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A B S T R A C T

Aging affects the functional capacity of individuals by causing gradual changes in metabolic, gait, balance and 
muscle functions. Identifying these changes between middle-aged (45–64) and older (≥65) adults is critical to 
understanding the biological and functional effects of aging. This study aims to evaluate the differences between 
middle-aged and older adults in an objective and scalable manner by analyzing metabolic indicators, gait pa
rameters, balance measurements and muscle functions using machine learning (ML) methods. In this study, 57 
high-dimensional variables from the MIDUS dataset including gait parameters (e.g. gait speed, cadence, cycle 
time), muscle function, balance measurements (e.g. path length, swing area), bone mineral density and 
bioelectrical impedance spectroscopy markers were used. Supervised ML models were applied to classify the age 
groups: Partial Least Squares Discriminant Analysis (PLS-DA), Principal Component Analysis-Linear Discriminant 
Analysis (PCA-LDA), Support Vector Machine (SVM), and k-Nearest Neighbors (k-NN). Venetian blind cross- 
validation approach was applied to evaluate the model performance. Among the models, SVM showed the 
highest classification accuracy (87 %) on the training data and 77 % accuracy on the testing data. PLS-DA model 
achieved 82 % accuracy in training and 86 % in testing. While k-NN model showed 87 % accuracy in training, it 
dropped to 68 % in testing. In terms of sensitivity and specificity values, SVM showed the best performance (96 % 
sensitivity, 67 % specificity - training; 86 % sensitivity, 55 % specificity - test), while PLS-DA and PCA-LDA 
models exhibited similar trends. The results show that walking speed, cadence, and balance measurements 
provide significant contributions to age group discrimination. These findings highlight the role of neuromuscular 
and physiological factors in functional decline due to aging, demonstrating the potential of machine learning- 
based classification in aging research.

1. Introduction

Aging is a multidimensional process characterized by progressive 
changes in biological, physiological, and functional systems. These 
changes manifest in mobility, balance, muscle strength, and metabolic 
regulation, ultimately increasing the risk of frailty, disability, and 
chronic diseases (Montero-Odasso et al., 2021). Understanding these 
changes may help develop targeted interventions to preserve indepen
dence and quality of life in older populations. Traditional approaches 
often rely on chronological age or single clinical measures (e.g., gait 
speed thresholds or bone mineral density scores) to categorize in
dividuals. While useful, these approaches fail to capture the heteroge
neity of aging trajectories and may obscure early functional decline 
(Jaul & Barron, 2021). Individuals may follow divergent biological 
trajectories such as normal aging, accelerated aging, or pathological 
aging (e.g., frailty, sarcopenia, multimorbidity) (Ferrucci & Fabbri, 

2018).
Machine learning (ML) provides an opportunity to overcome these 

limitations by integrating high-dimensional data across multiple phys
iological domains. (Usmani et al., 2021). Unlike traditional statistical 
methods, ML enables the integration of biomarkers, gait performance, 
and muscle function parameters to identify latent structures in aging 
trajectories. In gerontology, algorithms such as decision trees, random 
forests, support vector machines, and neural networks have been 
increasingly applied to identify subtle patterns of functional decline and 
stratify risk profiles beyond what linear statistical models can achieve 
(Slijepcevic et al., 2022; Li et al., 2025; Chen et al., 2022). Despite ad
vances in gerontology, limited research has specifically distinguished 
middle-aged adults (45–64 years) from older adults (≥65 years). Most 
prior ML studies have compared younger versus older adults or focused 
narrowly on fall risk, leaving a gap in understanding the functional 
transitions that occur during midlife. However, this dichotomy neglects 
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the heterogeneity of aging trajectories, particularly the critical 
middle-aged period where early physiological decline often begins 
(Piazza et al., 2010; Kawajiri et al., 2019). Because biological age does 
not always match chronological age, and biomarkers may reveal early 
deterioration that is not yet clinically apparent. Recent studies highlight 
that physiological decline, frailty onset, and biomarker changes occur at 
different rates across individuals, suggesting that finer-grained or 
biomarker-based age classifications may offer additional insights 
(Sepúlveda et al., 2022; Furrer & Handschin, 2025). Gait and muscle 
function changes are especially relevant because functional decline 
typically precedes overt mobility loss (Ryff et al., 2023; Ferrucci et al., 
2018). Recent biomarker-based studies have demonstrated that systemic 
inflammation, metabolic dysregulation, and cellular senescence can 
distinguish between healthy and pathological aging, highlighting the 
need to move beyond chronological age as the sole criterion (Li et al., 
2025; Gökçe et al., 2025). This perspective underscores the importance 
of multidimensional approaches such as ML that can integrate gait, 
balance, muscle function, bone density, and biomarkers to more pre
cisely characterize individual aging profiles. This distinction helps 
differentiate normal, accelerated, and pathological aging. Most prior 
classifications have relied on clinical cutoffs or subjective reports, 
limiting reproducibility and sensitivity to early-stage decline (Chen 
et al., 2022). Unlike traditional age-based groupings, this approach can 
capture functional and physiological aging dynamics. Large public aging 
datasets such as The MIDUS (Midlife in the United States) have 
increasingly incorporated ML for aging prediction (Hughes et al., 2018; 
Choi & Jung, 2025) For instance, deep learning models predicted 
chronological and psychological age using MIDUS dataset offers a 
comprehensive collection of data modalities, including blood bio
markers and psychosocial variables, making it an ideal resource for 
investigating aging-related differences (Zhavoronkov et al., 2020).

