregulation and sleep disturbances are theorized to be distal risk factors. How
ever, previous research has depended on cross-sectional designs, small predictor sets, and suboptimal methods, 
limiting temporal inference and predictive accuracy. We thus capitalized on machine learning to identify 
physiology and sleep predictors of nine-year MDD symptoms.
Method: Community adults (N = 1054) participated in a study that included baseline physiological electrocar
diogram (ECG) and sleep actigraphy wearable assessments. Clinical interviews were administered to assess for 
psychiatric symptoms at baseline and nine-year follow-up. Eight ML models were trained to predict MDD severity 
using 80 baseline variables via a 70–30 train-test split with 5-fold cross-validation with 81 baseline variables to 
predict MDD severity.
Results: The best model (gradient boosting machine) had 10 variables with strong predictive accuracy in the test 
set (R2 = 19.8%). Baseline MDD, generalized anxiety, and panic disorder symptoms strongly predicted nine-year 
MDD severity. Longer total sleep time, lower sleep efficiency, and higher average wake time during sleep phases 
were key correlates of higher nine-year MDD severity. Other correlates included fewer average sleep bouts and 
shorter wake times during active phases, as well as nonlinear patterns of wake time length and percentage during 
rest phases. Physiology ECG variables had limited incremental predictive value.
Conclusions: Wearable actigraphy-indexed sleep disturbances predicted long-term MDD symptoms beyond 
baseline severity and ANS dysregulation indices. Combining passive sleep sensors into routine assessments might 
optimize MDD prevention and treatment.

1. Introduction

Major depressive disorder (MDD) symptoms, such as concentration 
issues, fatigue, motivational deficits, and sleep disturbances, are com
mon in the general population (American Psychiatric Association, 2022; 
Zainal and Newman, 2021). Meta-analyses of epidemiological reports 
indicated that 12-month prevalence estimates of elevated MDD symp
toms ranged from 19% to 42% among adults (Moreno-Agostino et al., 
2021) and youths (Shorey et al., 2022) globally in the general popula
tion. Persistent MDD symptoms interfere with various social, school, and 
work functions, escalating to poorer quality of life across all develop
mental stages (Hohls et al., 2021; Sivertsen et al., 2015). Thus, identi
fying distal risk factors for future MDD symptoms is critical for 

prevention and treatment.
One plausible set of risk factors is the presence of autonomic nervous 

system (ANS) dysregulation markers, such as low heart rate variability 
(HRV) and a high resting heart rate. ANS dysregulation refers to a lack of 
balance between strong stress-triggering sympathetic activity and weak 
calmness-inducing parasympathetic activity (Sameroff, 2020; Sgoifo 
et al., 2015). According to the transactional model of stress and 
depression, such ANS dysregulation might reduce adaptability to 
changing environmental demands, thereby precipitating and perpetu
ating MDD symptoms over long durations. Relatedly, ANS imbalance is 
intimately related to emotion dysregulation, such as low cognitive 
flexibility, which may also predict later MDD symptoms (Fantini-Hau
wel et al., 2020). Indeed, early case-control, cross-sectional studies 
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found that patients with MDD consistently exhibited lower levels of 
diverse HRV indicators than healthy controls, with small to moderate 
effect sizes (Hedge's g = − 0.462 to − 0.096; cf. meta-analysis by Koch 
et al., 2019). Moreover, longitudinal reports showed that higher resting 
heart rate and lower HRV indices predicted higher future incident MDD 
rates (Jandackova et al., 2016), perseverative cognitions, and MDD 
symptoms in both community adults and psychiatric samples (Carnevali 
et al., 2018; Gentili et al., 2017), suggesting a potential etiological role 
of ANS imbalance in MDD.

Markers of sleep dysregulation may also serve as important distal 
risk factors for MDD symptoms through diverse plausible mechanisms. 
Sleep disturbances might adversely affect cognitive and emotional 
regulation, which could fuel MDD symptoms (Palmer and Alfano, 2017). 
Other possible key pathways implicate perturbations in the 
hypothalamic-pituitary-adrenal (HPA) axis and circadian rhythms, 
which govern sleep-wake cycles (Asarnow, 2020). Suboptimal changes 
in levels of catecholamine neurotransmitters in the suprachiasmatic 
nucleus of the hypothalamus and brain areas that regulate physical ac
tivity, mood, and sleep-wake patterns could trigger MDD symptoms over 
time (Grippo and Johnson, 2009; Thase, 2006).

Empirical data support the notion that sleep disturbances precipitate 
MDD symptoms. For instance, data from seven studies showed that 
myriad sleep-problem indices preceded MDD symptoms in adolescents 
(refer to meta-analysis by Lovato and Gradisar, 2014). Other meta- 
analyses showed that hypersomnia (excessive sleep), insomnia (inade
quate sleep), and related sleep disturbances predicted greater future 
MDD severity (Zhai et al., 2015), including suicide ideation (Liu et al., 
2020). Conversely, four empirical studies have indicated that treating 
insomnia substantially decreases subsequent MDD prevalence rates in 
adults (cf. systematic review by Boland et al., 2023).

