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Abstract

Theoretical models involving one or multiple intervening variables often posit whether a cause influences an outcome
both directly and indirectly or only indirectly. In testing mediation, this distinction of partial and full mediation has
become a subject of debate because of statistical issues. We extend the critique on this notion and provide insights into
what a statistically significant direct effect between a cause and an outcome in a mediation model can mean. We also
evaluate different effect size measures for direct and indirect effects and offer practical recommendations for assessing
mediation mechanisms, which we illustrate using different examples. The broader relevance of these recommendations

beyond mediation analysis is discussed.
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Mediation analysis has a long history (e.g., Hyman, 1955;
MacCorquodale & Meehl, 1948; Wright, 1921) and cur-
rently enjoys a high popularity in the behavioral and
social sciences that can be traced back to works pub-
lished in the 1980s by, among others, Judd and Kenny
(1981a, 1981b), James and Brett (1984), and of course,
Baron and Kenny (1986). Over the last decades, statistical
techniques have been developed that facilitate the assess-
ment of mediation in simple and complex models involv-
ing multiple mediators or predictors and continuous and
categorical variables (e.g., Hayes, 2018; Tacobucci, 2008;
MacKinnon, 2008; Muthén et al., 2016; Pearl, 2009;
VanderWeele, 2015). These advances provide researchers
with insights into mediation mechanisms in models of
causal relations as no other method does.

A distinction often made in mediation models is the
one between partial and full mediation, also called
incomplete and complete mediation (e.g., James & Brett,
1984; Kenny et al., 1998; Mathieu & Taylor, 2006; Shrout
& Bolger, 2002). Over the last decade, there has been a
debate surrounding the virtues of this distinction; some
have advocated that it should be abandoned completely

because of issues with how this distinction is assessed
statistically (e.g., Hayes & Preacher, 2014; Preacher &
Kelley, 2011; Rucker et al., 2011). Yet this distinction
continues to be made in methodological articles (e.g.,
Sim et al., 2022), theoretical models (e.g., Schmader &
Sedikides, 2018), individual studies (e.g., Le et al., 2024),
and meta-analyses (e.g., Tran et al., 2022). A PubMed
search revealed that in 2024, the terms “partial media-
tion” and “full mediation” appeared in 111 and 44 pub-
lications, respectively.

In this article, we extend the discussion of the distinc-
tion between partial and full mediation and the impor-
tance of additional statistical analyses, especially the
calculation of effect sizes. We begin by showing that
theoretical models involving one or multiple mediators
often imply whether a cause (antecedent) influences an
outcome (consequent) both directly and indirectly or
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Fig. 1. Path diagrams of a simple mediation model (Model A) and a
model with two simultaneous mediators (Model B). Rectangles rep-
resent manifest variables, circles represent residuals, single-headed
arrows represent regression weights, double-headed arrows pointing
to single variables represent variance parameters, and double-headed
arrows pointing to different variables represent covariance parameters.

only indirectly. Next, we extend the critique of this dis-
tinction and explain why it is problematic statistically.
We also elucidate what a significant direct effect between
a cause and an outcome can mean and discuss require-
ments for causal relationships. We then evaluate effect
size measures for both direct and indirect effects and
provide equations to convert the direct effects. Finally,
we offer practical recommendations for assessing media-
tion mechanisms, which we illustrate using hypothetical
and real data.

Theoretical Perspective

The distinction between partial and full mediation can
be found in many theoretical models that implicitly or
explicitly posit that one variable causes another variable
both directly and indirectly or only indirectly. Full medi-
ation is indicated when a theoretical model states that
a cause influences an outcome only indirectly through
one or more mediators (James & Brett, 1984). An exam-
ple is Schmader and Sedikides’s (2018) conceptual model
of state authenticity as fit to the environment. This frame-
work posits that the fit between a person and the envi-
ronment influences the person’s motivation to approach
situations indirectly through state authenticity, which the

authors defined as a sense of being in alignment with
one’s own true self. Partial mediation is indicated when
a theoretical model states that an antecedent influences
an outcome both directly and indirectly through one or
more mediators (James & Brett, 1984; Judd & Kenny,
1981b). For example, Karremans et al. (2017) hypothe-
sized that mindfulness influences relational processes
both directly and indirectly through awareness, emotion
regulation, executive control, and self-other connected-
ness. Although often considered alone, theoretical mod-
els regularly combine partial and full mediation as
smaller pieces of a larger causal model. A popular exam-
ple is the theory of planned behavior (TPB; Ajzen, 1991).
According to the TPB, people’s attitude toward a planned
behavior and the subjective norm predicts their behavior
indirectly through their intention, whereas people’s per-
ceived behavioral control predicts their behavior both
directly and indirectly through their intention.

These examples underscore that theoretical conceptu-
alizations of causal frameworks often distinguish between
partial and full mediation and that this distinction provides
a more nuanced understanding of the process through
which a cause is expected to affect an outcome. Once the
mediation mechanism is identified, the distinction between
partial and full mediation also provides researchers with
insights into where it is appropriate to intervene to change
the outcome (e.g., Ledermann & Macho, 2015; Loh et al.,
2022). Although the statistical testing of partial versus full
mediation is not without issues, this distinction provides
easy to understand language to describe and discuss the
mechanism by which a cause influences an outcome
through one or more intervening variables.

Statistical Perspective

Consider the most basic mediation model that consists of
a single cause, X, a single mediator, M, and a single out-
come, Y. If M and Y are both continuous variables, then
this simple mediation model (see Model A in Fig. 1) can
be expressed by three linear equations:

M =i +aX +e, (D
Y=i,+bM+c'X +e,, (2)
Y =i,+cX +e,, 3

where a, b, and ¢' are estimates of the direct effects;
i,, i,, and i, are intercepts; and e, , e,, and e, are residu-
als. The product ab is the estimate of the indirect or
mediating effect of X on Y through M, and the sum of
ab and ¢’ is equal to the estimate of the total effect, c,
such that ¢ = ab + ¢’, assuming the relationships between
the variables are linear and there are no missing data

(MacKinnon et al., 1995). In this model, mediation is
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concluded to occur when ab is statistically significant
and according to some authors (e.g., Fritz et al., 2012;
Ledermann & Macho, 2009; Yzerbyt et al., 2018), when
the two direct effects that make up this indirect effect are
statistically significant (joint significance test; MacKinnon
et al., 2002). The indirect effect and the direct effect ¢’
are said to be consistent when ab and ¢’ are both sta-
tistically significant and have the same sign (e.g., Kenny
et al., 1998) and inconsistent when ab and ¢’ have
opposite signs (MacKinnon et al., 2000).

