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BACKGROUND: Blood pressure (BP) is not steady. It varies over intervals from months to consecutive cardiac cycles, and this variation
contains meaningful information beyond mean BP. Variability over multiple clinic visits (VVV-BP) and during 24-h ambulatory moni-
toring (ABPV) is positively related to risk of stroke and coronary artery disease and negatively associated with cognitive performance.
Beat-to-beat BP variation, often quantified as low frequency variability (0.04-0.15 Hz, LF-BPV), is less well-studied. Here, we examine
the relationship between LF-BPV and cognitive outcomes in 1953 participants from the Midlife in the US study.

METHODS: Participants completed the Brief Test of Adult Cognition by Telephone from which we derived episodic memory (EMF)
and executive function (EFF) factors and a composite index. With participants in the seated position, the continuous BP signal was
recorded noninvasively with a Finometer. The resultant time series was submitted to Fourier-based spectral analysis to compute
LF-BPV. Linear regression models estimated the associations with cognitive indices.

RESULTS: Systolic (LF-SBPV) and diastolic (LF-DBPV) were positively associated with EFF (b=0.073 +0.033, P=0.02), EMF
(b =0.079 £ 0.036, P = 0.04), and the composite index (b = 0.101 + 0.035, P = 0.004) after adjustment for age, sex, education, and income.
Findings were similar for LF-DBPV.

CONCLUSIONS: This positive association is consistent with evidence demonstrating that LF blood pressure variability contributes to

increased delivery of oxygenated blood to the brain and clearance of metabolic and cellular waste via the brain’s glymphatic system
and intramural periarterial drainage pathway, both of which contribute to superior cognitive performance.
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Graphical Abstract

LF-BPV is Positively Associated with Cognitive Function

3 seconds

Finometer

240 seconds

The link between elevated blood pressure (BP) and increased
risk for many conditions, including stroke, myocardial infarc-
tion, renal disease,' and impaired cognitive function?® is well-
established. However, BP is not static. It is dynamic and undergoes
a significant degree of variation continuously. Current approaches
to medical management attempt to control for this “noise” by
averaging multiple measurements but recent evidence shows
that this blood pressure variability (BPV) contains meaning-
ful information. Findings depend upon how BPV is measured:
(i) repeatedly over weeks or even years (visit-to-visit variability
[VVV-BP]); (ii) on a 24-h scale by ambulatory monitoring (ABPV);
and (iil) on a beat-to-beat basis.

In 16,758 participants free of dementia at study entry and
followed for 2 years,® in 3,319 noninstitutionalized patients age
>65 years followed for 3 years,* and in 7.8M participants without
dementia followed for 6.2 years,” VVV-BP was directly related to
poorer cognition and elevated risk of dementia independent of
mean SBP and DBP. Measured over a range of 15 min to 1-h inter-
vals over 24 hours, greater ABPV was related to poorer cognitive
function in 202 and 232 patients (mean age = 82 years).®’

Fewer studies assess beat-to-beat BPV largely because nonin-
vasive acquisition of the continuous BP signal, the input for anal-
yses of beat-to-beat BPV, requires expensive and complex devices,
e.g., the Finometer (Finapres Medical Systems, Amsterdam), lim-
iting collection of these data. However, the technology for mon-
itoring the continuous BP waveform is evolving rapidly, making
acquisition of LF-BPV increasingly feasible.

Further complicating matters, a variety of metrics have been
used to measure beat-to-beat BPV: time domain statistics such as
SD are indices of total variability while frequency domain meas-
ures parse BPV into discrete frequency bands, e.g., low (LF, 0.04-
0.15 Hz) and high (HF, 0.15-0.40 Hz) frequency variation, that may
be selectively sensitive to underlying physiology and clinically

continuous BP manitor

Cognitive Battery
Brief Test of Adult Cognition by
Telephone (BTACT):
Executive Function Factor (EFF)
Episodic Memory Factor (EMF)
Global Cognition (BTACT)

Cognitive Blood
Outcome Pressure BPV
Type b SE |P-value
Episodic Memory Systolic 0.073 | 0.036 | 0.040
Factor (EMF) Diastolic | 0.106 | 0.037 | 0.004
Executive Systolic 0.079 | 0.033 | 0.018
Function Factor
(EFF) Diastolic 0.095 | 0.035 | 0.006
Composite Systolic 0.101 | 0.035 | 0.004
Cognitive Index
(BTACT) Diastolic 0.121 | 0.037 | <.001

significant events not captured by total BPV. Beat-to-beat BPV is
also expressed as “pulsatility,” a high frequency (~1.0 Hz) index,
and “vasomotion” at lower frequencies (0.04-0.15 Hz). Reports of
associations between BPV and cognitive function differ depend-
ing upon the BPV metric.