By examining feature importance in ML models, we can identify the 
most discriminative biomarkers, gait and muscle function parameters, 
that differentiate aging groups. Therefore, this study aims to develop and 
validate machine learning models to classify middle-aged and older adults by 
integrating biomarkers, gait performance, and muscle function parameters, 
and to identify the most discriminative features underlying physiological 
aging trajectories. Beyond advancing methodological innovation, the prac
tical implications of this work are substantial. By identifying discriminative 
physiological features of midlife versus older adulthood, ML models can 
contribute to early prevention programs, guide clinical risk screening, and 
inform precision gerontology strategies tailored to heterogeneous aging 
trajectories.

2. Methods

2.1. Data and feature selection

We used a comprehensive biomechanical and physiological dataset 
from the MIDUS Biomarker Project (Ryff et al., 2023), a publicly 
available dataset funded by the National Institute on Aging (http 
s://midus.wisc.edu/). All data provided by MIDUS are fully 
de-identified and anonymized, ensuring compliance with ethical 
research standards. The dataset comprised N = 271 participants, of 
whom n = 188 (69 %) were middle-aged (45–64 years) and n = 83 (31 
%) were older adults (≥65 years). This imbalance in class sizes raised 
potential bias in classifier training. To mitigate this, we applied the 
Synthetic Minority Oversampling Technique (SMOTE), which generates 
synthetic samples of the minority class by interpolating between nearest 
neighbors in feature space. Balanced accuracy (average of sensitivity 
and specificity) was used in addition to standard accuracy to better 
reflect classification performance under imbalance. Model training was 
conducted both with and without SMOTE to evaluate the impact of 
resampling on classification metrics.

The dataset includes a wide spectrum of physiological and functional 
variables, providing a multidimensional view of aging-related processes. 

To ensure objectivity, we focused exclusively on clinical and quantita
tive measures rather than self-reported questionnaires. We focused on 
biomarkers (bone mineral density, and body fluid measurements), gait, 
balance, and muscle function parameters because these domains capture 
distinct yet complementary aspects of biological and functional aging, 
consistent with prior work in gerontology. Prior to analysis, all contin
uous variables were z-score normalized (mean = 0, SD = 1) to eliminate 
scale effects across biomarkers, gait, and muscle measures. Missing 
values were addressed using multiple imputation by chained equations 
(MICE) for continuous variables and mode imputation for categorical 
variables. All continuous variables were z-score normalized. Categorical 
variables were one-hot encoded. Pairwise correlation analysis was 
conducted (Pearson’s r > 0.85), and in cases of high redundancy, the 
clinically more relevant variable was retained. Multicollinearity was 
formally using Variance Inflation Factor (VIF). Variables with VIF> 5 
were iteratively removed to ensure model stability. The final dataset 
comprised 57 variables spanning biomarkers (n = 25), gait and muscle 
performance (n = 22), and psychological/functional measures (n = 10). 
A full description of each variable, including measurement units and 
definitions, is provided in Supplementary Table 1.

