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ARTICLE INFO ABSTRACT

Keywords: Aging affects the functional capacity of individuals by causing gradual changes in metabolic, gait, balance and

Aging muscle functions. Identifying these changes between middle-aged (45-64) and older (>65) adults is critical to

Machine learning understanding the biological and functional effects of aging. This study aims to evaluate the differences between

Functional decline . . . . s e . .

Biomarkers middle-aged and older adults in an objective and scalable manner by analyzing metabolic indicators, gait pa-

Gait and muscle functions rameters, balance measurements and muscle functions using machine learning (ML) methods. In this study, 57
high-dimensional variables from the MIDUS dataset including gait parameters (e.g. gait speed, cadence, cycle
time), muscle function, balance measurements (e.g. path length, swing area), bone mineral density and
bioelectrical impedance spectroscopy markers were used. Supervised ML models were applied to classify the age
groups: Partial Least Squares Discriminant Analysis (PLS-DA), Principal Component Analysis-Linear Discriminant
Analysis (PCA-LDA), Support Vector Machine (SVM), and k-Nearest Neighbors (k-NN). Venetian blind cross-
validation approach was applied to evaluate the model performance. Among the models, SVM showed the
highest classification accuracy (87 %) on the training data and 77 % accuracy on the testing data. PLS-DA model
achieved 82 % accuracy in training and 86 % in testing. While k-NN model showed 87 % accuracy in training, it
dropped to 68 % in testing. In terms of sensitivity and specificity values, SVM showed the best performance (96 %
sensitivity, 67 % specificity - training; 86 % sensitivity, 55 % specificity - test), while PLS-DA and PCA-LDA
models exhibited similar trends. The results show that walking speed, cadence, and balance measurements
provide significant contributions to age group discrimination. These findings highlight the role of neuromuscular
and physiological factors in functional decline due to aging, demonstrating the potential of machine learning-
based classification in aging research.

1. Introduction

Aging is a multidimensional process characterized by progressive
changes in biological, physiological, and functional systems. These
changes manifest in mobility, balance, muscle strength, and metabolic
regulation, ultimately increasing the risk of frailty, disability, and
chronic diseases (Montero-Odasso et al., 2021). Understanding these
changes may help develop targeted interventions to preserve indepen-
dence and quality of life in older populations. Traditional approaches
often rely on chronological age or single clinical measures (e.g., gait
speed thresholds or bone mineral density scores) to categorize in-
dividuals. While useful, these approaches fail to capture the heteroge-
neity of aging trajectories and may obscure early functional decline
(Jaul & Barron, 2021). Individuals may follow divergent biological
trajectories such as normal aging, accelerated aging, or pathological
aging (e.g., frailty, sarcopenia, multimorbidity) (Ferrucci & Fabbri,
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2018).