HEF-BPV is not commonly measured, largely because its phys-
iological significance is limited: it is widely recognized to be the
product of respiration-induced changes in intrathoracic pressure
which occur in the 0.15-0.40 Hz frequency band. Pulsatility gen-
erally refers to BPV deriving from each cardiac cycle, i.e,, at the
heart rate. As such, HF-BPV and pulsatility are different from
each other but importantly, each is different from LF-BPV.

To our knowledge, only one study reports on associations
between frequency domain indices of BPV and cognitive function
in a community study: in 1,140 individuals, cognitive impairment
measured by the MoCA was positively associated with HF-SBPV
but not with LF-SBPV.® Here we report findings on the relation-
ship between LF-BPV and multiple domains of cognitive function
across a large, diverse sample of participants from the NIA-
sponsored Midlife in the US (MIDUS) study.

METHODS
Participants

MIDUS is a nationally representative study of role of behavio-
ral, psychological, and social factors in age-related variations
in health and well-being. Data came from MIDUS2 (2004-2009,
N=5,555) and the MIDUS Refresher (MIDUSR, 2011-2015,
N =4,085), each with a survey plus projects measuring cognitive
function and biomarkers.® Institutional Review Board approval
was obtained for all MIDUS data collection and participants pro-
vided informed consent.
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Measurement of cognitive function

The Brief Test of Adult Cognition by Telephone (BTACT) battery
is a reliable, validated measure of cognition' including meas-
ures of processing speed, reaction time, and task-switching/
inhibitory control. Exploratory and confirmatory factor analy-
ses identified episodic memory (EMF) and executive functioning
(EFF) factors.' Tests were standardized using z-scores and the
mean of the tests loading on the respective factors was com-
puted to create factor scores. The two-factor scores were then
standardized to z-scores. A BTACT composite score was com-
puted as the average of the standardized values for all cognitive
tests.®

Measurement of beat-to-beat BPV

In the Biomarker project, participants traveled to one of three
clinical research centers (Wisconsin, UCLA, Georgetown) for
a 1.5-day visit. During a morning session, they received a light
breakfast without caffeinated beverages, then were fitted with
ECG electrodes and respiration bands. A monitoring cuff from a
Finometer beat-to-beat BP monitor was placed on the middle fin-
ger of the nondominant hand for continuous BP monitoring for
an 11-minute quiet, resting baseline period.

The continuous BP and ECG waveforms were sampled at 500
Hz using a National Instruments 16-bit A/D board, and along with
respiration signals, were collected on a microcomputer. Systolic
peaks and diastolic troughs were identified using custom-
written software, producing SBP and DBP time series that were
reviewed for artifact and if possible, corrected by linear interpo-
lation. The first 300s epoch without missing or implausible data
was then identified, LF-BPV (0.04-0.15 Hz) was computed, using
an interval method for computing Fourier transforms similar to
that described by DeBoer et al.'* Prior to computation of Fourier
transforms, the mean of each BP series was subtracted from each
value in the series. A Hanning window' was applied to the time
series and power over the LF band was summed and adjusted
to account for attenuation produced by this window. LF-BPV was
averaged across the two 300-sec epochs.

Statistical analysis

All variables were examined for normality and outliers. To address
large outliers and general right skew in LF-SBPV and -DBPV val-
ues, a natural-log transformation was applied. Demographic,
physiological, and cognitive characteristics were summarized
with means and standard deviations, and medians and inter-
quartile ranges for continuous variables, or with frequencies and
proportions for categorical variables.

Linear regression models were used to estimate the associ-
ation between LF-BPV and Episodic Memory (EMF), Executive
Function (EFF), and BTACT Composite scores for the entire
sample (N =1,953). The first model controlled only for BP, then
sociodemographic variables were added one at a time (age [as
categorical; younger (25-49), middle-aged (50-64), older (65-86)],
sex, education, and income), adjusting for multiple sociodemo-
graphic variables.