The present study leveraged a suite of precision medicine approaches 
to investigate how physiological ECG and sleep wearable passive sensor 
variables predicted MDD severity after a nine-year follow-up (Iglesias 
et al., 2025). First, we applied machine learning (ML) algorithms to 
detect complex, nonlinear associations among high-dimensional base
line variables, expanding on previous research that depended on ordi
nary least squares (OLS) regression. Compared to OLS, ML methods 
model main effects and interactions more flexibly. ML approaches 
further optimally manage the bias-variance trade-off via internal vali
dation processes, such as nested cross-validation (Lewis et al., 2023; 
Yarkoni and Westfall, 2017). Second, unlike most prior prognostic ML 
studies, which only provided discrimination metrics to predict the 
presence of a binary clinical outcome, the present study conducted 
calibration analysis to test the degree to which predicted scores matched 
actual continuous MDD severity outcomes (Huang et al., 2020). 
Furthermore, examining dimensional severity outcomes, rather than 
categorical clinical endpoints, is more consistent with the Research 
Domain Criteria framework (Morris et al., 2022), as it captures a broader 
range of functioning or lack thereof (Kelly et al., 2018). Third, in 
contrast to previous research limited by small sample sizes and predictor 
sets (Luedtke et al., 2019), we utilized a comprehensive set of physio
logical and sleep predictors, including actigraphy-derived measures of 
physical activity and sleep, as well as ECG, in a well-powered sample. 
Our approach thus enabled a data-driven, stringent evaluation of base
line variables with the strongest correlations with nine-year MDD 
severity, exploiting low-burden passive sleep sensors that overcome 
recall biases in subjective sleep reports (Massar et al., 2021). Fourth, 
most studies on this topic have been cross-sectional (e.g., Blood et al., 
2015), which limits the ability to draw causal conclusions (Pearl, 2014). 
In contrast, here, we provide a rare test of how our predictors forecast 
MDD symptoms nine years later. Fifth, we tested the ECG and sleep 
predictors coupled with baseline comorbid depression and anxiety 
symptoms, thereby providing a strong test of the independent prognostic 
contribution of these objective measures over and above symptoms.

In summary, we employed ML approaches to identify the multivar
iable predictors of nine-year MDD symptoms using a large baseline 

predictor set with diverse physiological ECG and sleep actigraphy var
iables. Our hypotheses were twofold. First, we expected the optimal 
model to perform well, serving as a prerequisite for interpreting complex 
multivariable predictor patterns. Optimal performance was defined as 
an R-squared (R2) value of ≥15.0% (Gupta et al., 2024), indicating that 
the predictors accounted for a meaningful proportion of variance in the 
nine-year MDD severity outcome. Second, we anticipated that theory- 
driven ECG physiology and sleep actigraphy variables at baseline 
would predict higher nine-year MDD severity.

2. Method

2.1. Participants

Participants (N = 1054) took part in the Midlife Development in the 
United States (MIDUS) Biomarker project (Love et al., 2010) as well as 
the MIDUS survey studies at baseline (Wave 1; W1; 2004 to 2006; Ryff 
et al., 2021) and follow-up (Wave 2; W2; 2013 to 2014; Ryff et al., 
2019). They visited one of three data collection sites (Los Angeles, 
California; Madison, Wisconsin; Washington, D.C.). The mean age was 
58.04 years (SD = 11.62, range = 35 to 86). Regarding sex, 45.3% (477/ 
1054) were men, and the remaining 54.7% (577/1054) were women. 
With respect to racial identity, 91.2% (961/1054) identified as White, 
and the remaining 8.8% (93/1054) identified as Asian, African Amer
ican, Pacific Islander, or Native American. Concerning education, 44.1% 
(465/1054) had a college education and above, 28.5% (300/1054) had 
some college education, 22.6% (238/1054) had a high school diploma, 
and the remaining 4.8% (51/1054) had no high school education. 
Table 1 details the sociodemographic and clinical variables separately 
for the training and test sets.

2.2. Procedures

At W1, participants completed a brief clinical interview and a series 
of surveys administered by MIDUS research staff to assess the presence 
and severity of past 12-month symptoms of MDD, generalized anxiety 
disorder (GAD), and panic disorder (PD). They also underwent ECG 
physiology and sleep actigraphy protocols at W1 (Laborde et al., 2017; 

Table 1 
Descriptive data of sociodemographic and clinical variables at W1 (N = 1054).

Train set 
(n = 738)

Test set 
(n = 316)

Continuous variables M (SD) M (SD)

Age 57.86 (11.44) 58.47 (12.06)
Baseline MDD severity 0.57 (1.53) 0.65 (1.64)
Baseline GAD severity 14.62 (8.67) 14.73 (8.41)
Baseline PD severity 0.46 (1.23) 0.36 (1.06)
9-Year MDD severity 0.49 (1.43) 0.55 (1.57)

Categorical variables n (%) n (%)
Sex

Men 326 (44.17) 151 (47.78)
Women 412 (55.83) 165 (52.22)

Racial identity
Declined to disclose 21 (2.85) 9 (2.85)
Multiracial 6 (0.81) 2 (0.63)
White 675 (91.46) 286 (90.51)
African American 21 (2.85) 8 (2.53)
Native American 1 (0.14) 4 (1.27)
Asian 1 (0.14) 1 (0.32)
Other 13 (1.76) 6 (1.90)

Education
College education and above 318 (43.09) 147 (46.52)
High school 171 (23.17) 67 (21.20)
No high school degree 32 (4.34) 19 (6.01)
Some college education 217 (29.40) 83 (26.27)

Note. MDD, major depressive disorder; W1, wave 1 (2004–2006); GAD, gener
alized anxiety disorder; PD, panic disorder. The MDD symptom scales excluded 
sleep disturbance items.
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Lee et al., 2025). At W2, they completed the same brief clinical inter
view. Given the research aims, only data from participants who fulfilled 
these study procedures were used.