The simple mediation model can be easily expanded
by adding more intervening variables. Model B of Figure
1 shows a model with two simultaneous or parallel
mediators. In this model, there are two specific indirect
effects, a,b, and a,b, , a total indirect effect equal to the
sum of the specific indirect effects, a,b, +a,b,, a direct
effect of X on Y (partialling out M, and A,), ¢', and a
total effect, ¢, equal to a,b, + a,b, + ¢' . Mediation is con-
cluded to occur if one or both of the specific indirect
effects are statistically significant or if the total indirect
effect is statistically significant.

Now consider the case in which both a,b, and a,b,
are statistically significant and have the same sign. Here,
each mediator alone partially mediates the X to Y relation.
Next, consider the case in which @b, and a,b, are sta-
tistically significant but opposite in sign. This may sound
like a contrived situation, but MacKinnon et al. (2001)
found that the Athletes Training and Learning to Avoid
Steroids (ATLAS) program (Goldberg et al., 1996) increased
both reasons to avoid steroids and reasons to use steroids,
which had opposite effects on intentions to use steroids.
This resulted in specific indirect effects of opposite signs;
the one through reasons to use steroids was positive, and
the one through reasons to avoid steroids was negative.
In a model with two simultaneous mediators, if the two
specific indirect effects are equal in size but opposite in
sign, they cancel each other out, resulting in a total indi-
rect effect that is zero, and if ¢’ is zero, then the total
effect is zero as well. This example illustrates that media-
tion can exist in situations in which there is no total effect
(see also MacKinnon et al., 2000; Shrout & Bolger, 2002).
When ¢’ is statistically significant and of the same sign
as a,b;, then the effect through M, is consistent with ¢’,
and the effect through A7, is inconsistent. If the two indi-
rect effects cancel each other out because the magnitude
of the two is equal, the total indirect adds up to zero, and
the total effect becomes ¢'.

Issues in testing partial versus full
mediation
In testing mediation, partial statistical mediation is said

to occur when both the indirect effect and ¢’ are signifi-
cantly different from zero, and full statistical mediation

is said to be indicated when the indirect effect is signifi-
cantly different from zero but ¢’ is not (e.g., Little et al.,
2007; Mathieu & Taylor, 2006). This testing for partial
versus full statistical mediation presents several issues.
One is the reliance on the outcome of statistical null
hypothesis significance testing (Hayes, 2018; Montoya &
Hayes, 2017; Preacher & Kelley, 2011; Rucker et al., 2011,
Wood et al., 2008). Assuming mediation is determined to
be present, with at least one mediator showing a statisti-
cally significant specific indirect effect, then the distinc-
tion between partial and full mediation relies solely on
the statistical significance of ¢'. Because significance tests
are sample-size dependent, full statistical mediation
could simply be due to a study being underpowered,
which could be a result of measurement error (Fritz et al.,
2010), to find a significant ¢’ effect no matter how large
this effect is, whereas partial mediation could be due to
a large sample size so that ¢’ is statistically significant
no matter how small that effect is (e.g., Hayes, 2018;
Shrout & Bolger, 2002). That is, full statistical mediation
could be due to a Type II error, whereas partial statistical
mediation could be due to a Type I error. Relying on
significance tests for testing partial versus full mediation
is further problematic because significance tests of indi-
rect effects have been found to have generally more power
than tests of the direct effect ¢’ (Fritz & MacKinnon, 2007;
Kenny & Judd, 2014) and because full statistical media-
tion is more likely to occur when the total effect is small
(Preacher & Kelley, 2011).

A second issue concerns the practical implications of
the distinction between partial and full mediation
(Preacher & Kelley, 2011; Rucker et al., 2011). A
researcher may be inclined to infer that results indicating
full mediation suggest that a mediator is important and
that results indicating partial mediation suggest that a
mediator is less important. Such inferences are problem-
atic, especially when relying solely on null hypothesis
significance testing (Preacher & Kelley, 2011).

A third issue concerns the claim of full mediation.
Claiming full mediation is tantamount to saying there is
no direct effect between X and Y, which is essentially a
claim of a null result. Claiming there is no effect can be
problematic because there are almost always plausible
alternative explanations that are often difficult to rule
out because of the limitations of empirical studies (Wulff
et al., 2023). These limitations include a lack of power
to detect substantial effects, unreliable or invalid mea-
sures, undetected nonlinear relationships between the
variables, violation of distribution assumptions, sampling
error, the use of inappropriate statistical methods, or
model misspecification. There may also be unmeasured
subpopulations for which the null result is not true (see
also Jacob et al., 2019; Landis et al., 2014). For example,
the sample may consist of two subgroups, one group in
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which ¢’ is negative and the other group in which ¢’
is positive; together, the results may imply full statistical
mediation, an illustration of Simpson’s paradox (Shrout
& Bolger, 2002). Thus, even if ¢’ is zero, it does not
equate to knowing that there is full mediation, since the
absence of an effect cannot be asserted without ruling
out all potential alternative explanations. Consequently,
this issue renders any claim of full statistical mediation
that is based on a single study problematic.

What does a statistically significant
direct effect mean?

Finding a significant ¢’ effect can be due to several fac-
tors. It may simply mean that the model misses one or
more mediators, resulting in a misspecified model. For
example, the stress-divorce model of Randall and Boden-
mann (2009) proposes that the effect between everyday
stress and mutual alienation is simultaneously mediated
through time spent together, marital communication,
physical and psychological problems, and problematic
personality traits. The omission of one of these four
hypothesized mediators from the analysis is likely to
result in a ¢’ effect that is statistically significant.