In a sensitivity analysis, we repeated these analyses only in
participants whose physiological and cognitive assessments were
within 18 months of one another. Finally, to see if any of these
associations changed over time, analyses were repeated, adding
the interactions between the time between physiological and cog-
nitive visits and BPV and BP.

All analyses were conducted using SAS version 9.4, with two-
sided tests and a preselected level of significance 5%.

Dynamic Regulation of BP and Cognition | 3

RESULTS

In MIDUS?2, there were 4,512 and 1,255 participants and in
MIDUSR, 2,763 and 863 participants, respectively, in the cognitive
and biomarker projects. Of these, 1,152 MIDUS2 and 801 MIDUSR
(1,953 in total) participants had complete cognitive and bio-
marker data. Missing data were due to equipment failures, inabil-
ity or unwillingness to participate in the psychophysiology study,
or missing cognitive scores.

Table 1 presents the sociodemographic and clinical charac-
teristics of the participants. The mean age was 55.2 + 12.8 years
old, with slightly more women than men (54.6% vs. 45.4%).
47.6% had a bachelor’'s degree or higher; 29.8% completed
at least some college, and 22.6% had a high school diploma,
GED, or less. Of participants who disclosed their income, 15.9%
earned below 200% of the Federal Poverty Level, 23.3% earned
between 200% and 400%, 23.4% made between 400% and 600%,
and 37.4% made over 600% of that level. The mean + SD of SBP
and LF-SBPV were 123.6 + 18.2 mmHg and 13.6 + 12.9 mmHg,?
while the mean DBP & LF-DBPV were 61.7 + 11.5 mmHg and
4.0 +3.4 mmHg? The mean +SD values for EMF, EFF, and
the BTACT composite were 0.1+0.9, 0.1+0.9, and 0.1+ 1.0,
respectively.

Table 2 presents the regression models for the entire sample
(N'=1,953), where the mean interval between the physiologi-
cal and cognitive assessments was 21.4 +12.0 months. When
adjusting only for SBP, LF-SBPV was positively associated with
EMF (b=0.076, SE=0.029, P=0.009), EFF (b=0.141, SE=0.028,
P<0.001), and BTACT (b=0.161, SE=0.03, P<0.001). Similarly,
when adjusting for only DBP, LF-DBPV was positively associated
with EMF (b =0.16, SE = 0.029, P < 0.001), EFF (b = 0.235, SE = 0.028,
P <0.001), and BTACT (b=0.266, SE=0.029, P<0.001). Figure 1
depicts these findings.

These associations remained statistically significant when
adjusting for each sociodemographic variable separately,
except for the association between LF-SBPV and EMF, which
no longer remained significant with age (b = 0.044, SE = 0.028,
P =0.127) or income level (b =0.061, SE = 0.039, P = 0.118) in the
model.

After adjusting for age, sex, education, income, and BP, LF-SBPV,
and LF-DBPV remained positively associated with EMF (LF-SBPV:
b=0.073, SE=0.036, P=0.04; LF-DBPV: b=0.106, SE=0.037,
P =0.004), EFF (b = 0.079, SE = 0.033,P = 0.018; b = 0.095, SE = 0.035,
P <0.006), and BTACT (b =0.101, SE=0.035, P<0.004; b=0.121,
SE=0.037,P <0.001).

Table 3 presents the results of the sensitivity analyses
(N =885), where the average interval between assessments was
11.1 + 3.6 months. When adjusting only for SBP, LF-SBPV was
positively associated with EFF (b =0.105, SE =0.042, P =0.014)
and BTACT (b = 0.114, SE = 0.044, P = 0.01), while LF-DBPV, when
adjusted for DBP, was positively associated with all cognitive
outcomes—EMF (b =0.15, SE =0.045, P=0.026), EFF (b =0.186,
SE=0.042, P<0.001), and BTACT (b=0.214, SE=0.044,
P <0.001). In multivariable analyses adjusting for age, sex, edu-
cation, and income, the associations between LF-SBPV and EFF
(b=0.127, SE=0.049, P = 0.01) and BTACT (b =0.129, SE = 0.052,
P =0.013) and between LF-DBPV and EFF (b =0.131, SE=0.051,
P=0.011), and BTACT (b = 0.144, SE = 0.053, P = 0.007) remained
significant.