2.3. Measures

2.3.1. W1 and W2 MDD symptoms
MIDUS researchers administered the Composite International Diag

nostic Interview-Short Form (CIDI-SF), which was aligned with the 
Diagnostic and Statistical Manual of Mental Disorders, Third Edition- 
Revised (DSM-III-R; Kessler et al., 1998a; Kessler and Üstün, 2004; 
Kessler et al., 1998b). Participants responded if they experienced 
appetite problems, depressed mood, difficulties focusing, fatigue, 
motivational deficits, sleep disturbances, sense of worthlessness, and 
suicide ideation in the past 12 months (rated as the presence [1] or 
absence [0] of symptoms). A total sum of all item scores indicated the 
degree of MDD severity, ranging from 0 (lowest) to 7 (highest). Prior 
studies have shown that the continuous version of this scale had good 
internal consistency and strong construct validity (Zainal and Newman, 
2022a, 2022b).

2.3.2. W1 GAD symptoms
The DSM-III-R-concordant CIDI-SF interview assessed 10 GAD 

symptoms related to worry over the past 12 months (Kessler et al., 
1998a; Kessler and Üstün, 2004; Kessler et al., 1998b): concentration 
issues, fatigue, feeling keyed up, irritability, mind going blank, muscle 
tension, restlessness, and sleep difficulties. Symptoms were rated on a 4- 
point scale (1 = never to 4 = a lot more) and summed to yield a total score 
(range: 10 to 40). Prior work demonstrated the dimensional CIDI-SF 
GAD scale's good internal consistency and excellent construct validity 
(Ng et al., 2024).

2.3.3. W1 PD symptoms
The DSM-III-R-consistent CIDI-SF interview was administered to 

measure six PD symptoms (recorded as present [1] or absent [0]; Kessler 
et al., 1998a; Kessler and Üstün, 2004; Kessler et al., 1998b): chest or 
stomach discomfort, heart racing, hot flashes or chills, sense of unreal
ity, sweating, and trembling or shaking. A total score was calculated by 
summing all the item scores (theoretical scores ranged from 0 to 6). 
Previous studies evidenced good internal consistency and excellent 
construct validity of the CIDI-SF PD severity scale (Zainal and Newman, 
2022a, 2022b).

2.3.4. W1 sleep actigraphy
Participants were instructed to wear a sleep actigraphy smartwatch 

(Philips Corporation; Amsterdam, The Netherlands; Andover, MA, USA) 
while filling out a sleep diary for seven consecutive days and nights. 
Participants were asked to start the actigraphy data collection on 
Tuesday morning after returning from the data collection site and end 
this part of the protocol the following Tuesday morning. The Actiwatch 
identified movement counts at 30-s periods in wakeful, resting, and 
sleeping phases by contrasting the computed total activity counts to a 
wake threshold score of 40 (Aqua et al., 2024). During times when the 
total activity counts were equal to or less than the wake threshold score, 
the period was identified as the sleep phase. Rest phases were identified 
through sleep diaries first, or via event indices and adjacent data second, 
if diary data were missing. The actigraphy marked wake and sleep times 
based on self-reported sleep diary records. Missing data, which occurred 
for various reasons (e.g., premature removal, misremembering to wear 
the smartwatch, unexpected night shifts, and traveling across time 
zones), was reviewed. Such actigraphy periods were identified and 
removed per recommended practices (Brindle et al., 2019). Other pas
sive sensing sleep indices captured by the actigraphy were sleep bouts 
(counts), sleep efficiency (%), sleep onset latency (SOL), sleep time, total 
sleep time (TST), wake after sleep onset (WASO), and wake time 
(Crowley et al., 2018; Yip et al., 2021). These values were aggregated by 

computing the mean across the days with valid data. Despite their high 
collinearity, we added these passive sleep wearable markers in the same 
predictor set to model their unique contributions in multivariable 
models. Previous studies have shown that specific predictors may 
distinctly predict MDD severity outcomes, even among correlated sleep 
indices, highlighting the need to test their independent predictive utility 
(Shrivastava et al., 2014; Yan et al., 2022).

2.3.5. Operational definitions of sleep indices
Rest period was defined as the self-reported or actigraphy-captured 

time during the evening or nighttime when a participant wound down 
from activities before going to bed. TST was indexed as the sum of sleep- 
scored epochs measured by Actiware during the rest period. WASO was 
defined as the sum of wake-scored epochs from sleep onset to final 
awakening. SOL was defined as the epoch-based interval between 
bedtime and the onset of sleep. Sleep efficiency was measured as sleep- 
period epoch length divided by the rest period duration, expressed as a 
percentage. Activity counts were marked as the number of actigraphy 
activity counts (arbitrary units) captured by the actigraphy. For all ac
tivity counts, their average, minimum, and maximum values were 
recorded during each 30-s epoch in active, rest, and sleep phases.

W1 physiology ECG
Following a caffeine-free light breakfast, participants had ECG 

electrodes placed beneath each clavicle (left and right shoulders) and 
their lower left abdomens. Further, respiratory effort bands were 
fastened encircling their abdomen and chest to track breathing patterns. 
While sitting, their dominant hand was placed on a keypad to facilitate 
computer-administered stressor tasks, a mental arithmetic task, a 
working memory test (Paced Auditory Serial Addition Test; PASAT; 
Spreen and Strauss, 1998), and an inhibitory control test (Stroop, 1935), 
presented in a counterbalanced manner to prevent order effects (Kimhy 
et al., 2013). After brief practice and calibration phases to gather high- 
quality signals (25 to 30 min), baseline functioning was assessed for 11 
min. Subsequently, the first stressor test was administered, followed by a 
recovery interval, and then the second stressor test, with another re
covery interval in between. This was followed by the final recovery 
phase, which lasted approximately 6 min.