A significant ¢' effect may also be found because a
confounder of the relationship between X and Y or
between M and Y is omitted from the statistical analysis,
which typically results in an overestimation of the indi-
rect effect and direct effect ¢’ (see also Loh et al., 2022).
Omitting a mediator or a confounder of one of the direct
effects violates the no-omitted-variable assumption (e.g.,
Fritz et al., 2016; Tofighi & Kelley, 2016; VanderWeele,
2010). Omitting a cause, either a mediator or a con-
founder of Y, tends to bias the results in favor of finding
a significant ¢’ effect (Bullock et al., 2010; Fritz et al.,
2016; Shrout & Bolger, 2002).

It is important to note that it is never possible to know
with certainty whether all relevant variables have been
included in a model and that a ¢’ effect that is negligible
in size or even zero does not mean that all the relevant
mediators and covariates have been included because
there can be unmodeled competing mechanisms through
which a cause influences an outcome, resulting in a true
zero value of ¢'. Competing mechanisms can also occur
in a model with two or more parallel mediators when
one indirect effect is positive and the other one is nega-
tive, as in the MacKinnon et al. (2001) ATLAS example.
In models with a single mediator and a single predictor,
it is plausible that there is a direct effect between the
predictor variable and the outcome from both a statisti-
cal and theoretical perspective because it is very likely
that such a simple model lacks important variables,
mediators and predictor variables.

Finally, a significant ¢’ effect may simply be due
to measurement error in the variables. In particular,

measurement error in the mediator tends to lead to an
underestimation of the b-path, which tends to attenuate
ab and inflate ¢’ (Baron & Kenny, 1986; Cole & Preacher,
2014; Fritz et al., 2016; Gonzalez & MacKinnon, 2021;
Hoyle & Kenny, 1999, Ledgerwood & Shrout, 2011).
Clearly, it cannot be emphasized enough that the use of
reliable and valid measures is crucial in testing mediation
mechanisms.

Causal Relationships

Theoretical models often posit causal relationships
between constructs. Although randomized experiments
are the “gold standard” for making causal inferences (cf.
Berk, 2005), researchers often employ regression analysis
and related techniques, such as multilevel modeling
(MLM) and structural equation modeling (SEM), to test
hypothesized causal relationships. Inferring a causal rela-
tionship between two variables requires the fulfillment
of three widely accepted criteria (e.g., Kenny, 1979):
There is an (observed) association between the variables
(e.g., a substantial correlation), there is temporal prece-
dence of the variables (X precedes Y in time), and the
association is nonspurious (i.e., the association is not due
to a confounding variable). Nonspuriousness is arguably
the most challenging criterion (Rohrer et al., 2022),
requiring a strong theoretical rationale for the hypothe-
sized model and a correctly specified statistical model
that includes all relevant covariates. Note that these
requirements are necessary but not sufficient for inferring
causation (see also Sobel, 1996). In ruling out alternative
explanations, it is crucial to use reliable and valid mea-
sures, ensure that the sample size is adequate, employ
statistical estimation methods that are appropriate for the
data, and control for all potential confounders (see also
MacKinnon, 2008).

In specifying the model to be estimated, Pearl (2001)
delineated four critical assumptions important for infer-
ring causal indirect effects: (a) no unmeasured con-
founders of the X-Y relationship, (b) no unmeasured
confounders of the X-M relationship, (¢) no unmeasured
confounders of the M-Y relationship, and (d) no con-
founders directly affected by X that also affect the M-Y
relationship. A violation of any of these assumptions is
likely to lead to biased estimates of the indirect effect
of interest and jeopardize causal inferences about the
mediation mechanism.

For randomized designs, MacKinnon et al. (2020) dis-
cussed the testing of the effect of the XM interaction
(i.e., the interaction between X and M) on Y. If the effect
of this interaction on Yis zero, then the b and ¢’ effects
do not differ across conditions, and the indirect effect
ab represents the causal indirect effect. If the effect of
this interaction is nonzero, then b differs across levels
of X, and ¢’ differs across levels of M.
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Table 1. Characteristics of Effect Sizes for Direct and Indirect Effects

Direct effects

Indirect effects

Characteristic b, r Cohen’s f? ab, L

Easy to interpret Yes Yes No Yes No

Benchmarks for small, medium, No No Yes No No
and large

Theoretical range -0 to 4™ 0to1 0to +o© —0 to 40® -1to1l

Information about the direction Yes No No Yes No

Convertible to ri or Cohen’s f? Yes Yes Yes No No

Applicable to complex mediation Yes Yes Yes Yes No
models

Useful for interaction and No Yes No No

nonlinear effects

Parameters required b.(b,SD,,SD,)

2 2
1D, R7)

SrCg, RD ab (ab,SD,,SD,) v(b, Ry, 75,)

Note: b, = standardized estimate; b, = standardized estimate of the b-path; r;) = semipartial correlation squared; ab, = standardized effect estimate;
R} = proportion of explained variance in the outcome; Rf = proportion of explained variance in the jth predictor variable by the other predictor

variables; r,, = correlation between X and Y in the simple mediation model.

Another recommendation is the use of sensitivity
analysis to assess the robustness of the effects to poten-
tial omitted confounders or mediators (Imai, Keele, &
Tingley, 2010; Imai, Keele, & Yamamoto, 2010). This type
of analysis can be used to determine how large the effect
of an unmeasured confounder would need to be on the
mediator and the outcome to explain an estimated effect
away. Current sensitivity-analysis techniques are best
suited for assessing potential confounding effects that
affect path-b. If there is an unmeasured confounder
affecting both the mediator, M, and the outcome, Y, then
the residuals of these two variables will be correlated.
The size of this correlation is an indicator of how robust
b is to omitted confounders affecting M and Y.

Recommendations

As illustrated, distinguishing between partial and full
mediation in a theoretical model can have substantial
value even though its testing presents challenges. One
of the biggest issues is the reliance on statistical signifi-
cance tests for ¢’ (e.g., Hayes, 2018; Montoya & Hayes,
2017; Preacher & Kelley, 2011; Rucker et al., 2011; Wood
et al., 2008). To address this issue, we recommend the
practice of reporting and interpreting effect sizes and
being cautious in claiming full mediation. We also dis-
cuss the consideration of sensitivity analysis, power
analysis, and the testing of possible interaction effects
when using randomized designs.

Reporting effect sizes

A first recommendation is to encourage the practice of
reporting and interpreting effect sizes (e.g., American
Psychological Association, 2020; Cumming, 2014).