Machine learning (ML) provides an opportunity to overcome these
limitations by integrating high-dimensional data across multiple phys-
iological domains. (Usmani et al., 2021). Unlike traditional statistical
methods, ML enables the integration of biomarkers, gait performance,
and muscle function parameters to identify latent structures in aging
trajectories. In gerontology, algorithms such as decision trees, random
forests, support vector machines, and neural networks have been
increasingly applied to identify subtle patterns of functional decline and
stratify risk profiles beyond what linear statistical models can achieve
(Slijepcevic et al., 2022; Li et al., 2025; Chen et al., 2022). Despite ad-
vances in gerontology, limited research has specifically distinguished
middle-aged adults (45-64 years) from older adults (>65 years). Most
prior ML studies have compared younger versus older adults or focused
narrowly on fall risk, leaving a gap in understanding the functional
transitions that occur during midlife. However, this dichotomy neglects
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the heterogeneity of aging trajectories, particularly the critical
middle-aged period where early physiological decline often begins
(Piazza et al., 2010; Kawajiri et al., 2019). Because biological age does
not always match chronological age, and biomarkers may reveal early
deterioration that is not yet clinically apparent. Recent studies highlight
that physiological decline, frailty onset, and biomarker changes occur at
different rates across individuals, suggesting that finer-grained or
biomarker-based age classifications may offer additional insights
(Septlveda et al., 2022; Furrer & Handschin, 2025). Gait and muscle
function changes are especially relevant because functional decline
typically precedes overt mobility loss (Ryff et al., 2023; Ferrucci et al.,
2018). Recent biomarker-based studies have demonstrated that systemic
inflammation, metabolic dysregulation, and cellular senescence can
distinguish between healthy and pathological aging, highlighting the
need to move beyond chronological age as the sole criterion (Li et al.,
2025; Gokee et al., 2025). This perspective underscores the importance
of multidimensional approaches such as ML that can integrate gait,
balance, muscle function, bone density, and biomarkers to more pre-
cisely characterize individual aging profiles. This distinction helps
differentiate normal, accelerated, and pathological aging. Most prior
classifications have relied on clinical cutoffs or subjective reports,
limiting reproducibility and sensitivity to early-stage decline (Chen
et al., 2022). Unlike traditional age-based groupings, this approach can
capture functional and physiological aging dynamics. Large public aging
datasets such as The MIDUS (Midlife in the United States) have
increasingly incorporated ML for aging prediction (Hughes et al., 2018;
Choi & Jung, 2025) For instance, deep learning models predicted
chronological and psychological age using MIDUS dataset offers a
comprehensive collection of data modalities, including blood bio-
markers and psychosocial variables, making it an ideal resource for
investigating aging-related differences (Zhavoronkov et al., 2020).

By examining feature importance in ML models, we can identify the
most discriminative biomarkers, gait and muscle function parameters,
that differentiate aging groups. Therefore, this study aims to develop and
validate machine learning models to classify middle-aged and older adults by
integrating biomarkers, gait performance, and muscle function parameters,
and to identify the most discriminative features underlying physiological
aging trajectories. Beyond advancing methodological innovation, the prac-
tical implications of this work are substantial. By identifying discriminative
physiological features of midlife versus older adulthood, ML models can
contribute to early prevention programs, guide clinical risk screening, and
inform precision gerontology strategies tailored to heterogeneous aging
trajectories.

2. Methods
2.1. Data and feature selection

We used a comprehensive biomechanical and physiological dataset
from the MIDUS Biomarker Project (Ryff et al., 2023), a publicly
available dataset funded by the National Institute on Aging (http
s://midus.wisc.edu/). All data provided by MIDUS are fully
de-identified and anonymized, ensuring compliance with ethical
research standards. The dataset comprised N = 271 participants, of
whom n = 188 (69 %) were middle-aged (45-64 years) and n = 83 (31
%) were older adults (>65 years). This imbalance in class sizes raised
potential bias in classifier training. To mitigate this, we applied the
Synthetic Minority Oversampling Technique (SMOTE), which generates
synthetic samples of the minority class by interpolating between nearest
neighbors in feature space. Balanced accuracy (average of sensitivity
and specificity) was used in addition to standard accuracy to better
reflect classification performance under imbalance. Model training was
conducted both with and without SMOTE to evaluate the impact of
resampling on classification metrics.

The dataset includes a wide spectrum of physiological and functional
variables, providing a multidimensional view of aging-related processes.
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To ensure objectivity, we focused exclusively on clinical and quantita-
tive measures rather than self-reported questionnaires. We focused on
biomarkers (bone mineral density, and body fluid measurements), gait,
balance, and muscle function parameters because these domains capture
distinct yet complementary aspects of biological and functional aging,
consistent with prior work in gerontology. Prior to analysis, all contin-
uous variables were z-score normalized (mean = 0, SD = 1) to eliminate
scale effects across biomarkers, gait, and muscle measures. Missing
values were addressed using multiple imputation by chained equations
(MICE) for continuous variables and mode imputation for categorical
variables. All continuous variables were z-score normalized. Categorical
variables were one-hot encoded. Pairwise correlation analysis was
conducted (Pearson’s r > 0.85), and in cases of high redundancy, the
clinically more relevant variable was retained. Multicollinearity was
formally using Variance Inflation Factor (VIF). Variables with VIF> 5
were iteratively removed to ensure model stability. The final dataset
comprised 57 variables spanning biomarkers (n = 25), gait and muscle
performance (n = 22), and psychological/functional measures (n = 10).
A full description of each variable, including measurement units and
definitions, is provided in Supplementary Table 1.