HF-HRV was used to assess cardiac vagal control. Following rec
ommendations, a National Instruments Analog-to-Digital (AD) board 
digitized analog signals at 500 Hz, and this data was transferred to and 
gathered by a microcomputer (Berntson et al., 1997). RR interval series 
were generated by processing the ECG waveforms using a registered 
software that identified physiological events, such as R-waves, on a 
routine basis (Allen et al., 2007). Mistakes in identifying R-waves were 
rectified in accordance with best practices (Laborde et al., 2017). Nat
ural log transformation was applied to these physiological indices. 
Abdominal and chest respiratory rate signals were processed using 
another registered software, which generated average scores of respi
ratory rates on a minute-to-minute basis.

Reliable and stable HRV estimates were derived during each period 
of rest and recovery by following a highly recommended and well- 
established protocol in psychophysiology research (Quintana et al., 
2016). Mean HF-HRV and LF-HRV values were calculated in 5 to 10-min 
intervals during the rest phase, both stressor phases, and their related 
recovery phases (Gruenewald et al., 2023). Subtracting the scores be
tween the recovery and stressor task periods created a vagal recovery 
score. Given that cardiac vagal control reduces in response to stressors 
and increases in recovery phases (Shaffer and Ginsberg, 2017), a higher 
vagal recovery score indicated greater increase in the post-stressor phase 
HF-HRV.

Note that in addition to HF-HRV and LF-HRV, the MIDUS project also 
captured and computed the standard deviation of the RR intervals 
(SDRR) and root mean square of successive differences (RMSSD). The 
natural log of these variables was also computed. Both SDRR and RMSSD 
reflected the overall beat-to-beat variations and short-term para
sympathetic activity, respectively (Shaffer and Ginsberg, 2017), 
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supplementing the frequency-dimension ECG markers.

2.4. Data analyses

A 70–30 train-test split stratified by W2 MDD diagnostic status 
yielded 739 participants in the train set and 316 in the test set. The 
splitting approach was stratified to ensure equal percentages of MDD 
diagnoses across both datasets, thereby preserving concordance in 
multivariable data distribution for model building, training, and testing 
(James et al., 2013). Relatedly, our total sample size aligned with best 
practices that propose the number of data points should be a minimum 
of 10 to 15 times that of the predictor variables to facilitate stability in 
parameter estimation and minimize overfitting (problems pertaining to 
high variance; Goldenholz et al., 2023; Rajput et al., 2023). As we had 
80 baseline predictors, our sample size aligned with this standard (Wisz 
et al., 2008).

All analyses were conducted in R (R Core Team, 2025). All initial 
preprocessing steps, including random forest imputation and data 
transformations, were conducted separately in the train and test sets to 
avoid data leakage. Missing data, initially 47% of the predictor data set 
and 0% of the outcome variable, were managed using random forest 
imputation with the missRanger package (Mayer, 2024). This approach 
outperforms standard multiple imputation by permitting nonlinear re
lations and interactions, as well as accommodating various data types 
(Shah et al., 2014), and can optimally handle large amounts of missing 
data (Lee and Shi, 2021). These factors render the use of random forest 
imputation robust even with high levels of missingness in the predictor 
set, including under the missing not at random (MNAR) assumption 
(Afkanpour et al., 2024; Tang and Ishwaran, 2017). Data normalization 
was done on continuous and integer predictors. Near-zero variance 
predictors were removed. One-hot encoding was conducted on cate
gorical variables (James et al., 2013). Further, sensitivity analyses were 
conducted by assessing the performance metrics of each model 
described in the next section while combining both random forest 
imputation and inverse probability weights (IPWs) based on completer 
status. These measures were conducted to address possible biases arising 
from attrition, MNAR missing pattern, and confounders (Daza et al., 
2017). Tables S1 to S8 in the online supplemental materials (OSM) 
summarize the descriptives of all baseline ECG and sleep actigraphy 
variables that served as predictors in the train and test sets post- 
preprocessing.

Eight multivariable ML models predicting W2 MDD severity were 
tested (refer to page 14 of the OSM for details on each ML algorithm). 
The model with the most optimal performance was the gradient boosting 
machine (GBM; Schroeders et al., 2022). The GBM utilized a 5-fold 
cross-validation on the 80% training subset to choose hyper
parameters (Kovač et al., 2024). The hyperparameters (embedded in 
italics in this paragraph) were specified as 500, 1000, or 1500 trees (n. 
trees), a learning rate of 0.01, 0.05, or 0.1 (shrinkage), and an interaction 
depth of 3, 5, or 7 (interaction.depth) (James et al., 2013). The stopping 
rule was specified to continue tree splitting until a maximum of 10 or 20 
predictors per terminal node (n.minobsinnode). The subsampling fraction 
(bag.fraction), which represents the portion of the data in the train set 
randomly selected to produce the next tree in the expansion, was 0.5. 
While tuning, 80% of the training data were utilized to fit different ML 
algorithms, and the remaining 20% for internal validation (train.fraction 
= 0.8); following this, the final model was fit on the entire training set 
(train.fraction = 1.0). All available data in the training set were used for 
model training, with no independent training data segment set aside to 
estimate the out-of-sample loss function (train.fraction = 1). Essential 
performance metrics, namely the root mean squared error (RMSE), 
mean absolute error (MAE), and R-squared (R2), were calculated (James 
et al., 2013). Lower RMSE and MAE values, as well as higher R2 values, 
indicated better model performance. We used an elastic net regulari
zation filter on the training set to choose the top 20 W1 variables (Zou 
and Hastie, 2005), and the held-out test set evaluated the final GBM 

trained on these chosen variables. To quantify uncertainty, we 
computed the 95% confidence intervals (CIs) of each model's perfor
mance metric, facilitating more robust comparisons.