Several effect size measures have been proposed for
assessing mediation (e.g., Lachowicz et al., 2018; MacK-
innon, 2008; MacKinnon et al., 2007; Preacher & Hayes,
2008; Preacher & Kelley, 2011). Table 1 provides an
overview of effect size measures that can be used for
direct and indirect effects and that meet the basic criteria
to be deemed useful as an indicator of the size of an
effect (Preacher & Kelley, 2011; Wen & Fan, 2015). Spe-
cifically, each of these measures quantifies the size of
the effect independently of the sample size and the unit
of measurement of the variables. Each of these effect
size measures is also zero when the unstandardized
estimate of the effect it quantifies is zero, and each satis-
fies the requirement of being a monotonic function of
the unstandardized estimate, a criterion several effect
sizes of indirect effects lack, including k* (Preacher &
Kelley, 2011) and the ratio of ab to ¢ (Wen & Fan, 2015).
These effect sizes do not require raw data and can be
estimated for path and latent variable models. Confi-
dence interval limits can also be computed for each
using bootstrapping.

Effect size measures for direct effects. For the b-paths
and ¢’, we evaluate three effect size measures and present
equations to convert them (see Table 2).! A simple effect
size measure is the standardized estimate, which is

b = b Dx 4)
)

Y

where b is the unstandardized point estimate of the
effect from X on Yand SD is the standard deviation. This
standardized effect is an estimate of how much Y is
expected to increase or decrease in standard deviations



Ledermann et al.

Table 2. Equations for Converting Effect Sizes

As a function of

Calculating B, , Cohen’s f*
B/‘ — f2(1 _ RZ)
1-R;
", BiA-RD — fA-RY
1- K 2
Cohen’s f* B; g T -
1-r 1-R

Note: B, = standardized estimate of the jth predictor variable; rj?, =
squared semipartial correlation between the jth predictor variable and
the outcome; R’ = proportion of explained variance in the outcome;
Rf = proportion of explained variance in the jth predictor variable by
the other predictor variables; the expression 1-— RJ2 is known as the
tolerance.

if X increases by 1 SD. If the predictor variable, X, is
dichotomous, it is common to do a partial standardiza-
tion by dividing the unstandardized estimate by the stan-
dard deviation of the dependent variable, Y, because the
metric of the dichotomous variable is meaningful:

"osp, &)

Standardized effects can easily be interpreted and
calculated for simple and complex mediation models
that include covariates, multiple predictor variables and
mediators, and latent variables. They also provide infor-
mation about the direction of the association between
the variables. However, they also have several limita-
tions. One is that standardized effects depend on both
the proportion of total variance explained in the out-
come and the proportion of variance explained by the
other predictor variables in the model. This dependency
limits the comparability of standardized effects across
different models and studies. This limitation is related
to another one, which is the lack of widely accepted
benchmarks for classifying these effects as small,
medium, or large. Another limitation is that standardized
effects can be larger than 1 and smaller than -1 (e.g.,
Joreskog, 1999), rendering their interpretation less intui-
tive than that of other effect sizes, such as the squared
semipartial correlation. Finally, standardized effects are
inappropriate for assessing the size of interaction and
nonlinear effects because the standard deviations of
product terms lack meaningful interpretation.

Another effect size measure is the squared semipartial
correlation, r\i For ¢' in Model B, the squared semi-
partial correlation, rYZ(X_MlMZ), is the squared correlation
between Y and X after partialling out the effects of the
mediators (and any other variables linked to ¥) from the
variable X. The squared semipartial correlation for ¢’ is

the proportion of variance in Y'that is uniquely explained
by X, controlling the latter for M, and M,. It is also the
difference in the proportion of variance explained
between the full mediation model, which includes all
variables, and the reduced model, which does not
include X:

y =Ry - R} ©

VY(X M, M,) Y XM M, Y. MM,

The squared semipartial correlation can also be cal-
culated as a function of the standardized effect (Cohen
& Cohen, 1975):

Hcann) = € A= R ), @)
where Ry, refers to the proportion of variance
explained in X by the other predictor variables, M, and
M,.” The semipartial correlation, sometimes called “part
correlation,” can be estimated for models with observed
and latent variables using SEM techniques (see Preacher,
20006). For Model B, Figure Al in the Appendix shows a
path diagram estimating the semipartial correlation for
¢, Tyox - The squared semipartial correlation is a stan-
dardized measure bounded by 0 and 1. Although there
are no conventions for squared semipartial correlations
that allow an interpretation of the size of an effect as
small, medium, or large, any effect that uniquely explains
1% or more of the total variance can be considered
substantial.

An interesting and often used effect size measure for
specific effects in models with multiple predictors is
Cohen’s f?. For ¢/, Cohen’s f? is:

2

7,
f2 o ) ®
1-R?

where R} is the proportion of variance explained in Y
by all variables that directly predict Y. Cohen’s f? is a
signal-to-noise ratio that quantifies the proportion of
variance uniquely explained by X relative to the propor-
tion of variance that is not explained. The fact that f?
depends on the proportion of variance not explained is
an interesting characteristic and distinguishes Cohen’s
f2 from the effect size measures discussed above. It is
an effect size measure commonly used in power analysis
for regression models such that f? =0.02, 0.15, and 0.35
represent small, medium, and large effect sizes, respec-
tively. Although these benchmarks, like any convention,
are somewhat arbitrary (Cohen, 1988), they are widely
accepted and allow for a more nuanced interpretation
of the results. Other advantages of Cohen’s f2 are that
it can be used in models with multiple predictors and
covariates and for assessing the size of interaction and
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nonlinear effects (e.g., Smithson & Shou, 2017). It can
also be calculated when using implicit-mediation analy-
sis, which has been proposed to assess causal effects in
treatment designs (Bullock & Green, 2021; Gerber &
Green, 2012). Disadvantages are that Cohen’s f2 can
range from O to infinity and that its interpretation is not
as intuitive as that of other effect size measures.

Effect size measures for indirect effects. For the indi-
rect effects, we focus on three effect size measures (see
Table 1). A simple effect size measure is the standardiza-
tion of ab, which is the unstandardized point estimate
multiplied by the ratio of the SD of X to the SD of Y (Alwin
& Hauser, 1975):

ab, = ab SDy .
’ SD,

Y

©

This standardized indirect effect is an estimate of how
much Y is expected to increase or decrease in standard
deviations if X increases by 1 SD.