None of the interactions between time and SBP, LF-SBPV, DBP,
or LF-DBPV was statistically significant, indicating no significant
changes in the associations of BP or BPV with cognitive outcomes
over time.
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Table 1. Demographic, physiological, and cognitive characteristics of participants

Variable n Overall
(N =1,953)

Age, years 1,953

Mean + SD 55.2+12.8

Median (IQR) 55.0 (46.0-64.0)
Age (categorized) 1,953

Younger (25-49) 665 (34.1%)

Middle-Aged (50-64) 817 (41.8%)

Older (65-86) 471 (24.1%)
Sex 1,953

Male 886 (45.4%)

Female 1,067 (54.6%)
Race 1,953

White 1,535 (78.6%)

Black/African-American 283 (14.5%)

Other 135 (6.9%)
Education 1,949

HS/GED or less 441 (22.6%)

AA degree/some college 580 (29.8%)

BA degree or higher 928 (47.6%)
Income (Ratio to Federal Poverty Level) 997

<200% FPL 159 (15.9%)

200-<400% FPL 232 (23.3%)

400-<600% FPL 233 (23.4%)

>=600% FPL 373 (37.4%)
Physiological characteristics
Systolic blood pressure (mmHg) 1,670

Mean + SD 123.6 £18.2

Median (IQR) 122.3 (111.0-135.0)
Systolic blood pressure variability (mmHg?2) 1,670

Mean + SD 13.6+£12.9

Median (IQR) 10.3 (6.0-17.3)
Diastolic blood pressure (mmHg) 1,670

Mean + SD 61.7 £+11.5

Median (IQR) 61.5 (54.2-68.8)
Diastolic blood pressure variability (mmHg2) 1,670

Mean + SD 40+34

Median (IQR) 3.1(1.8-5.1)
Cognitive characteristics
Episodic Memory (Z-score) 1,948

Mean + SD 0.1+£09

Median (IQR) 0.0 (-0.6 t0 0.7)
Executive Function (Z-score) 1,950

Mean + SD 0.1+£09

Median (IQR) 0.2 (-0.5t00.8)
BTACT Composite (Z-score) 1,862

Mean + SD
Median (IQR)

01+1.0
0.1(=0.5100.8)

Continuous variables are displayed as mean + SD, while categorical variables are displayed as n (%).

DISCUSSION

To our knowledge, this is the largest study to examine the rela-
tionship between beat-to-beat LF-BPV and cognitive function in
a diverse community sample. Multivariable regression models
controlling for multiple covariates revealed positive associations
between both resting systolic and diastolic LF-BPV and executive
function and the BTACT composite but not episodic memory.
These positive relationships contrasts with numerous studies
showing negative relationships between other measures of BPV,
ie, VVV-BP and 24-h ABPV, and cognitive performance®** and
with the findings of the one other community study of beat-to-
beat BPV and cognitive function, which reported no relationship
between LF-BPV and the MoCA.? However, comparison of these
findings is difficult because of significant differences between
studies. First, the MoCA was administered in English, Malay,
Chinese, or Tamil, and evidence suggests substantial regional
differences in cutoffs for different levels of cognitive function.®

Second, MoCA scores were positively related to high frequency
HF-SBPV and negatively related to the LF:HF BPV ratio. HF-BPV
has limited physiological significance because it is driven primar-
ily by changes in intrathoracic pressure associated with respira-
tion and the meaning of the LF:HF BPV ratio is unclear.