Moreover, the relative importance of the top 10 W1 predictors was 
analyzed using Shapley additive explanations (SHAP) bee swarm plots, 
an interpretable ML method (Lundberg and Lee, 2017; Molnar, 2022), 
using the 316 held-out test set observations. The SHAP bee swarm plot 
has a rich, intuitive appeal that helps readers understand the contribu
tion of each predictor to the model output at the participant level. Each 
dot in the density plot for each predictor indicates a participant-level 
SHAP value for a specific predictor, and the x-axis position signifies 
the direction and magnitude of that predictor's impact on the predicted 
W2 MDD severity score (Lundberg et al., 2020). Positive SHAP values 
indicate that the unique predictor increases the model's output (i.e., 
greater level predicted higher W2 MDD severity), whereas negative 
values suggest a decreasing impact. The color scheme relays the original 
predictor value (with red reflecting larger values and blue smaller ones), 
permitting readers to recognize how the raw predictor values are asso
ciated with their impact on the outcome (Kovač et al., 2024). The ver
tical distribution of dots for each predictor indicates heterogeneity in its 
effect across participants, possibly due to nonlinearities and interactions 
with other predictors. In addition, we generated the partial dependence 
plots, which constituted the bases of the SHAP values, to display the 
marginal effect of each W1 variable on the predicted W2 MDD severity 
score and to increase the intuitive appeal of SHAP outcomes (Kerrigan 
et al., 2025). Together, the SHAP bee swarm plot and partial dependence 
plots facilitate the interpretation of both overall predictor importance 
and participant-level variability in predictor influence.

Importantly, we prioritized predicting W2 MDD severity, excluding 
sleep items. This approach is sound in minimizing criterion contami
nation because the predictor variables and outcome endpoint share 
overlapping content (refer to Dahlke et al., 2018, for an example in the 
context of a longitudinal study). As sleep disturbances are a key symp
tom of MDD and a shared predictor, including sleep items in both the 
predictor set and the W2 MDD severity outcome measure might artifi
cially inflate correlations due to common variance rather than true 
predictive associations (Kell, 2022). To this end, the sensitivity analyses, 
which included sleep items, functioned as a robustness check 
(VanderWeele and Ding, 2017), validating that inferences about the 
prognostic utility of the top 10 W1 variables stayed consistent. These 
sensitivity analyses are crucial for testing the generalizability and sta
bility of multivariable predictive models, particularly when predictors 
are highly overlapping.

Diverse calibration metrics were computed to offer unique and 
complementary appraisals of the degree to which predicted values and 
observed scores matched. The mean calibration error indicated the 
overall average discrepancy from perfect calibration (Jiang et al., 2011). 
Comparatively, the root mean square calibration error assigns more 
weight to greater discrepancies by computing the square root of the 
mean squared errors, emphasizing the effect of large miscalibrations. 
The expected calibration errors are computed by calculating the mean 
predicted difference between actual and predicted values within the 
predictive distribution of the model (Huang et al., 2020). The maximum 
calibration error identifies the unique, most significant observed model 
calibration difference. By determining the degree to which models may 
over- or under-predict specific score ranges, their real-world clinical 
utility could be evaluated more rigorously (Riley and Collins, 2023). 
Together, smaller error indices reflect good calibration, lower expected 
error suggests good model generalizability, and lower maximum error 
indicates fewer anomalous miscalibrations.

3. Results

3.1. Multivariable ML model performance in the test dataset

Table 2 overviews the multivariable ML model performance metrics 
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that excluded sleep items from the MDD scales at both time points and 
selected the top 20 features with an elastic net regularization filter. GBM 
was the most optimal multivariable ML model for predicting W2 MDD 
severity, with the lowest RMSE (0.235 [95% CIs] [0.201 to 0.268]) and 
MAE (0.141 [0.122 to 0.163]) values and the highest R2 value (19.8% 
[9.1% to 28.6%]). The GBM algorithm accounted for 19.8% of the 
variance of W2 MDD severity in the held-out test set.

3.2. Top 10 multivariable predictors of nine-year W2 MDD severity

Fig. 1 summarizes the top 10 W1 predictors of W2 MDD severity in 
descending order of importance. The SHAP values ranged between 
about − 0.05 and + 0.17, suggesting that the unique W1 variables had 
between small negative and moderate-to-strong positive contributions 
to the model's output on the normalized scale. Fig. 2 presents the cor
responding partial dependence plots. The top three W1 correlates of W2 
MDD severity were higher levels of psychiatric symptoms (the number 
in parentheses denoted the relative importance): (1) MDD severity; (2) 
GAD severity; (3) PD severity. The remaining seven W1 correlates of 
greater W2 MDD severity were actigraphy-indexed sleep-wake vari
ables. These correlates included three sleep phase W1 variables: (4) 
longer TST; (5) lower sleep efficiency; (7) higher average wake time 
during sleep phase. Other W1 correlates of higher W2 MDD severity 
were two active phase variables: (6) fewer average sleep bouts; (10) 
shorter wake times. Nonlinear patterns emerged for two rest phase W1 
variables: (8) high and low (vs. moderate) wake time percentage; (9) 
moderate (vs. high and low) wake time.