In addition to the 57 physiological and functional predictors, base
line comparisons were performed for common demographic and clinical 
covariates (sex, history of heart disease, hypertension, diabetes, 
cholesterol problems, arthritis, prescription medication use, and BMI). 
These variables were not included as classification features but were 
analyzed to identify potential confounding differences between groups 
(see Supplementary Table 2).

2.2. Machine learning models

We implemented four supervised ML algorithms selected for their 
complementary strengths: dimensionality reduction (PLS-DA, PCA- 
LDA), linear discrimination (PCA-LDA), a nonlinear kernel-based clas
sification (SVM), and instance-based learning (k-NN). Together, these 
models enabled a balanced comparison between interpretability- 
oriented linear classifiers and more flexible nonlinear methods. The 
goal was both to evaluate classification performance and to identify the 
most discriminative predictors of aging trajectories across modeling 
paradigms. Hyperparameters were optimized using grid search with 
cross-validation. All ML models were conducted using MATLAB R2022b 
(MathWorks, Natick, MA, USA), with our own developed code and 
ready-made functions from the MATLAB library. All analyses were run 
on a Windows 10 workstation equipped with an Intel i7 processor and 32 
GB RAM. ”

2.2.1. Partial least squares discriminant analysis (PLS-DA)
PLS-DA is a supervised learning method that combines Partial Least 

Squares (PLS) regression with Discriminant Analysis (DA). It reduces 
high-dimensional data to latent variables that maximize the separation 
between predefined classes. PLS-DA projects the prediction matrix X (e. 
g. 57 variables) into a lower-dimensional space while maximizing the 
covariance with the response variable Y (age group classification). 

X = T PT + E; Y = U QT + F; T = XW (1) 

where, X is the matrix of predictor variables (gait, muscle function, 
biomarkers, etc.), Y is the matrix of class labels (Middle-aged and Older 
Adults), T and U are the latent variable matrices, P and Q are the loading 
matrices, and E and F are the error terms.

PLS-DA then applies Linear Discriminant Analysis (LDA) to the latent 
variables to classify the samples. It is a dimensionality reduction-based 
classification method that maximizes the covariance between predic
tor variables and class labels. This approach is particularly suitable for 
relatively small sample sizes with high-dimensional predictors, such as 
biomarker panels.
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2.2.2. Principal component analysis-linear discriminant analysis (PCA- 
LDA)

PCA-LDA is a combination of principal component analysis (PCA) for 
feature extraction and linear discriminant analysis (LDA) for classifica
tion. PCA eliminates redundant information while LDA maximizes class 
separability. PCA transform transforms the original variables into un
correlated principal components as Z=XW. Where, X is the original data 
matrix, W is the eigenvector matrix of the covariance matrix of X, and Z 
is the transformed feature matrix. LDA Classification maximizes the 
ratio of between-class variance (SB) to within-class variance (SW): 

argmax =
w

⃒
⃒WTSBW

⃒
⃒

⃒
⃒WTSwW

⃒
⃒

(2) 

where, (SB) is the between-class scatter matrix, (SW) is the within-class 
scatter matrix, and W is the transformation matrix that projects the data 
to a lower-dimensional space where the class separation is maximized.

2.2.3. Support vector machine (SVM)
SVM is a model that finds the most suitable hyperplane to separate 

data points with maximum margin using kernel functions. In this study, 
Linear Kernel function is used. For a dataset with feature vectors xi, xj 
and class labels yi ∈ {− 1,1}, the decision function is: 

f(x) = wTx + b (3) 

where, w is the weight vector and b is the bias term. The SVM optimi
zation problem is solved as follows: 

min
w,b

1
2

‖ w‖2 (4) 

yi
(
wTxi + b

)
≥ 1, ∀i (5) 

For cases that are not linearly separable, SVM uses the kernel func
tions K(xi,xj) to map the data to a higher dimensional space: 

K
(
xi, xj

)
= ϕ(xi)⋅ϕ

(
xj
)

(6) 

2.2.4. k-Nearest neighbors (k-NN)
k-NN is a nonparametric model that classifies by nearest neighbors in 

feature space. For a given input x, k-NN finds the k nearest data points 
using a distance metric, typically Euclidean distance: 

d(x, xi) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

j=1

(
xi − xij

)2

√
√
√
√ (7) 

Here, x is the test sample, xi is the number of features in the training 
sample. The predicted class y ̂ is determined by majority voting among k- 
nearest neighbors: 

ŷ = argmax
c

∑k

i=1
1(yi = c) (8) 

where, 1(yi=c) is an indicator function. (i) is 1 if the neighbor belongs to 
class c, 0 otherwise. The class with the highest number is assigned to x.