The contrasting direction of these relationships underscores
the importance of the different BPV time scales as they relate to
outcomes.’ Although somewhat speculative, the negative asso-
ciations between cognitive indices and VVV-BP and ABPV may
relate to silent and functional white matter hyperintensities.”*
Global cognitive decline is related to the presence of white matter
lesions and degree of leukoaraiosis'** which in turn are related to
arterial stiffness and pulsatility.*?? In the Baltimore Longitudinal
Study of Aging, increased arterial stiffness was associated with
cognitive decline.® Arterial stiffness was positively associ-
ated with SD of 24-h ABP in untreated hypertensive patients*
and with the coefficient of variation of beat-to-beat SBP in 223
patients within 6 weeks of a transient ischemic attack or minor
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1,953)

Table 2. Unadjusted and adjusted associations between BPV and cognitive function scores in the entire sample (N

Adjusting for age (categorical), sex, education,

Adjusting for age (categorical), sex, and education

Unadjusted

Cognitive outcome Blood pressure type

and income

BP

BPV

BP

BPV

BP

BPV

SE

SE

SE

SE

SE

SE

-0.001 0.002 0.559

-0.001 0.001 0.254 848 0.073 0.036 0.04

1,665 0.16 0.029 <.001 0.002 0.002 0.348 1,662 0.08 0.029 0.006 0.002 0.002 0.316 848 0.106 0.037 0.004 0.003 0.002 0.189

-0.004 0.001 <.001 1,662 0.058 0.027 0.033

1,665 0.076 0.029 0.009

Systolic

EMF

Diastolic
Systolic

0.001 0.849
0.002 0.946

0.001 0.93

0
0
0

-0.001 0.001 0.28 850 0.079 0.033 0.018
—0.002 0.002 0.272 850 0.095 0.035 0.006
-0.001 0.001 0.215 823 0.101 0.035 0.004

-0.001 0.001 0.283 1,664 0.079 0.026 0.002

1,667 0.141 0.028 <.001

EFF

1,667 0.235 0.028 <.001 0.002 0.002 0.297 1,664 0.11 0.027 <.001

1,593 0.161 0.03 <.001

Diastolic

-0.002 0.001 0.061 1,590 0.103 0.027 <.001

Systolic

BTACT

-0.001 0.002 0.516 823 0.121 0.037 <.001 0.001 0.002 0.644

1,593 0.266 0.029 <.001 0.002 0.002 0.245 1,590 0.135 0.028 <.001

Diastolic

Abbreviations: SE, standard error; EMF, episodic memory factor; EFF, executive function factor; BPV, blood pressure variability (mmHg?); BP, blood pressure.
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Figure 1. Fitted regression lines with 95% confidence bands for the
association of log-transformed systolic and diastolic LF-BPV at rest with
z-scores for the BTACT composite index and the episodic memory and
executive function factors.

stroke.?”” The negative association between VVV-BP and 24-h ABPV
and cognitive function may be the product of increased arterial
stiffness but because its association with LF-BPV is unknown, it
sheds little light on our finding of a positive relationship between
LF-BPV and cognitive function.

In contrast, this positive association is consistent with recent
studies suggesting that LF-BPV may have a protective effect, sec-
ondary to greater distribution of blood flow, protection of tissue
oxygenation, and the clearance of cellular and metabolic debris
from interstitial fluid. Higher cerebral blood flow (CBF) was sig-
nificantly related to better performance in multiple cognitive
domains in 2,498 participants in the AGES-Reykjavik Study.?®
Conversely, lower baseline perfusion was associated with more
rapid cognitive decline.”?® CBF in AD-related brain regions was
negatively associated with amyloid-f3 load.”

In turn, LF-BPV appears to be related to perfusion. Participants
more tolerant to central hypovolemia produced by lower body
negative pressure and the resultant reduced tissue perfusion
had higher levels of LF-BPV compared with those less tolerant.*
Mathematical modeling studies suggest that these BP oscillations
create a pump-like effect in the microvasculature extending per-
fusion of oxygenated blood further into tissues.***? Inducing 0.1
Hz BP oscillations increases tolerance to hypovolemic challenge,*
protects cerebral tissue oxygenation,* and attenuates the reduc-
tion of forearm tissue oxygenation during forearm ischemia.®
Increases in LF-BPV produced by paced breathing at 0.10 Hz
increased tolerance time to presyncope after head-up tilt.*

GZ0Z JaqWBAON g U0 Jasn wa)sAg uIsuoosipg 10 Alstaaiun Aq 8106+28/S9Liedy/yle/s601L 01 /10p/ajonie-aoueApe/yle/wod dno-olwapeoe//:sdny Wwoll papeojumoq



6 | Sweigertetal

Experimental studies also support the impact of LF-BPV on
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measures of cognitive flexibility, at least under conditions of
stress. Thus, the role played by the sympathetic nervous system
in associations between cognitive function and LF-BPV is unclear
and may depend upon the cognitive operations in question.