3.3. Model calibration

Table 3 presents the point estimates of diverse model calibration 
metrics in the test dataset for the primary GBM model with the top 20 

W1 correlates of W2 MDD severity that used random forest imputation 
without IPWs. Fig. 3 shows the corresponding model calibration plot. 
The values of the key calibration metrics were as follows: calibration 
slope (1.621 [1.057 to 2.073]); calibration intercept (− 0.061 [− 0.097 to 
− 0.017]); calibration R2 (0.232 [0.103 to 0.371]); mean calibration 
error (0.141 [0.121 to 0.162]); and expected calibration error (0.050 
[0.038 to 0.081]). Collectively, these metrics suggest that the final 
model had moderate-to-good calibration, where predictions displayed 
systematic bias but overall acceptable-to-good levels of mean to 
maximum deviation from perfect calibration.

3.4. Sensitivity analyses

Sensitivity analyses determined the degree to which the observed 
patterns remained identical under different predictor set lengths and 
missing data management approaches. The GBM continued to perform 
well if all 80 W1 variables were included in the predictor set (Table S9), 
and if the top 20 W1 variables were identified through the elastic net 
regularization filter while using both random forest imputation and 
IPWs (Table S10). Similar patterns of model performance metrics and 
predictor-outcome associations were observed if the predictor set and 
outcome included the CIDI-SF sleep-related items in the analyses 
(Tables S11 to S14 and Figs. S1 to S3 in the OSM).

4. Discussion

The present study used physiological ECG and sleep actigraphy 
wearable data to test their prognostic value in predicting nine-year MDD 
severity. No physiological and sociodemographic variables emerged as 
significant incremental distal risk factors of nine-year MDD severity. 
However, the final best-performing GBM multivariable ML model, 
which outperformed several other models (e.g., linear LASSO), revealed 
that sleep, rest, and active wake actigraphy indices were critical in 
predicting nine-year MDD severity. Below, we consider several potential 
implications for advancing clinical theory and practice.

Our multivariable ML model accounted for 19.8% of the variance in 
nine-year MDD severity and attained low RMSE and MAE values in the 
held-out test. These outcomes implied that the model offered clinically 
meaningful yet moderate prognostic value. Due to the intrinsic 
complexity, subjectivity, and variability in assessing mental health 
outcomes, predictive accuracies with modest levels could still aid in 
early detection of high-risk individuals and targeted prevention 
(Meehan et al., 2022). Identical R2 values have been construed as 
practically significant, particularly in contexts where unique baseline 
variables account for small additional variance in the outcome (Gao, 
2023). Although models explaining more than two-fifths of the variance 
in clinical outcomes are regarded as robust, accounting for close to 20% 
out-of-sample variance with rigorous predictor selection approaches and 
algorithms, such as GBM, could offer real-world implications. Future 
external validation studies are also required to refine model generaliz
ability and transportability (Debray et al., 2023; Guerreiro et al., 2024).

Unsurprisingly, strong relative importance rankings were observed 
for more baseline MDD, GAD, and PD symptoms in predicting stronger 
nine-year MDD severity. Beyond replicating the persistence of MDD 
symptoms across long periods (Garcia-Toro et al., 2013), these findings 
emphasize how comorbid GAD and PD symptoms can aggravate their 
course (Hung et al., 2019). Potential mechanisms, such as emotion 
regulation repertoires (Barber et al., 2023a) and social relationships 
(Barber et al., 2023b), of MDD symptom chronicity and prospective 
comorbidity thus deserve further attention to explain these patterns.

Simultaneously, both longer TST and wake time, as well as lower 
sleep efficiency during the sleep phase, were correlated with higher 
nine-year MDD severity. These actigraphy markers likely reflected 
circadian rhythm dysregulations at the hormonal (Riemann et al., 2020) 
and neural levels (Wolf et al., 2016), which interfered with sleep ho
meostasis and restoration processes over time. Ironically, longer TST has 

Table 2 
Model performance of multivariable ML models predicting W2 MDD symptom 
severity in the test data set, excluding sleep items in the MDD symptom scales, 
with the top 20 W1 variables (Random forest imputation without IPW).