2.3. Cross validation and performance metrics

We applied Venetian blinds cross-validation (10 segments), a 
resampling strategy commonly used in chemometrics for spectral and 
biomarker datasets with ordered measurements. This method partitions 
the dataset into evenly spaced folds, ensuring that all parts of the data 
distribution are represented for both age groups across folds. To ensure 
robustness and ensure clinical relevance, we also applied stratified 10- 
fold cross-validation (repeated 5 times), which preserves the class dis
tribution in each fold and provides a balance between bias and variance 
in performance estimation. To address class imbalance, Synthetic 

Minority Oversampling Technique (SMOTE) was applied. Performance 
was quantified using balanced accuracy, ROC-AUC, sensitivity, speci
ficity, precision, and F1-score.

2.4. Statistical analysis

All analyses were performed using SPSS (version 22.0). Descriptive 
statistics (means, standard deviations, and ranges) were calculated 
separately for middle-aged and older adults. Group comparisons were 
performed using independent-samples t-tests. Continuous variables 
were examined for outliers using boxplots and standardized z-scores 
(threshold ±3). Outliers were winsorized where appropriate. Missing 
values (<3 % overall) were imputed using expectation–maximization. 
All continuous variables were z-normalized before modeling to ensure 
comparability across different scales. To complement group compari
sons, standardized effect sizes (Cohen’s d) were calculated for all 57 
variables, enabling interpretation of the magnitude of group differences. 
Effect sizes were interpreted using conventional thresholds (small = 0.2, 
medium = 0.5, large = 0.8). All analyses were two-tailed with signifi
cance set at p < 0.05.

3. Results

Baseline comparisons of covariates showed no significant differences 
between middle-aged and older adults in terms of sex distribution, his
tory of heart disease, hypertension, diabetes, cholesterol problems, 
arthritis, or BMI. Prescription medication use was somewhat more 
frequent in the middle-aged group (22 % vs 13 %, p = 0.083), although 
this did not reach statistical significance (Supplementary Table 2).

Across the 57 variables, effect sizes varied by physiological domain. 
For example, gait speed (d ≈ 0.55) and jump mechanography power (d ≈
0.40) showed moderate group differences, while balance sway measures 
demonstrated smaller differences (d < 0.25). In contrast, bone mineral 
density variables, particularly lumbar spine BMD (d ≈ 0.35), also 
showed modest group differences. Fig. 1 shows a forest plot summari
zing all effect sizes across domains.

In general, the PLS-DA model provided higher overall accuracy, while the 
SVM model provided a more balanced performance in terms of sensitivity and 
specificity, making it a more reliable option for classifying aging-related 
changes. PCA-LDA and k-NN models were limited by their low specificity 
and misclassification rates. The classification performances of the models 
are summarized in Table 1 for training data and Table 2 for testing data.

While the PLS-DA model achieved 82 % accuracy in the training 
phase, the sensitivity and specificity values for older adults were lower 
than those for middle-aged individuals. In cross-validation, the accuracy 
increased to 86 %, but the sensitivity decreased to 71 % for older adults, 
indicating a class imbalance problem. This suggests that while PLS-DA 
provides good overall classification, it may overfit middle-aged features at 
the expense of older adult discrimination. The SVM model performed best 
with 96 % sensitivity and 67 % specificity in training, and achieved 86 % 
sensitivity and 55 % specificity in cross-validation. Importantly, SVM 
maintained balanced sensitivity across age groups, reducing misclassification 
risk of older adults — a clinically critical consideration. Since it showed 
high sensitivity especially in older adults, it was a strong option for 
determining differences in biological, walking and muscle functions due 
to aging. The classification image of the SVM model is presented in 
Fig. 2. The PCA-LDA model tended to misclassify middle-aged in
dividuals and exhibited low specificity. The K-NN model was similarly 
limited in terms of specificity, and the accuracy rate decreased to 68 % 
in the cross-validation phase.