In addition to the 57 physiological and functional predictors, base-
line comparisons were performed for common demographic and clinical
covariates (sex, history of heart disease, hypertension, diabetes,
cholesterol problems, arthritis, prescription medication use, and BMI).
These variables were not included as classification features but were
analyzed to identify potential confounding differences between groups
(see Supplementary Table 2).

2.2. Machine learning models

We implemented four supervised ML algorithms selected for their
complementary strengths: dimensionality reduction (PLS-DA, PCA-
LDA), linear discrimination (PCA-LDA), a nonlinear kernel-based clas-
sification (SVM), and instance-based learning (k-NN). Together, these
models enabled a balanced comparison between interpretability-
oriented linear classifiers and more flexible nonlinear methods. The
goal was both to evaluate classification performance and to identify the
most discriminative predictors of aging trajectories across modeling
paradigms. Hyperparameters were optimized using grid search with
cross-validation. All ML models were conducted using MATLAB R2022b
(MathWorks, Natick, MA, USA), with our own developed code and
ready-made functions from the MATLAB library. All analyses were run
on a Windows 10 workstation equipped with an Intel i7 processor and 32
GB RAM. ”

2.2.1. Partial least squares discriminant analysis (PLS-DA)

PLS-DA is a supervised learning method that combines Partial Least
Squares (PLS) regression with Discriminant Analysis (DA). It reduces
high-dimensional data to latent variables that maximize the separation
between predefined classes. PLS-DA projects the prediction matrix X (e.
g. 57 variables) into a lower-dimensional space while maximizing the
covariance with the response variable Y (age group classification).

X=TP'+EY=UQ" + F, T=XW (¢

where, X is the matrix of predictor variables (gait, muscle function,
biomarkers, etc.), Y is the matrix of class labels (Middle-aged and Older
Adults), T and U are the latent variable matrices, P and Q are the loading
matrices, and E and F are the error terms.

PLS-DA then applies Linear Discriminant Analysis (LDA) to the latent
variables to classify the samples. It is a dimensionality reduction-based
classification method that maximizes the covariance between predic-
tor variables and class labels. This approach is particularly suitable for
relatively small sample sizes with high-dimensional predictors, such as
biomarker panels.
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2.2.2. Principal component analysis-linear discriminant analysis (PCA-
LDA)

PCA-LDA is a combination of principal component analysis (PCA) for
feature extraction and linear discriminant analysis (LDA) for classifica-
tion. PCA eliminates redundant information while LDA maximizes class
separability. PCA transform transforms the original variables into un-
correlated principal components as Z=XW. Where, X is the original data
matrix, W is the eigenvector matrix of the covariance matrix of X, and Z
is the transformed feature matrix. LDA Classification maximizes the
ratio of between-class variance (SB) to within-class variance (SW):

|WTSW|
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argmax =
w

where, (SB) is the between-class scatter matrix, (SW) is the within-class
scatter matrix, and W is the transformation matrix that projects the data
to a lower-dimensional space where the class separation is maximized.

2.2.3. Support vector machine (SVM)

SVM is a model that finds the most suitable hyperplane to separate
data points with maximum margin using kernel functions. In this study,
Linear Kernel function is used. For a dataset with feature vectors xi, xj
and class labels yi € {—1,1}, the decision function is:

flx)= wix+ b 3)

where, w is the weight vector and b is the bias term. The SVM optimi-
zation problem is solved as follows:

1
mipy 11 @

i Wxi+b) >1, vi (5)

For cases that are not linearly separable, SVM uses the kernel func-
tions K(xi,xj) to map the data to a higher dimensional space:

K(x;, ;) = ¢(x:)-¢(x;) (6)

2.2.4. k-Nearest neighbors (k-NN)

k-NN is a nonparametric model that classifies by nearest neighbors in
feature space. For a given input x, k-NN finds the k nearest data points
using a distance metric, typically Euclidean distance:

)

Here, x is the test sample, xi is the number of features in the training
sample. The predicted class y"is determined by majority voting among k-
nearest neighbors:

K
7 — argmax 10 =¢) ®
S

where, 1(yi=c) is an indicator function. (i) is 1 if the neighbor belongs to
class ¢, 0 otherwise. The class with the highest number is assigned to x.