Model Metric Estimate LCI UCI

LASSO MAE 0.170 0.152 0.188
RMSE 0.239 0.210 0.264
R2 0.172 − 0.001 0.284

Ridge MAE 0.166 0.147 0.184
RMSE 0.238 0.207 0.265
R2 0.176 0.043 0.269

ENR MAE 0.167 0.149 0.185
RMSE 0.238 0.208 0.264
R2 0.179 0.029 0.280

CART MAE 0.130 0.107 0.151
RMSE 0.241 0.201 0.277
R2 0.154 0.062 0.221

RF MAE 0.172 0.155 0.192
RMSE 0.245 0.217 0.275
R2 0.132 − 0.024 0.221

GBM MAE 0.141 0.122 0.163
RMSE 0.235 0.201 0.268
R2 0.198 0.091 0.286

SVM MAE 0.144 0.122 0.167
RMSE 0.258 0.217 0.295
R2 0.031 − 0.013 0.068

SLR MAE 0.153 0.133 0.174
RMSE 0.241 0.203 0.272
R2 0.157 0.065 0.228

Note. ML, machine learning; W2, wave 2 (2013–2014); MDD, major depressive 
disorder; IPW, inverse probability weights based on completer status; LCI, lower 
bound of the 95% confidence intervals (CIs); UCI, upper bound of the 95% CIs; 
LASSO, least absolute shrinkage, and selection operator; MAE, mean absolute 
error; RMSE, root mean squared error; R2, R-squared; ENR, elastic net regula
rization; CART, classification and regression trees; RF, random forest; GBM, 
gradient boosting machine; SVM, support vector machine; SLR, Super Learner.
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been linked to atypical depression profiles (Ohayon and Roberts, 2015) 
and compromised neurocognition (Sen and Tai, 2023), probably indi
cating hypersomnia and sleep-wake fragmentation. Poorer sleep effi
ciency (i.e., lower ratio of sleep time to total time spent in bed) has been 
reliably identified as a depression risk factor (Yan et al., 2022), perhaps 
functioning as a proxy of nighttime somatic arousal and physiological 
hypersensitivity. Together, these findings could be situated in the 
context of the two-process theory of sleep (Borbely et al., 2016; Nutt 
et al., 2008). This framework proposes, as our findings suggested, that 
sleep is jointly managed by a homeostatic process, which regulates sleep 
need based on previous wakefulness, and a circadian process, which 
drives alertness and sleep timing across the 24-h everyday cycle.

Moreover, consistent with the two-process model, fewer sleep bouts 
and shorter wake times in the active phase were predictive of greater 
nine-year MDD severity, emphasizing their significance in mood regu
lation. Relatedly, the nonlinear rest phase patterns (high and low [vs. 
moderate] wake time percentage and moderate [vs. high and low] wake 
time) imply an intricate, non-monotonic association between sleep 
continuity patterns and nine-year MDD severity. These findings aligned 
with and extended prior observations of nonlinearities between sleep 
components and MDD severity (Shimizu et al., 2020; Yin et al., 2023). 
Collectively, the outcomes could be explained by how sleep aberrations, 
whether manifested as deficiencies or excesses, in the rest-wake phases 
might chronically disrupt optimal emotion regulation (Tsui and Chan, 
2025), conferring distal risk for higher MDD severity.

Neurobiologically, the actigraphy patterns observed in the present 
study might be accounted for by various brain substrates intimately 
linked to the association between sleep disturbances and MDD severity. 
Low sleep efficiency as a precursor to higher MDD severity might be tied 
to compromised white matter in the internal capsule and corona radiata, 

decreased activity in the lingual and postcentral gyri, and greater 
angular gyrus connectivity (Yang et al., 2020). The sleep disturbance 
patterns we observed might also be attributed to deficits in cuneus- 
temporal lobe connectivity (Zhu et al., 2020) and suboptimal rapid 
eye movement (REM) activity connected with implicated brain regions 
(Zhang et al., 2024). On that note, deviations in REM duration and la
tency that are entwined with connectivity between motor and parietal 
cortices might also contribute to the current findings (Liu et al., 2025). 
Longitudinal studies that combine multimodal measures, including 
actigraphy, neuroimaging, and polysomnography, are necessary to build 
on existing work and to test these conjectures.

Notably, ECG or ANS indices did not emerge as key incremental 
predictors of nine-year MDD severity, which we predicted based on the 
transactional models that connect ANS dysregulations with depression 
and stress reactivity (Eberhart and Hammen, 2010). The primary GBM 
algorithm prioritizes baseline variables by their incremental value 
conditioned on other factors in the predictor set (Yarkoni and Westfall, 
2017). MDD and comorbid anxiety severity, coupled with key actig
raphy indices, concurs with notions that ANS activity is integrated 
within broader circadian and emotion regulation processes instead of 
being independently predictive across long durations (Kinoshita et al., 
2024; Stange et al., 2023). The nine-year time horizon may also weaken 
predictive power, as vagal processes reflect state-level shifts to proximal 
stressors, aging, cardiac, and metabolic processes that were not 
measured repeatedly. Further, the ECG protocol might have had lower 
ecological validity than actigraphy wearables that captured everyday 
physical activity and sleep patterns. The ECG approach also focused on 
frequency-dimensions and recovery indices instead of a broader range of 
temporal-dimensions and nonlinear assessments. On the whole, these 
accounts might explain the limited incremental contribution of ECG and 

Fig. 1. SHAP Bee swarm plot of the multivariable GBM model of the top 10 W1 variables predicting W2 MDD symptom severity, excluding sleep items in the MDD 
symptom scales based on the testing sample 
Note. SHAP, Shapley additive explanations; GBM, gradient boosting model; W1, wave 1 (2004–2006); W2, wave 2 (2013–2014); MDD, major depressive disorder; 
GAD, generalized anxiety disorder; TST, total sleep time. Each dot indicates a participant's data point. The x-axis indicates the SHAP value (i.e., the predictor's 
marginal effect on the model's predicted W2 MDD severity outcome). Positive SHAP values suggest that higher W1 variable values are correlated with higher 
predicted W2 MDD severity, whereas negative SHAP values imply a decreasing impact. The color gradient indicates the strength of the raw W1 variable value, such 
that blue points reflect lower values and red points indicate higher values. W1 variables are organized vertically by their global relative importance, i.e., W1 variables 
at the top are presented with the strongest mean effect on the model's output across all individuals. The (+) and (− ) symbols indicate the overall sign of correlation 
between the W1 variable and the predicted W2 MDD severity in the fitted multivariable model. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)
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ANS baseline variables as correlates of nine-year MDD severity.
The present study had some limitations. First, replication efforts to 