In summary, PLS-DA achieved the highest overall accuracy, while SVM 
offered more balanced sensitivity and specificity. PCA-LDA and k-NN were 
less reliable due to high misclassification rates, limiting their applica
bility for aging classification. These differences highlight the importance 
of model choice when evaluating age-related decline.

In Fig. 3, ROC-AUC values were reported, with SVM (AUC = 0.94) 
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and PLS-DA (AUC = 0.98) demonstrating excellent discrimination, 
while PCA-LDA (AUC = 0.80) and k-NN (AUC = 0.81) performed 
moderately. These results confirm that class imbalance influenced 
model performance but was mitigated by oversampling. . Balanced ac
curacy values before and after SMOTE resampling are reported in 
Table 3.

Before oversampling, imbalanced group sizes favored higher sensi
tivity for middle-aged adults, while sensitivity for older adults was 

reduced. After applying SMOTE, balanced accuracy improved across all 
models (Table 3), indicating more equitable classification of the two age 
groups. For example, balanced accuracy increased from 0.71 to 0.78 for 
SVM and from 0.69 to 0.75 for PLS-DA. ROC-AUC values further 
confirmed the discriminative power of the models (SVM = 0.94, PLS-DA 
= 0.98, PCA-LDA = 0.80, k-NN = 0.81).

Fig. 1. Forest Plot of Cohen’s d (Middle-Aged vs. Older Adults). Effect sizes (Cohen’s d) for 57 physiological and biomechanical variables are shown, grouped by 
domain (Gait, Jump Mechanography, Balance, Bone Mineral Density, and Bioimpedance Spectroscopy). Steel blue bars indicate positive effect sizes (older adults 
higher), salmon bars indicate negative effect sizes (middle-aged higher).

V. Alcan                                                                                                                                                                                                                                          Archives of Gerontology and Geriatrics Plus 2 (2025) 100212 

4 



4. Discussion

4.1. Model performance and comparative context

The ML models applied in this study demonstrated robust classifi
cation performance in distinguishing between middle-aged (45–64 
years) and older (≥65 years) adults using a multidomain feature set. 
Among the classifiers, PLS-DA (ROC–AUC = 0.98) and SVM (ROC–AUC 
= 0.94) consistently outperformed PCA-LDA (ROC–AUC = 0.80) and k- 
NN (ROC–AUC = 0.81). Balanced accuracy improved across all models 
following SMOTE oversampling, underscoring the importance of 
explicitly addressing class imbalance. SVM improved from 0.71 to 0.78. 
This advantage likely stems from its capacity to model nonlinear class 
boundaries and handle high-dimensional datasets with correlated fea
tures, characteristics often encountered in physiological and biomarker 
data. PLS-DA from 0.69 to 0.75 after SMOTE application, reinforcing the 
utility of resampling in producing fairer and more reliable predictive 
estimates. PCA-LDA and k-NN performed moderately, reflecting their 

Table 1 
Classification performance of ML models on training data.

Model Group Accuracy Sensitivity Specifity Precision F1-Score

SVM Middle-Aged 0.87 0.96 0.67 0.87 0.91
Aged 0.67 0.96 0.89 0.76

PLS-DA Middle-Aged 0.82 0.86 0.73 0.88 0.87
Aged 0.73 0.86 0.69 0.71

k-NN Middle-Aged 0.87 0.82 0.42 0.76 0.79
Aged 0.42 0.82 0.51 0.46

PCA-DA Middle-Aged 0.82 0.95 0.53 0.82 0.88
Aged 0.53 0.95 0.83 0.65

Table 2 
Classification performance of ML models on cross-validation (test) data.

Model Group Accuracy Sensitivity Specifity Precision F1-Score

SVM Middle-Aged 0.77 0.86 0.55 0.81 0.83
Aged 0.55 0.86 0.64 0.59

PLS-DA Middle-Aged 0.86 0.79 0.71 0.86 0.82
Aged 0.71 0.79 0.60 0.65

k-NN Middle-Aged 0.68 0.81 0.40 0.75 0.78
Aged 0.40 0.81 0.48 0.44

PCA-DA Middle-Aged 0.79 0.93 0.47 0.80 0.86
Aged 0.47 0.93 0.74 0.57

Fig. 2. Plot of sample locations versus distance to class boundary for 
SVM classifier.