2.3. Cross validation and performance metrics

We applied Venetian blinds cross-validation (10 segments), a
resampling strategy commonly used in chemometrics for spectral and
biomarker datasets with ordered measurements. This method partitions
the dataset into evenly spaced folds, ensuring that all parts of the data
distribution are represented for both age groups across folds. To ensure
robustness and ensure clinical relevance, we also applied stratified 10-
fold cross-validation (repeated 5 times), which preserves the class dis-
tribution in each fold and provides a balance between bias and variance
in performance estimation. To address class imbalance, Synthetic
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Minority Oversampling Technique (SMOTE) was applied. Performance
was quantified using balanced accuracy, ROC-AUC, sensitivity, speci-
ficity, precision, and F1-score.

2.4. Statistical analysis

All analyses were performed using SPSS (version 22.0). Descriptive
statistics (means, standard deviations, and ranges) were calculated
separately for middle-aged and older adults. Group comparisons were
performed using independent-samples t-tests. Continuous variables
were examined for outliers using boxplots and standardized z-scores
(threshold +3). Outliers were winsorized where appropriate. Missing
values (<3 % overall) were imputed using expectation-maximization.
All continuous variables were z-normalized before modeling to ensure
comparability across different scales. To complement group compari-
sons, standardized effect sizes (Cohen’s d) were calculated for all 57
variables, enabling interpretation of the magnitude of group differences.
Effect sizes were interpreted using conventional thresholds (small = 0.2,
medium = 0.5, large = 0.8). All analyses were two-tailed with signifi-
cance set at p < 0.05.

3. Results

Baseline comparisons of covariates showed no significant differences
between middle-aged and older adults in terms of sex distribution, his-
tory of heart disease, hypertension, diabetes, cholesterol problems,
arthritis, or BMI. Prescription medication use was somewhat more
frequent in the middle-aged group (22 % vs 13 %, p = 0.083), although
this did not reach statistical significance (Supplementary Table 2).

Across the 57 variables, effect sizes varied by physiological domain.
For example, gait speed (d = 0.55) and jump mechanography power (d ~
0.40) showed moderate group differences, while balance sway measures
demonstrated smaller differences (d < 0.25). In contrast, bone mineral
density variables, particularly lumbar spine BMD (d ~ 0.35), also
showed modest group differences. Fig. 1 shows a forest plot summari-
zing all effect sizes across domains.

In general, the PLS-DA model provided higher overall accuracy, while the
SVM model provided a more balanced performance in terms of sensitivity and
specificity, making it a more reliable option for classifying aging-related
changes. PCA-LDA and k-NN models were limited by their low specificity
and misclassification rates. The classification performances of the models
are summarized in Table 1 for training data and Table 2 for testing data.

While the PLS-DA model achieved 82 % accuracy in the training
phase, the sensitivity and specificity values for older adults were lower
than those for middle-aged individuals. In cross-validation, the accuracy
increased to 86 %, but the sensitivity decreased to 71 % for older adults,
indicating a class imbalance problem. This suggests that while PLS-DA
provides good overall classification, it may overfit middle-aged features at
the expense of older adult discrimination. The SVM model performed best
with 96 % sensitivity and 67 % specificity in training, and achieved 86 %
sensitivity and 55 % specificity in cross-validation. Importantly, SVM
maintained balanced sensitivity across age groups, reducing misclassification
risk of older adults — a clinically critical consideration. Since it showed
high sensitivity especially in older adults, it was a strong option for
determining differences in biological, walking and muscle functions due
to aging. The classification image of the SVM model is presented in
Fig. 2. The PCA-LDA model tended to misclassify middle-aged in-
dividuals and exhibited low specificity. The K-NN model was similarly
limited in terms of specificity, and the accuracy rate decreased to 68 %
in the cross-validation phase.