If the X variable is dichotomous, MacKinnon (2008)
recommended a partial standardization by standardizing
the indirect effect only by the metric of ¥ because the
metric of X is naturally meaningful:

ab =P (10)
»sD,

Y

This standardized indirect effect is an estimate of how
much Y is expected to differ in standard deviations
between the two groups. These standardizations of the
indirect effect, ab, and ab,, can be employed to specific
and total indirect effects. As for direct effects, standard-
ized indirect effects are not bounded, and there are no
conventions for what effect estimate can be considered
negligible, small, medium, or large.

Lachowicz et al. (2018) proposed parameter upsilon
(v) for simple mediation models, which reflects the vari-
ance in the outcome explained jointly by the mediator
and the predictor variable, correcting for the spurious
correlation associated with the indirect effect:

v="b, — (R} =75, (11)

where b, is the standardized estimate of the b-path in
the simple model and 7}, is the squared correlation
between X and Y. This effect size addresses many limita-
tions of previous effect-size estimates (e.g., Preacher &
Kelley, 2011; Wen & Fan, 2015). However, the application
of v is limited to mediation models with one predictor
variable and one mediator and no covariates. Other limi-
tations are that v can be smaller than 0, which is more

likely to occur when there is suppression, and that it
cannot be interpreted as a proportion of variance
explained. There are also no benchmarks for classifying
v as small, medium, or large.

Conclusion. Undoubtedly, the r\; and Cohen’s f ’ have
advantages that other effect size measures do not have,
including guidelines for interpreting effects as negligible,
small, medium, or large in size or the quantification of the
size of interaction and nonlinear effects. However, both
these measures are limited to direct effects, and their cal-
culation can be challenging if models are complex, such
as those involving cross-lagged effects and three or more
waves (e.g., Cole & Maxwell, 2003; Lucas, 2023). The effect
size measures for indirect effects lack benchmarks for
what can be deemed a small, medium, or large effect, a
limitation they share with the standardized direct effect
estimates. However, note that the benchmarks commonly
used for r, Cohen’s d, and Cohen’s f? are inconsistent,
which means that the classification of the size of the effect
depends on the effect size measure (Correll et al., 2020).

For simple mediation models with no covariates, we
recommend reporting 7 for the a-path, 1;127 or Cohen’s
f2 for the b-path, and v for the indirect effect. For com-
plex mediation models in which v cannot be calculated,
we suggest reporting standardized indirect effects in
addition to r; or Cohen’s f2 for the direct effects.
Regardless of the effect size, researchers are encouraged
to discuss the practical implications of finding an effect
of that size. In addition, we recommend reporting the
unstandardized estimates of all effects in a model
because they can be practically meaningful and impor-
tant for certain interpretations.

Being cautious in claiming full mediation

The second recommendation we have concerns the dis-
tinction between partial versus full mediation. Although
this notion is appealing to many researchers because it
facilitates the interpretation and discussion of findings
of a mediation study, its testing, particularly full media-
tion, raises several questions, as discussed above and by
others (e.g., Hayes, 2018; Montoya & Hayes, 2017,
Preacher & Kelley, 2011; Rucker et al., 2011; Wood et al.,
2008). We believe that the distinction of partial and full
mediation makes conceptual sense and suggest retaining
it for theoretical models. Claiming full mediation based
solely on statistical results can be problematic because
it requires the elimination of alternative explanations. In
contrast, claiming partial mediation is less controversial,
if at all, for two reasons. First, in a model with multiple
simultaneous mediators, each mediator alone partially
mediates the effect of the cause on the outcome. In a
simple mediation model, it is unlikely that there would
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Fig. 2. Path diagram of a simple mediation model with a residual
covariance.

be an indirect effect but no ¢’ effect. That said, partial
mediation is what a researcher can expect to find when
testing mediation in a simple or complex model with
multiple mediators. Second, the term “partial effect” is
used in multiple regression analysis to refer to the change
in an outcome for every unit change in a predictor vari-
able holding the other predictor variables constant.

Sensitivity analysis

Sensitivity analysis can be employed to evaluate the
robustness of the b-path to omitted confounders (Imai,
Keele, & Tingley, 2010; Imai, Keele, & Yamamoto, 2010).
To determine how large the effect of an omitted con-
founder that affects both the mediator, M, and the out-
come, Y, would need to be for b to be 0 (or another
value of interest), the correlation, r, between the residu-
als of M and Y can be calculated (Imai, Keele, &
Yamamoto, 2010). The stronger this correlation is, the
more robust the b-path is to omitted confounders that
affect both M and Y. The residual correlation can be
estimated using SEM or the R package mediation
(Tingley et al., 2014). Using SEM, researchers can esti-
mate this correlation by fixing b to 0 or another mean-
ingful value and adding a covariance between the
residuals of M and Y (see Fig. 2). A crucial question that
remains is at what point a residual correlation can be
considered sufficiently large enough to claim an effect
is robust to violation of omitted confounders.

Power considerations

When determining the sample size for a planned study,
it is essential that all effects of a mediation model that
are expected to be substantial in magnitude are included
in the power analysis. If ¢’ is expected to be substantial,
it is necessary to demonstrate that the study has suffi-
cient power to detect a substantial ¢’ effect in addition
to the indirect effect and its constituents because if
power is low, the likelihood that a statistically significant
effect reflects the true effect is reduced (Button et al.,
2013). Note that the b-paths are often smaller in size

than the a-paths because the b-paths are partial effects
and the power to detect a b-path can decrease as the
a-path increases (Fritz et al., 2012), which is particularly
problematic when X is a manipulated variable but M is
not (MacKinnon, 2008).