Fig. 3. Receiver Operating Characteristic (ROC) curves and Area Under the 
Curve (AUC) values for all machine learning classifiers in the cross- 
validation dataset.

Table 3 
Performance of ML models before and after class imbalance correction with 
SMOTE, showing balanced accuracy and ROC-AUC values for discriminating 
middle-aged and older adults.

Model Balanced Accuracy (Before 
SMOTE)

Balanced Accuracy (After 
SMOTE)

ROC- 
AUC

SVM 0.71 0.78 0.94
PLS- 

DA
0.69 0.75 0.98

k-NN 0.64 0.65 0.81
PCA- 

DA
0.62 0.67 0.80
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relative sensitivity to noise and class overlap. To contextualize these 
findings, we benchmarked the observed 77 % balanced accuracy of the 
best-performing models against established clinical screening tools.

Our findings extend recent ML applications in gerontology by inte
grating multimodal domains (biomarkers, gait, balance, muscle func
tion, and body composition), offering a broader physiological 
perspective than most prior studies. For example, studies have applied 
ML primarily in the context of fall risk prediction, emphasizing gait and 
balance features (do Nascimento et al., 2022; Eichler et al., 2022). Our 
study expands on this by incorporating a broader set of multidimen
sional features that are rarely integrated in previous analyses. Recent 
advances in digital health gerontology, including wearable-sensor ap
proaches to mobility monitoring (Chen et al., 2022), confirm the utility 
of multidomain physiological signals for aging research. Unlike those 
studies, however, our work benchmarks classification accuracy directly 
against established geriatric cutoffs such as gait speed ≤1.0 m/s, thereby 
bridging statistical ML outcomes with clinically meaningful thresholds.

Li et al. applied ML to predict multimorbidity trajectories in Chinese 
cohorts, identifying disease counts and self-rated health as key pre
dictors, but their models primarily relied on chronic disease indicators 
rather than functional performance measures (Li et al., 2025). Similarly, 
Gomes et al. leveraged sleep and metabolic markers to predict depres
sive symptoms, achieving high predictive accuracy (87 %) but focusing 
on psychological outcomes rather than functional aging (Gomes et al., 
2023). By contrast, our framework emphasizes motor, musculoskeletal, 
and metabolic features central to geriatric function.

Slijepcevic et al. (2022) used CNNs with ground reaction force data 
to classify age groups and applied explainable AI to identify biome
chanical predictors (Slijepcevic et al., 2022). While their work revealed 
meaningful gait markers, classification accuracy was modest (≈60 %) 
and interpretability limited to gait dynamics. Our results, by contrast, 
show that combining gait with biomarkers and jump/balance mecha
nography improves classification performance (balanced accuracy ≈77 
%; ROC-AUC up to 0.98) and allows for richer biological interpretation 
across systems. Likewise, Gökçe et al. (2025) linked inflammatory and 
metabolic biomarkers (IL-6, CRP, HbA1c) to slow gait speed using 
explainable ML, underscoring the role of systemic inflammation (Gökçe 
et al., 2025). Our study corroborates these findings by identifying in
flammatory markers alongside gait and muscle function as top-ranked 
predictors, and further contextualizes their joint impact using effect 
size estimation and feature importance analysis.

4.2. Feature importance and biological mechanisms

In this study, variables included in the ML classification analysis used 
to examine the biological and functional effects of aging play a critical 
role in distinguishing age groups. Across all 57 features, variables 
showing the largest group separation by Cohen’s d included gait speed 
(left/right), cadence, and gait cycle duration; jump mechanography 
metrics (maximum height and total/weight-normalized power); 
postural sway indices (relative path length and standard ellipse area in 
eyes-open and eyes-closed conditions); bone mineral density T-scores; 
selected BIS ratios; and inflammatory biomarkers (IL-6, CRP).