In summary, PLS-DA achieved the highest overall accuracy, while SVM
offered more balanced sensitivity and specificity. PCA-LDA and k-NN were
less reliable due to high misclassification rates, limiting their applica-
bility for aging classification. These differences highlight the importance
of model choice when evaluating age-related decline.

In Fig. 3, ROC-AUC values were reported, with SVM (AUC = 0.94)
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Forest Plot of Effect Sizes (Middle-Aged vs. Older Adults)
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Fig. 1. Forest Plot of Cohen’s d (Middle-Aged vs. Older Adults). Effect sizes (Cohen’s d) for 57 physiological and biomechanical variables are shown, grouped by
domain (Gait, Jump Mechanography, Balance, Bone Mineral Density, and Bioimpedance Spectroscopy). Steel blue bars indicate positive effect sizes (older adults
higher), salmon bars indicate negative effect sizes (middle-aged higher).

and PLS-DA (AUC = 0.98) demonstrating excellent discrimination,
while PCA-LDA (AUC = 0.80) and k-NN (AUC = 0.81) performed
moderately. These results confirm that class imbalance influenced
model performance but was mitigated by oversampling. . Balanced ac-
curacy values before and after SMOTE resampling are reported in
Table 3.

Before oversampling, imbalanced group sizes favored higher sensi-
tivity for middle-aged adults, while sensitivity for older adults was

reduced. After applying SMOTE, balanced accuracy improved across all
models (Table 3), indicating more equitable classification of the two age
groups. For example, balanced accuracy increased from 0.71 to 0.78 for
SVM and from 0.69 to 0.75 for PLS-DA. ROC-AUC values further
confirmed the discriminative power of the models (SVM = 0.94, PLS-DA
= 0.98, PCA-LDA = 0.80, k-NN = 0.81).
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Table 1
Classification performance of ML models on training data.
Model Group Accuracy Sensitivity Specifity Precision F1-Score
SVM Middle-Aged 0.87 0.96 0.67 0.87 0.91
Aged 0.67 0.96 0.89 0.76
PLS-DA Middle-Aged 0.82 0.86 0.73 0.88 0.87
Aged 0.73 0.86 0.69 0.71
k-NN Middle-Aged 0.87 0.82 0.42 0.76 0.79
Aged 0.42 0.82 0.51 0.46
PCA-DA Middle-Aged 0.82 0.95 0.53 0.82 0.88
Aged 0.53 0.95 0.83 0.65
Table 2
Classification performance of ML models on cross-validation (test) data.
Model Group Accuracy Sensitivity Specifity Precision F1-Score
SVM Middle-Aged 0.77 0.86 0.55 0.81 0.83
Aged 0.55 0.86 0.64 0.59
PLS-DA Middle-Aged 0.86 0.79 0.71 0.86 0.82
Aged 0.71 0.79 0.60 0.65
k-NN Middle-Aged 0.68 0.81 0.40 0.75 0.78
Aged 0.40 0.81 0.48 0.44
PCA-DA Middle-Aged 0.79 0.93 0.47 0.80 0.86
Aged 0.47 0.93 0.74 0.57
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Fig. 2. Plot of sample locations versus distance to class boundary for
SVM classifier.

4. Discussion
4.1. Model performance and comparative context

The ML models applied in this study demonstrated robust classifi-
cation performance in distinguishing between middle-aged (45-64
years) and older (>65 years) adults using a multidomain feature set.
Among the classifiers, PLS-DA (ROC-AUC = 0.98) and SVM (ROC-AUC
= 0.94) consistently outperformed PCA-LDA (ROC-AUC = 0.80) and k-
NN (ROC-AUC = 0.81). Balanced accuracy improved across all models
following SMOTE oversampling, underscoring the importance of
explicitly addressing class imbalance. SVM improved from 0.71 to 0.78.
This advantage likely stems from its capacity to model nonlinear class
boundaries and handle high-dimensional datasets with correlated fea-
tures, characteristics often encountered in physiological and biomarker
data. PLS-DA from 0.69 to 0.75 after SMOTE application, reinforcing the
utility of resampling in producing fairer and more reliable predictive
estimates. PCA-LDA and k-NN performed moderately, reflecting their

False Positive Rate

Fig. 3. Receiver Operating Characteristic (ROC) curves and Area Under the
Curve (AUC) values for all machine learning classifiers in the cross-
validation dataset.