Conducting a power analysis after data collection, in
which power is estimated based on the sample size,
effect size, and significance level, has its proponents
(e.g., Arend & Schifer, 2019; Mathieu et al., 2012;
Onwuegbuzie & Leech, 2004). Indeed, observed power
can be useful for researchers interested in determining
the sample size needed for a subsequent study examin-
ing the same or similar variables (e.g., K.-H. Yuan &
Maxwell, 2005). In addition, post hoc power analysis can
provide insight into the power of different effects in a
mediation model. Using bootstrapping techniques,
power estimates can also reveal two rare but possible
scenarios: a high p value with high power (> .80) or a
low p value with low power (e.g., < .50). In either case,
the data should be examined further, particularly for
potential outliers and violations of the assumptions
underlying the statistical test used. What we do not rec-
ommend is the use of post hoc power analysis to explain
away nonsignificant effects, which could be the result
of a small sample size, an effect that is negligible in size,
measurement error, unmeasured confounders, or the use
of an inappropriate statistical method (see also Wang &
Rhemtulla, 2021). Clearly, it cannot be emphasized
enough that power estimates from an actual study should
not be used to interpret results (e.g., Giner-Sorolla et al.,
2024; Hoenig & Heisey, 2001; Pek et al., 2024).3

Possible interaction effects

If X is a randomized variable, MacKinnon et al. (2020)
recommend assessing the effect of the XM interaction
on Y. This test provides a check of the assumption that
b and ¢" do not differ across conditions. The effect of
the XM interaction on Y can be estimated by adding the
product of X and M to the simple mediation model:

Y =i, +bM +c' X +hXM +e,. 12)
The effect of X on M is given by
M=i,+aX +e,. (13

For a binary variable, where 0 represents the control
group and 1 represents the treatment group, five effects
are of particular interest (as in MacKinnon et al., 2020):
The mediating effect under the control condition is equal
ab and referred to as the pure natural indirect effect.
Under the treatment condition, this effect is equal
a(b +h) and called the total natural indirect effect. The
direct effect of X on Y for the control condition is equal
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¢+ hi,, and called the pure natural direct effect. For the
treatment condition, this effect is equal ¢ + b, +a)
and referred to as the total natural direct effect. The total
effect of X on Y is equal c.

Illustrations

We illustrate the assessment of mediation for hypotheti-
cal and publicly available data. The first illustration uses
a variance-covariance matrix for three variables with
various sample sizes. The second illustration uses lon-
gitudinal data. We used R (R Core Team, 2024) and the
package lavaan (Rosseel, 2012) for the analyses. Sensi-
tivity analysis was conducted to assess the robustness
of the b-paths to omitted confounders by calculating the
correlation between the residuals of the corresponding
mediator and outcome for b = 0. Percentile bootstrap
confidence intervals (CIs) were calculated for the effects.
For the b-paths and ¢', Cohen’s J? was calculated using
Equation 7. Post hoc power simulations were conducted
adopting the R code developed by Ledermann et al.
(2022) for the mediation actor—partner interdependence
model (Ledermann et al., 2011). This code estimates the
power for the direct, indirect, and total effects, as well
as the differences between effects using the delta method
(Sobel, 1982). Although this approach is practical, it
tends to underestimate the observed power for detecting
indirect effects, especially compared with the bootstrap
method. The code for R to run the analyses can be
accessed at https://github.com/thomasledermann/
MediationEffectSize.

Hypotbetical data

Data and statistical analyses. We estimated a simple
mediation model using a covariance matrix as input data.
We followed MacKinnon et al. (2002) and fixed a to 0.14
and b and ¢’ to 0.39 to obtain the implied variance-
covariance matrix, which served as input data. The sample
sizes used were 50, 150, and 250. The squared semipartial
correlation was calculated using an adapted version of the
model shown in Figure Al for one mediator. Percentile
CIs were calculated using parametric bootstrapping with
10,000 bootstrap samples and the function mvrrnorm from
the package MASS (Venables & Ripley, 2002). For estimat-
ing power, the correlations between the three variables
were calculated (7, =.140, 7, =7 =.427) to run a
Monte Carlo simulation with 10,000 random samples for
each sample size (for details, see Ledermann et al., 2022).

Results. Table 3 provides the results. The direct effects
were small in size, as indicated by the standardized esti-
mates for a and Cohen’s f? for b and ¢, and the total
effect was medium in size (standardized estimate>0.30).

The standardized estimate of the indirect effect was 0.052,
and v was .003. The residual correlation between the
mediator and the outcome was .382 (N = 50: 95% CI =
[.154, .625]; N = 150: 95% CI = [.271, .537]; N = 250: 95%
CI = [.305, .511)), indicating a substantial association. For
N = 50, the b-path, ¢', and total effect were statistically
significant; ¢’ was significantly stronger in size than the
nonsignificant mediating effect. This indicates that X is
only directly related. The same pattern emerged for N =
150, leading to the same conclusion. For N = 250, all
effects were significant, suggesting partial mediation, and
the direct effect ¢’ was significantly stronger than the
mediating effect. The proportions of the variance explained
were 2% for the mediator and 32% for the outcome. Power
substantially increased as the sample size increased.
Although all effects were significant for 250 cases, power
was substantially lower for the a-path and the mediating
effect compared with the other effects.

Longitudinal data

We used longitudinal data from the Midlife in the United
States (MIDUS) survey (Ryff et al., 2007). We merged the
data sets MIDUS 2 Project 1 and Biomarker Project
(2004-2005) and MIDUS 3 Project 1 (2013), which are
available from the Inter-University Consortium for Politi-
cal and Social Research.

Sample and measures. There were 945 adults partici-
pating in the study (age: M = 52.22years, SD = 9.63). We
used emotional abuse in childhood as predictor variable
(Childhood Trauma Questionnaire; 21% or 198 abused)
and matched participants not reporting emotional abuse
on their age and gender with the abused participants
using the function matchControls from the R package
e1071 (Meyer et al., 2021). This resulted in 198 abused
and 198 not-abused participants (396 total) who provided
complete data on self-esteem (Rosenberg Self-Esteem
Scale; Rosenberg, 1965) and negative affect from the Posi-
tive and Negative Affect Schedule (Watson et al., 1988)
measured in MIDUS 2 (Time 1) and MIDUS 3 (Time 2).
Table 4 provides the descriptive statistics and the correla-
tions of these variables.