test the external validity of these multivariable clinical prediction 
models using ML techniques are needed with larger sample sizes 
(Luedtke et al., 2019). Second, most participants self-reportedly iden
tified as White (91.2%), were recruited from three U.S. universities, and 
were in midlife to older adulthood. Because sleep and stressor exposure 
patterns may differ across diverse cultural contexts and subgroups, the 
transportability of our outcomes is probably limited. Readers should, 
thus, construe our findings as exploratory for other culturally diverse 
groups. Future well-powered studies are encouraged to conduct external 
validation (Gallitto et al., 2025), model updating, or recalibration efforts 
(Fehr et al., 2023) by examining how the sign and strength of parameter 
estimates might vary by racial groups or structural factors. Third, based 
on prior research, future similar multivariable ML studies should 
investigate whether similar findings are observed when ecological 
wearable or sensor physiology measures are administered instead of 
laboratory-based ECG recordings (Ettore et al., 2023; Sato et al., 2023). 
Fourth, unmeasured third variables, such as genetic factors implicated in 
the etiology of MDD symptoms (Bunney et al., 2015), should be included 
in future research. Fifth, the bidirectional relations among physiology, 
sleep actigraphy, and MDD symptoms require more exploration. Sixth, 
although an approach robust to high missingness (random forest 
imputation) was used, future replication attempts should be conducted 
in a dataset with a lower proportion of missingness.

However, several notable strengths of the study were evident. The 
multivariable ML models demonstrated excellent performance and 
calibration outcomes in the primary model, which excluded sleep items, 
as well as in sensitivity analyses that included the sleep items. Advanced 
multivariable ML modeling with interpretable ML methods was also 
conducted to examine the predictors of nine-year MDD symptoms. These 
approaches detect possibly complex and nonlinear associations and offer 

intuitive and nuanced insights into the results (Molnar, 2022). Finally, 
the long nine-year timeframe enhanced the prognostic value of the 
present prospective analyses.

Several clinical implications merit attention if future studies exter
nally validate the pattern of results. If externally validated in future 
replication attempts, the multivariable ML model suggests that an 
actionable ‘prognostic calculator’ of increased future MDD severity can 
be developed (Collins et al., 2024). Using passive sensors with sleep 
actigraphy in this calculator is a strength that reduces the assessment 
burden. In other words, findings highlight the potential value of early 
prevention and treatment efforts to target both anxiety and depression 
symptoms, given the observed chronic nature of MDD symptoms. 
Treatments or universal prevention programs that address sleep 
consolidation, continuity, and routine may be essential for reducing the 
risk of chronic MDD symptoms or incidence (Fang et al., 2019). 
Cognitive behavioral therapy for insomnia (CBT-I) has consistently 
shown strong evidence in simultaneously targeting MDD symptoms and 
sleep disturbances (cf. meta-analysis by Furukawa et al., 2024). How
ever, clinical scientists and healthcare policymakers might benefit from 
increased resources for prevention science, particularly through the 
evaluation of more universal prevention programs. Ultimately, these 
efforts should enhance sleep characteristics, improve quality of life, and 
mitigate the risk of exacerbating or emerging long-term symptoms of 
MDD.
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Fig. 2. Partial dependence plots (PDPs) of the multivariable GBM model of the top 10 W1 variables predicting W2 MDD symptom severity, excluding sleep items in 
the MDD symptom scales, based on the testing sample 
Note. PDPs, partial dependence plots; GBM, gradient boosting model; W1, wave 1 (2004–2006); W2, wave 2 (2013–2014); MDD, major depressive disorder; GAD, 
generalized anxiety disorder; TST, total sleep time. These PDPs were based on the best-performing GBM model that used an elastic net regularization filter, displaying 
the association between W1 variables and W2 MDD severity. Each panel illustrates the marginal effect of a specific W1 variable on predicted W2 MDD severity. The y- 
axis indicates the model's computed W1 MDD severity, and the x-axis depicts the normalized range of predictor values. Panels that show (+) reflect W1 variables 
correlated with greater W2 MDD severity as their values increase. Conversely, panels that display (− ) indicate W1 variables correlated with lower W2 MDD severity 
as their values increase. Non-linear associations, such as logarithmic and plateau patterns, represent inflection points where the W1 variable's effect on W2 MDD 
symptom severity changes. Collectively, this figure relays how both clinical variables and objective sleep actigraphy markers provide both additive and differential 
contributions to variability in W2 MDD severity.

Table 3 
Model calibration metrics of multivariable ML models predicting W2 MDD 
symptom severity in the test data set, excluding sleep items in the MDD symptom 
scales, with the top 20 W1 variables (Random forest imputation without IPW).

Description Estimate LCI UCI Meaning

Calibration Slope 1.621 1.057 2.073 Agreement between 
predicted and observed

Calibration 
Intercept

− 0.061 − 0.097 − 0.017 Systematic bias in 
predictions

Calibration R- 
squared

0.232 0.103 0.371 Explained variance of 
calibration

Mean Calibration 
Error

0.141 0.121 0.162 Average deviation from 
perfect calibration

Root Mean Square 
Calibration Error

0.235 0.199 0.267 Square-root mean 
deviation from 
calibration

Expected 
Calibration Error

0.050 0.038 0.081 Expected difference 
between predicted and 
true

Maximum 
Calibration Error

0.140 0.064 0.277 Largest observed 
calibration deviation

Note. GBM, gradient boosting machine; LCI, lower bound of the 95% confidence 
intervals (CIs); UCI, upper bound of the 95% CIs.
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