Table 3

Performance of ML models before and after class imbalance correction with
SMOTE, showing balanced accuracy and ROC-AUC values for discriminating
middle-aged and older adults.

Model Balanced Accuracy (Before Balanced Accuracy (After ROC-
SMOTE) SMOTE) AUC
SVM 0.71 0.78 0.94
PLS- 0.69 0.75 0.98
DA
k-NN 0.64 0.65 0.81
PCA- 0.62 0.67 0.80
DA




V. Alcan

relative sensitivity to noise and class overlap. To contextualize these
findings, we benchmarked the observed 77 % balanced accuracy of the
best-performing models against established clinical screening tools.

Our findings extend recent ML applications in gerontology by inte-
grating multimodal domains (biomarkers, gait, balance, muscle func-
tion, and body composition), offering a broader physiological
perspective than most prior studies. For example, studies have applied
ML primarily in the context of fall risk prediction, emphasizing gait and
balance features (do Nascimento et al., 2022; Eichler et al., 2022). Our
study expands on this by incorporating a broader set of multidimen-
sional features that are rarely integrated in previous analyses. Recent
advances in digital health gerontology, including wearable-sensor ap-
proaches to mobility monitoring (Chen et al., 2022), confirm the utility
of multidomain physiological signals for aging research. Unlike those
studies, however, our work benchmarks classification accuracy directly
against established geriatric cutoffs such as gait speed <1.0 m/s, thereby
bridging statistical ML outcomes with clinically meaningful thresholds.

Li et al. applied ML to predict multimorbidity trajectories in Chinese
cohorts, identifying disease counts and self-rated health as key pre-
dictors, but their models primarily relied on chronic disease indicators
rather than functional performance measures (Li et al., 2025). Similarly,
Gomes et al. leveraged sleep and metabolic markers to predict depres-
sive symptoms, achieving high predictive accuracy (87 %) but focusing
on psychological outcomes rather than functional aging (Gomes et al.,
2023). By contrast, our framework emphasizes motor, musculoskeletal,
and metabolic features central to geriatric function.

Slijepcevic et al. (2022) used CNNs with ground reaction force data
to classify age groups and applied explainable Al to identify biome-
chanical predictors (Slijepcevic et al., 2022). While their work revealed
meaningful gait markers, classification accuracy was modest (=60 %)
and interpretability limited to gait dynamics. Our results, by contrast,
show that combining gait with biomarkers and jump/balance mecha-
nography improves classification performance (balanced accuracy ~77
%; ROC-AUC up to 0.98) and allows for richer biological interpretation
across systems. Likewise, Gokge et al. (2025) linked inflammatory and
metabolic biomarkers (IL-6, CRP, HbAlc) to slow gait speed using
explainable ML, underscoring the role of systemic inflammation (Gokce
et al., 2025). Our study corroborates these findings by identifying in-
flammatory markers alongside gait and muscle function as top-ranked
predictors, and further contextualizes their joint impact using effect
size estimation and feature importance analysis.

4.2. Feature importance and biological mechanisms

In this study, variables included in the ML classification analysis used
to examine the biological and functional effects of aging play a critical
role in distinguishing age groups. Across all 57 features, variables
showing the largest group separation by Cohen’s d included gait speed
(left/right), cadence, and gait cycle duration; jump mechanography
metrics (maximum height and total/weight-normalized power);
postural sway indices (relative path length and standard ellipse area in
eyes-open and eyes-closed conditions); bone mineral density T-scores;
selected BIS ratios; and inflammatory biomarkers (IL-6, CRP).