Mediation model and statistical analyses. We esti-
mated a longitudinal mediation model to test the hypoth-
esis that self-esteem at Time 1 (M) mediates the effect of
childhood abuse (X) on negative affect at Time 2 (Y). Fol-
lowing common recommendations (e.g., Maxwell & Cole,
2007; Mitchell & Maxwell, 2013), we included negative
affect at Time 1 as a predictor variable to estimate and
control for its autoregressive (stability) effect. We also esti-
mated the effect between childhood abuse and negative
affect at Time 1, which has the advantage that the statistical
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Table 4. Descriptive Statistics and Correlations

Variable 1 2 3 4
1. Childhood abuse —

2. Self-esteem -.261 —

3. Negative affect Time 1 218 —-.581 —

4. Negative affect Time 2 204 442 .502 —
M 0.000 36.914 1.633 1.594
SD 1.001 7.291 0.540 0.542
Minimum —1.000 11.000 1.000 1.000
Maximum 1.000 49.000 4.000 4.400
Skewness 0.000 -0.737 1.305 1.620
Kurtosis -2.010 0.196 2.065 4.322

Note: N = 396. Emotional childhood abuse was coded —1 = not emotionally
abused and 1 = emotionally abused; 50% reported emotional abuse.

model is just identified (df = 0), meaning that it perfectly
reproduces the sample covariance matrix. This setup
enables the estimation of the total effect, which is identi-
cal to the effect between childhood abuse and negative
affect at Time 2 without the mediator and negative affect
at Time 1. Although the structure of this saturated model
is identical to the mediation Model B of Figure 1, the
focus in this longitudinal model is on the simple indirect
effect through self-esteem and the direct effect and total
effect between childhood abuse and negative affect at
Time 2. We used effect coding for childhood abuse such
that -1 = no abuse and 1 = emotional abuse in childhood.
We calculated point biserial correlations for the effects
from the predictor variable to self-esteem and negative
affect. The squared semipartial correlation was calculated
for the autoregressive effect, the effect from self-esteem to
negative affect, and ¢’ using Equation 6. The effects were
standardized using Equations 4 (b-paths), 5 (a-paths and
¢, and 10 (indirect effects and total effect). Percentile
bootstrap Cls were calculated using 5,000 bootstrap sam-
ples (Fossum & Montoya, 2023). Bootstrapping with
10,000 bootstrap samples was used to estimate power for
each effect.

Results. The results of the mediation analysis are pre-
sented in Table 5. Figure 3 shows the path diagram of
the model. Both direct effects that make up the indirect
effect through self-esteem (4, and b,) were negative and
statistically significant. Cohen’s /' * indicates that the effect
between childhood abuse and self-esteem (a,) was medium
in size and that the effect between self-esteem and negative
affect at Time 2 (b)) was small. The indirect effect through
self-esteem (a,b,) was also significant, indicating that the
effect of childhood abuse on negative affect at Time 2 was
transmitted through individuals’ self-esteem. The direct
effect ¢’ was negligible in size and not statistically

significant, suggesting that childhood abuse did not have a
direct effect on negative affect at Time 2 above and beyond
the effects of negative affect at Time 1 and self-esteem.
Looking at the direct effects to and from negative affect at
Time 1, we found that both effects, a, and b,, were positive,
statistically significant, and small in size. The total effect was
also significant, and it was significantly stronger than the
indirect effect through self-esteem and the direct effect ¢’
which contributed 27.3% and 33.6% to the total effect,
respectively. These results on the indirect effects (a,b, and
a,b,) suggest that self-esteem only partially mediated the
effect of childhood abuse on negative affect at Time 2. No
significant difference emerged between the indirect effect
through self-esteem (a,b,) and the direct effect ¢’ The
proportions of variance explained in self-esteem and nega-
tive affect at Times 1 and 2 were 6.8%, 4.7%, and 29.0%,
respectively.

The residual correlation between self-esteem and
negative affect at Time 2 was —.165 (95% CI = [-.242,
—.080D), indicating a substantial association, especially
considering the inclusion of the autoregressive effect.
Table 5 also presents the power estimates from the boot-
strap power simulations. These estimates ranged from
0.960 to 0.999 for a,, b,, a,b,, and the total effect. Chang-
ing the sample size, power simulations revealed that 262
individuals would have been needed to achieve a power
of at least 0.80 for these effects (0.804 for the indirect
effect through self-esteem).

Conclusion. The results indicate that self-esteem par-
tially mediated the effect of emotional childhood abuse on
negative affect at Time 2, contributing 27.3% to the total
effect. The power estimates reveal that this study was well
powered to detect the substantial direct and indirect
effects and that a sample size of 262 would have been
sufficient to achieve a power of 0.80.
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Fig. 3. Path diagram of the mediation model with child abuse as the
predictor variable, self-esteem as mediator, and negative affect as
outcome. Abuse = Child Abuse (-1 = no abuse, 1 = emotional abuse),
N = Negative Affect, S = Self-Esteem, T1 = time 1, T2 = time 2. The
numbers represent unstandardized estimates.

Discussion

The development of sophisticated frameworks and theo-
ries of causal relationships plays a pivotal role in
advancing the knowledge base and is an indicator of
the maturation of a discipline. Theoretical models
involving multiple intervening variables often posit
partial or full mediation (e.g., Karremans et al., 2017,
Randall & Bodenmann, 2009; Schmader & Sedikides,
2018). From a theoretical perspective, we believe that
this notion of partial versus full mediation makes sense
and should continue to be used because it enhances
theoretical precision and theoretical understanding of
the mechanism through which a cause brings about an
effect. Thus, theoretical frameworks involving one or
multiple mediators should not only include all theoreti-
cally relevant variables and prescribe which variable
comes first and what is the relationship between the
variables (see also Sutton & Staw, 1995) but also be clear
on whether a cause is expected to influence an outcome
directly and indirectly or only indirectly. If partial or
full mediation is equally plausible in a theoretical
model, a statement like the one made by Rusbult et al.
(1998) that the mediator “partially or wholly mediates
the effects of” (p. 383) the predictor variables on the
outcome is useful for scholars using a theoretical model
to guide their research and for practitioners making
decisions about where it is appropriate to intervene.
From a statistical perspective, the testing of the dis-
tinction between partial versus full mediation has been
found to be problematic (e.g., Hayes, 2018; Montoya &
Hayes, 2017; Preacher & Kelley, 2011; Rucker et al., 2011;
Wood et al., 2008). We have extended this critique by
underscoring that a claim of full statistical mediation is
a claim of a null result, necessitating the elimination of

alternative explanations for the absence of an effect,
such as low power or poor measures. Less problematic
are claims of partial mediation. In fact, a researcher can
expect to find partial mediation in both a simple model
with a single mediator and no covariates and complex
models with multiple mediators in which each mediator
alone may partially mediate the effect of a cause on an
outcome.