Although we stratified participants into midlife (45–64 years) and 
older adulthood (≥65 years) following epidemiological conventions, we 
acknowledge that aging is inherently a continuous and heterogeneous 
process. Binary cutoffs can obscure within-group variability and may not 
fully capture trajectories of biological aging, which often diverge from 
chronological age. Our findings suggest that finer-grained or biomarker- 
based age classifications may offer additional insights. Nonetheless, our 
choice of stratification provides clinically interpretable categories, 
aligns with prior aging research, and facilitates comparison with existing 
literature, while our sensitivity analyses and interaction models help 
mitigate potential oversimplification.

Inflammatory biomarkers (IL-6, CRP), gait speed, jump power, and 
bone mineral density emerged as the most discriminative features. These 

variables reflect different aspects of aging by reflecting the interactions 
of walking parameters, muscle function, balance measurement, and 
biomarkers. The aging process is closely associated with changes in 
biological, metabolic, and neuromuscular systems. For example, older 
adults exhibit higher levels of systemic inflammation, consistent with 
the concept of “inflammaging,” which accelerates functional decline and 
frailty (Ferrucci et al., 2018).

Gait parameters are important to reflect motor function de
teriorations that are directly related to the aging process (Verghese et al., 
2016; Jerome et al., 2015; Elam et al., 2021). Our analysis confirmed 
that gait speed, cadence, and gait cycle duration were among the 
strongest predictors of group classification. This supports prior evidence 
that gait speed is a “sixth vital sign” in gerontology (Middleton et al., 
2015). Reductions in gait speed and cadence correspond to neuromus
cular slowing, impaired motor unit discharge, and reduced axonal 
conduction, collectively decreasing locomotor efficiency (Orssatto et al., 
2022; Dewolf et al., 2021). Balance tests are other important parameters 
used to assess balance and motor control in older adults. Balance im
pairments, including increased postural sway and longer cycle dura
tions, reflect age-related declines in proprioceptive acuity, vestibular 
integration, and cerebellar sensory–motor processing (Henry & Baudry, 
2019; Ribeiro & Oliveira, 2007).

Muscle function was evaluated with parameters such as jump height 
and jump power measured by the two-legged hop test. In this study, 
jump power ranked particularly high in feature importance, consistent 
with previous literature indicating that power loss as a more sensitive 
predictor of disability than strength loss alone (Clark & Manini, 2012). 
Age-related sarcopenia, driven by reductions in type II fiber size, mito
chondrial dysfunction, and altered motor unit recruitment, explains 
these differences (Larsson et al., 2019; Gustafsson & Ulfhake, 2024).

The BMD parameters used in this study are critical for determining 
bone loss and osteoporosis risk due to aging (Haseltine et al., 2021). 
Bone density, especially T-scores measured in regions such as the spine 
and femur, can be used to assess frailty and fall risk in older adults 
(Haseltine et al., 2021). Declines in BMD (spine, femur, radius) aligned 
with known mechanisms of skeletal aging—hormonal changes, chronic 
inflammation, and impaired calcium/vitamin D metabolism—leading to 
imbalanced bone remodeling and fracture risk (Fang et al., 2022; 
Demontiero et al., 2012). Bioelectrical impedance spectroscopy mea
sures further revealed altered intracellular vs. extracellular fluid ratios, 
reflecting metabolic and compositional changes with aging. The use of 
BIA data in this study allows us to gain a more comprehensive under
standing of body composition changes during aging (Guida et al., 2007).

Taken together, our findings highlight that applying machine 
learning to multidimensional biomedical datasets enables more than 
simple chronological age classification. By integrating biomarkers, gait 
parameters, muscle function, balance, bone density, and body compo
sition measures, our models capture latent structures of functional 
aging. This approach not only distinguishes middle-aged from older 
adults but also identifies interaction patterns that reflect heterogeneous 
aging trajectories. Importantly, these insights support the development 
of precision gerontology tools, where individualized risk profiles can 
inform preventive and rehabilitative interventions, ultimately extending 
functional independence and quality of life in older adults. Nevertheless, 
these mechanisms are not isolated: muscle weakness exacerbates gait 
and balance impairments, while low bone density amplifies fall risk 
when combined with instability. This interdependence underscores the 
“network physiology of aging,” where multisystem interactions shape 
clinical outcomes. While our cross-sectional design precludes causal 
inference, longitudinal biomarker-based studies are needed to confirm 
directionality.