Although we stratified participants into midlife (45-64 years) and
older adulthood (>65 years) following epidemiological conventions, we
acknowledge that aging is inherently a continuous and heterogeneous
process. Binary cutoffs can obscure within-group variability and may not
fully capture trajectories of biological aging, which often diverge from
chronological age. Our findings suggest that finer-grained or biomarker-
based age classifications may offer additional insights. Nonetheless, our
choice of stratification provides clinically interpretable categories,
aligns with prior aging research, and facilitates comparison with existing
literature, while our sensitivity analyses and interaction models help
mitigate potential oversimplification.

Inflammatory biomarkers (IL-6, CRP), gait speed, jump power, and
bone mineral density emerged as the most discriminative features. These
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variables reflect different aspects of aging by reflecting the interactions
of walking parameters, muscle function, balance measurement, and
biomarkers. The aging process is closely associated with changes in
biological, metabolic, and neuromuscular systems. For example, older
adults exhibit higher levels of systemic inflammation, consistent with
the concept of “inflammaging,” which accelerates functional decline and
frailty (Ferrucci et al., 2018).

Gait parameters are important to reflect motor function de-
teriorations that are directly related to the aging process (Verghese et al.,
20165 Jerome et al., 2015; Elam et al., 2021). Our analysis confirmed
that gait speed, cadence, and gait cycle duration were among the
strongest predictors of group classification. This supports prior evidence
that gait speed is a “sixth vital sign” in gerontology (Middleton et al.,
2015). Reductions in gait speed and cadence correspond to neuromus-
cular slowing, impaired motor unit discharge, and reduced axonal
conduction, collectively decreasing locomotor efficiency (Orssatto et al.,
2022; Dewolf et al., 2021). Balance tests are other important parameters
used to assess balance and motor control in older adults. Balance im-
pairments, including increased postural sway and longer cycle dura-
tions, reflect age-related declines in proprioceptive acuity, vestibular
integration, and cerebellar sensory—motor processing (Henry & Baudry,
2019; Ribeiro & Oliveira, 2007).

Muscle function was evaluated with parameters such as jump height
and jump power measured by the two-legged hop test. In this study,
jump power ranked particularly high in feature importance, consistent
with previous literature indicating that power loss as a more sensitive
predictor of disability than strength loss alone (Clark & Manini, 2012).
Age-related sarcopenia, driven by reductions in type II fiber size, mito-
chondrial dysfunction, and altered motor unit recruitment, explains
these differences (Larsson et al., 2019; Gustafsson & Ulfhake, 2024).

The BMD parameters used in this study are critical for determining
bone loss and osteoporosis risk due to aging (Haseltine et al., 2021).
Bone density, especially T-scores measured in regions such as the spine
and femur, can be used to assess frailty and fall risk in older adults
(Haseltine et al., 2021). Declines in BMD (spine, femur, radius) aligned
with known mechanisms of skeletal aging—hormonal changes, chronic
inflammation, and impaired calcium/vitamin D metabolism—leading to
imbalanced bone remodeling and fracture risk (Fang et al., 2022;
Demontiero et al., 2012). Bioelectrical impedance spectroscopy mea-
sures further revealed altered intracellular vs. extracellular fluid ratios,
reflecting metabolic and compositional changes with aging. The use of
BIA data in this study allows us to gain a more comprehensive under-
standing of body composition changes during aging (Guida et al., 2007).

Taken together, our findings highlight that applying machine
learning to multidimensional biomedical datasets enables more than
simple chronological age classification. By integrating biomarkers, gait
parameters, muscle function, balance, bone density, and body compo-
sition measures, our models capture latent structures of functional
aging. This approach not only distinguishes middle-aged from older
adults but also identifies interaction patterns that reflect heterogeneous
aging trajectories. Importantly, these insights support the development
of precision gerontology tools, where individualized risk profiles can
inform preventive and rehabilitative interventions, ultimately extending
functional independence and quality of life in older adults. Nevertheless,
these mechanisms are not isolated: muscle weakness exacerbates gait
and balance impairments, while low bone density amplifies fall risk
when combined with instability. This interdependence underscores the
“network physiology of aging,” where multisystem interactions shape
clinical outcomes. While our cross-sectional design precludes causal
inference, longitudinal biomarker-based studies are needed to confirm
directionality.