Positive associations between LF-BPV and cognitive function
may be especially meaningful in the context of the search for
biomarkers of early risk of AD, a matter of considerable impor-
tance because the pathophysiological process of AD/ADRD begins
years before clinical diagnosis. This “preclinical” phase provides
a critical opportunity for early intervention, but this requires
biomarkers that identify individuals at elevated risk. To date,
the best-established biomarkers derive from PET imaging and
cerebrospinal fluid, making them expensive, inconvenient, and
difficult to access. New fluid-based biomarkers—Ap42, Ap40,
p-tau217, GFAP, and NfL—appear to have considerable promise
but are not yet sufficiently well-established.® Our data showing
positive associations between LF-BPV and cognitive indices sug-
gest the possibility that LF-BPV also may emerge as an early bio-
marker of neurodegenerative disorders.

How fluid-based biomarkers and LF-BPV compare as early
biomarkers is unknown but some indirect evidence exists. In
community-dwelling men and women 65-80 years of age, pTau217
was negatively associated to episodic memory (b=-0.11+ 0.04,
P =0.003).”° In MIDUS, the association between LF-BPV and epi-
sodic memory was significant but positive (b=0.079 +0.036,
P =0.04). This relationship was slightly weaker in absolute slope
than the episodic memory—pTau217 association reported by
Sewell et al. Zhang et al. reported a significant negative relationship
between p-taul81 and executive function (b = —-0.073, P = 0.004) in
686 participants (average age = 73.0 years). In MIDUS, the associa-
tion between LF-BPV and executive function was similar in abso-
lute strength but positive (b =0.073 = 0.033, P = 0.02). Differences
in measurement of cognitive function, statistical analyses used,
and study samples make comparison of these findings challeng-
ing but the magnitude of the relationships between the putative
biomarkers and cognitive indices, although opposite in direction,
was roughly comparable, suggesting that LF-BPV may be as valid
a risk biomarker as the fluid-based indices and deserves future
investigation.

Strengths and limitations

The study has several notable strengths, primarily that it is a
large community study of spectrally defined LF-BPV and cognitive
function. Second, the BPV data are part of a comprehensive study
of midlife development, including a great many biomarkers and
data on cognitive function as well as on daily stress, imaging, and
established indices of well-being.

However, several limitations also characterize this study. First,
there was considerable variation in the interval between the
assessment of cognitive function and LF-BPV in MIDUS, ranging
from 1 to 60 months. Because cognitive function declines with
age, this interval may have moderated its relationship to LF-BPV.
However, executive function and episodic memory show consid-
erable temporal stability over 9 years.” Second, analyses limited
to participants in whom both indices were collected within 18
months of each other were not significantly different from those
from the entire sample, suggesting that this widely ranging meas-
urement interval did not bias the findings. Lastly, we found that
the interval between the 2 assessments was not a significant
moderator of the strength of the association between any cogni-
tive measure and LF-BPV. Therefore, the variation in the interval
between assessment of cognitive function and LF-BPV is unlikely
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to influence the finding of a positive association between these
markers.

Another potential limitation relates to beat-to-beat BP meas-
ured at the finger, which is different from pressure measured at
other sites. While the degree of variability between BP measured
peripherally using a Finometer and centrally using intra-aortic
techniques has been deemed acceptable,’? the separate regula-
tory mechanisms involved in each vascular system introduce
potential error in estimating the BPV experienced by the cere-
bral circulation based on peripheral measurements.”? However,
recent evidence supports a close relationship between central
and peripheral LF-BPV##

In this article, we report positive associations between cog-
nitive function and LF-BPV, a finding that contrasts to negative
relationships with VVV-BP/ABPV. These findings are consistent
with a growing body of evidence linking LF BP oscillations with
mechanisms associated with cognitive function—the delivery of
oxygenated blood to the brain and clearance of interstitial fluid—
suggesting the possibility that LF-BPV may be an accessible bio-
marker of risk of cognitive decline. Future research will require
replication of these findings and further characterization of the
underlying mechanisms responsible for low-frequency beat-to-
beat BPV and how they may relate to cognitive function.
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