Exceptions to this expectation are noteworthy. One
is a longitudinal mediation model with cross-lagged and
autoregressive effects involving three or more waves,
where researchers often start with a model that does not
include the ¢'-paths for the autoregressive effects (Cole
& Maxwell, 2003; Jose, 2016; Maxwell & Cole, 2007;
Mitchell & Maxwell, 2013; Zhang et al., 2018). A second
situation is a mediation model with an instrumental vari-
able for the mediator where the instrument affects M but
not Y (e.g., Kline, 2015; MacKinnon & Pirlott, 2015;
Sobel, 2008). Randomized binary variables serve as ideal
instruments for the mediator when the randomized vari-
able has a direct effect on M but not on Y. Instrumental
variables are also required in nonrecursive models with
reciprocal effects. An example is Kenny’s (1996) mutual
influence model (see also Ledermann & Kenny, 2017),
which has been designed to assess reciprocal effects
between two partners’ outcomes. In this model, each
instrumental variable affects one’s own outcome but not
the partner’s outcome (e.g., reciprocal effects between
partners’ behavior and their attitudes as instrumental
variables).

In assessing mediation mechanisms, we echo Kline
(2015) in advocating against an overreliance on null
hypothesis significance testing as a decision rule and,
along with others (e.g., Lee et al., 2021), recommend
conducting additional analyses. One recommendation is
the calculation of effect sizes for the direct and indirect
effects. The effect size measures for direct effects, espe-
cially the squared semipartial correlation and Cohen’s
fz, possess desired characteristics that current effect
size measures for indirect effects do not have, such as
benchmarks for classifying effects as negligible, small,
medium, or large and a broad applicability in simple and
complex models, including models with interaction and
nonlinear effects. Cohen’s /* in particular is a popular
effect size measure frequently used in power analysis
for regression models with multiple predictor variables
that can facilitate the interpretation and communication
of findings. We generally recommend the practice of
reporting and interpreting effect sizes whenever possible
because they are crucial for designing future studies with
adequate power and aggregating results across studies.
What remains unknown is how accurate the percentile
bootstrap Cls are for the effect size measures discussed
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in this article, and as others have noted (e.g., Lachowicz
et al., 2018), other CIs, such as bias-corrected CIs, may
be superior.

Sensitivity analysis can provide insights into the
robustness of the effects to potential unmeasured con-
founders (Imai, Keele, & Tingley, 2010; Imai, Keele, &
Yamamoto, 2010). The correlation between the residuals
of the mediator and the outcome is a standardized mea-
sure of the effect of an omitted confounder affecting
both the mediator and the outcome. Although this
approach is straightforward for b-paths, the analysis
becomes complicated if an omitted confounder con-
founds not only the mediator and outcome but also the
cause (e.g., Smith & VanderWeele, 2019; Tofighi, 2021,
VanderWeele, 2010). For randomized designs, the
testing of the XM interaction has been recommended
(MacKinnon et al., 2020). This approach provides insights
into whether the effects in a mediation model differ
across conditions.

Power analysis is crucial in the planning phase of a
study and can provide insight into the actual power of
specifics effects. When determining an appropriate
sample size for a planned study, it is essential to con-
sider all effects that are expected to be substantial in
size. Power estimates, especially from simulations, are
a worthwhile afterthought because they can provide
insights into the power of different effects and whether
a smaller sample size would have been sufficient,
which can be valuable information for both researchers
and resource providers (see also K.-H. Yuan &
Maxwell, 2005). However, it is crucial to reiterate that
power estimates should not be used to interpret the
results of a study (e.g., Hoenig & Heisey, 2001; Pek
et al., 2024).

Although the consideration of the effect sizes, along
with sensitivity analysis and power considerations, pro-
vides a more complete picture of the mechanism by
which a cause impacts an outcome, a couple of points

are important to note. First, no statistical effect is an
unbiased estimate of a true effect because of the omis-
sion of putative confounders or mediators or violations
of the assumptions underlying the mediation analysis
(e.g., MacKinnon, 2008; MacKinnon & Pirlott, 2015; Pearl,
2014; VanderWeele, 2015). Moreover, it is important to
keep in mind that all models, whether theoretical or
statistical, are an approximation of the reality and that
any direct effect may itself be mediated, highlighting the
need to focus on not only the macroscopic role of media-
tors but also their microscopic role in more fine-grained
models (MacKinnon, 2008). Second, the use of Bayesian
analysis is becoming increasingly popular (Enders et al.,
2013; Miocevi¢ et al., 2018; Y. Yuan & MacKinnon, 2009)
for testing mediation in small samples. Finally, interpret-
ability challenges can arise when the results are incon-
sistent. For example, ¢’ may be statistically significant
but negligible in size, which may be due to a large sam-
ple size, inflating the statistical power.

In conclusion, we have shown that the distinction
between partial and full mediation is useful in the con-
text of theoretical models because it provides common
language that allows researchers to describe mediating
mechanisms in simple terms many scientists are familiar
with. Statistically, any claim of full mediation is essen-
tially a claim of a null result, which requires the elimina-
tion of alternative explanations. To ensure a more
nuanced understanding of mediation results, especially
in underpowered or overpowered studies, we recom-
mend accompanying unstandardized estimates with
effect sizes, particularly for the direct effects, and the
consideration of power. These recommendations extend
beyond mediation analysis and are especially relevant
to regression analysis and SEM. Conducting sensitivity
analysis and testing for possible interaction effects in
randomized designs can provide further insights into the
mechanism through which a predictor variable affects
an outcome.
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Notes

1. For the a-paths, a zero-order correlation can be computed for
each path as an effect size measure if there are no covariates
and if there is only one predictor variable. If there are covariates
or multiple predictor variables, the effect size measures for the

b-paths and ¢’ can be used (ie., b, b,, r;, Cohen’s f*).
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2. The expression (1 - R: ) is known as the tolerance, and the
inverse of the tolerance is known as the variance inflation factor.

3. Hoenig and Heisey (2001) demonstrated that for data from a
normal distribution, power is a monotonic function of p, mean-
ing that power estimates provide no additional information for

interpretating the results of a study beyond the p values.
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