4.3. Clinical and practical implications

In addition to demonstrating statistical robustness, this study sought
to contextualize the clinical translation of ML-based classification in
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gerontology, where predictive models can be applied for individualized
risk stratification, monitoring of accelerated aging, and detection of
pathological trajectories. Unlike traditional age-based classification, this
approach integrates biomarkers, gait, muscle, balance, and body
composition measures to generate a more dynamic profile of biological
aging. We explicitly assessed the clinical relevance of group differences
by computing effect sizes (Cohen’s d) across all 57 variables such as gait
speed and jump mechanography with moderate-to-large effects,
reflecting clinically meaningful declines in physical function. For
example, gait speed differences of 0.1-0.2 m/s have been widely
accepted as clinically important thresholds in gerontology, and our
observed effect sizes align with these benchmarks (Perera et al., 2016).
These results are visualized in Fig. 1, which illustrates the relative
magnitude of effects across functional domains, thereby improving
clinical interpretability.

In addition, feasibility and cost-effectiveness also represent critical
considerations. Compared with advanced imaging or genetic screening,
the 36 geriatric clinical practice. The incremental costs of data inte-
gration and algorithmic deployment are thus expected to be modest,
particularly if implemented through automated pipelines embedded in
electronic health records or wearable device platforms. We also
contextualized the classification performance of our models. The best-
performing classifiers (SVM, PLS-DA) achieved a balanced accuracy of
approximately 77 % and ROC-AUC values up to 0.98. While no direct
gold standard exists for discriminating “middle-aged” from “older”
adults, this level of performance compares favorably with established
geriatric screening tools.

4.4. Limitations and future directions

In this study, there are several limitations. The first limitation is the
absence of external validation, which restricts generalizability beyond
the MIDUS sample. While the combination of Venetian blinds and
stratified k-fold CV with repeated resampling increases internal
robustness, future studies should validate these models on independent,
population-representative datasets. Future studies can also expand
sample diversity, integrate longitudinal trajectories, and explore
multimodal models that combine functional, cognitive, and psychoso-
cial predictors. Secondly, despite applying SMOTE to reduce class
imbalance, the possibility of oversampling bias remains. Synthetic data
may amplify noise in minority class samples, and balanced accuracy
improvements should be interpreted cautiously. Furthermore, while
SMOTE enhanced performance consistency, external validation in in-
dependent, more balanced cohorts will be required to confirm the
generalizability of these results. Thirdly, common covariates such as sex,
chronic disease history, and BMI, although compared between groups
and reported in Supplementary Table 2, were not included as predictors
in the ML models. While most covariates did not differ significantly
between groups, residual confounding cannot be completely ruled out.
Future studies may integrate these factors into adjusted models to
improve robustness and generalizability. These factors may influence
both biomarker and functional outcomes, and their integration into
future predictive models could enhance accuracy and generalizability.
On the other hand, for the future direction, aging research can extend
beyond biological decline to encompass broader determinants of healthy
aging, including quality of life, emotional well-being, social participa-
tion, and daily activity. Evidence shows that leisure activities and social
networks serve as crucial sources of health and life satisfaction in later
life (Parra-Rizo et al., 2022), while regular physical exercise is among
the most effective non-pharmacological strategies to promote active and
healthy aging (Sanchis-Soler et al., 2025). Integrating these perspectives
with physiological markers may ensure a more comprehensive approach
to designing interventions and shaping public health policies for older
adults.
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5. Conclusion

Our study highlights the potential of ML to discriminate between
middle-aged and older adults based on biomarkers, gait, and muscle
function measurements. By comparing multiple classifiers, we found
that SVM offered the best balance between sensitivity and specificity,
while PLS-DA achieved the highest overall accuracy. These findings
suggest that integrating physiological markers of inflammation, gait
performance, and muscle function provides a more objective and
reproducible framework for aging classification than traditional chro-
nological grouping.
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