4.3. Clinical and practical implications

In addition to demonstrating statistical robustness, this study sought 
to contextualize the clinical translation of ML-based classification in 

V. Alcan                                                                                                                                                                                                                                          Archives of Gerontology and Geriatrics Plus 2 (2025) 100212 

6 



gerontology, where predictive models can be applied for individualized 
risk stratification, monitoring of accelerated aging, and detection of 
pathological trajectories. Unlike traditional age-based classification, this 
approach integrates biomarkers, gait, muscle, balance, and body 
composition measures to generate a more dynamic profile of biological 
aging. We explicitly assessed the clinical relevance of group differences 
by computing effect sizes (Cohen’s d) across all 57 variables such as gait 
speed and jump mechanography with moderate-to-large effects, 
reflecting clinically meaningful declines in physical function. For 
example, gait speed differences of 0.1–0.2 m/s have been widely 
accepted as clinically important thresholds in gerontology, and our 
observed effect sizes align with these benchmarks (Perera et al., 2016). 
These results are visualized in Fig. 1, which illustrates the relative 
magnitude of effects across functional domains, thereby improving 
clinical interpretability.

In addition, feasibility and cost-effectiveness also represent critical 
considerations. Compared with advanced imaging or genetic screening, 
the 36 geriatric clinical practice. The incremental costs of data inte
gration and algorithmic deployment are thus expected to be modest, 
particularly if implemented through automated pipelines embedded in 
electronic health records or wearable device platforms. We also 
contextualized the classification performance of our models. The best- 
performing classifiers (SVM, PLS-DA) achieved a balanced accuracy of 
approximately 77 % and ROC-AUC values up to 0.98. While no direct 
gold standard exists for discriminating “middle-aged” from “older” 
adults, this level of performance compares favorably with established 
geriatric screening tools.

4.4. Limitations and future directions

In this study, there are several limitations. The first limitation is the 
absence of external validation, which restricts generalizability beyond 
the MIDUS sample. While the combination of Venetian blinds and 
stratified k-fold CV with repeated resampling increases internal 
robustness, future studies should validate these models on independent, 
population-representative datasets. Future studies can also expand 
sample diversity, integrate longitudinal trajectories, and explore 
multimodal models that combine functional, cognitive, and psychoso
cial predictors. Secondly, despite applying SMOTE to reduce class 
imbalance, the possibility of oversampling bias remains. Synthetic data 
may amplify noise in minority class samples, and balanced accuracy 
improvements should be interpreted cautiously. Furthermore, while 
SMOTE enhanced performance consistency, external validation in in
dependent, more balanced cohorts will be required to confirm the 
generalizability of these results. Thirdly, common covariates such as sex, 
chronic disease history, and BMI, although compared between groups 
and reported in Supplementary Table 2, were not included as predictors 
in the ML models. While most covariates did not differ significantly 
between groups, residual confounding cannot be completely ruled out. 
Future studies may integrate these factors into adjusted models to 
improve robustness and generalizability. These factors may influence 
both biomarker and functional outcomes, and their integration into 
future predictive models could enhance accuracy and generalizability. 
On the other hand, for the future direction, aging research can extend 
beyond biological decline to encompass broader determinants of healthy 
aging, including quality of life, emotional well-being, social participa
tion, and daily activity. Evidence shows that leisure activities and social 
networks serve as crucial sources of health and life satisfaction in later 
life (Parra-Rizo et al., 2022), while regular physical exercise is among 
the most effective non-pharmacological strategies to promote active and 
healthy aging (Sanchís-Soler et al., 2025). Integrating these perspectives 
with physiological markers may ensure a more comprehensive approach 
to designing interventions and shaping public health policies for older 
adults.

5. Conclusion

Our study highlights the potential of ML to discriminate between 
middle-aged and older adults based on biomarkers, gait, and muscle 
function measurements. By comparing multiple classifiers, we found 
that SVM offered the best balance between sensitivity and specificity, 
while PLS-DA achieved the highest overall accuracy. These findings 
suggest that integrating physiological markers of inflammation, gait 
performance, and muscle function provides a more objective and 
reproducible framework for aging classification than traditional chro
nological grouping.
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