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A B S T R A C T

Background: Sleep disturbances are a known risk factor for alcohol use, yet their long-term predictive value for 
alcohol use disorder (AUD)–especially in the context of co-occurring anxiety symptoms–remains understudied. 
The present study thus applied machine learning with internal validation to evaluate how sleep disturbances 
predict nine-year AUD symptoms in midlife adults. It also introduces the Sleep-Anxiety Dysregulation Model of 
AUD Risk, which posits that sleep and anxiety symptoms confer shared vulnerability via disrupted arousal 
regulation.
Method: Community-dwelling midlife adults (N = 1,054) completed clinical interviews, self-reports, and a seven- 
day actigraphy protocol to assess demographics, psychiatric symptoms, anxiety severity, subjective sleep, and 
objective actigraphy sleep indices. A five-fold nested cross-validated random forest identified potentially 
nonlinear and interactive predictors. The baseline model included 41 variables.
Results: The final multivariable model explained over two-fifths of the variance in nine-year AUD symptoms (R2 

= 42.7%, 95% confidence intervals [40.1%–45.8%]). Key baseline predictors of nine-year AUD severity included 
lower rest-stage activity, sleep discontinuity and fragmentation patterns, and decreased active wake-stage 
physical movement. Other baseline predictors comprised younger age, higher generalized anxiety disorder, 
major depression, and panic disorder severity. No subjective sleep disturbances predicted nine-year AUD 
symptoms.
Conclusions: Results underscore the shared contribution of sleep and anxiety disturbances to long-term AUD risk. 
The proposed Sleep-Anxiety Dysregulation Model of AUD Risk offers an integrative framework suggesting that AUD 
symptoms may emerge via chronic arousal dysregulation, including heightened physiological reactivity. Exter
nally validating this model may inform preventive strategies targeting distal risk processes underlying AUD.

1. Introduction

Alcohol use disorder (AUD) involves excessive drinking that impairs 
academic, social, and occupational functioning (American Psychiatric 
Association, 2013). Approximately 12.7% of the U.S. population met 
criteria for 12-month AUD, and nearly 80 % had consumed alcohol in 
the past decade (Grant et al., 2017). AUD is linked to mental health 
comorbidities (Castillo-Carniglia et al., 2019), including anxiety disor
ders (Smith & Randall, 2012) and physical conditions (AshaRani et al., 
2022), contributing to reduced quality of life and earlier mortality (Lu 
et al., 2022). Given its chronicity and burden, identifying early psy
chological and physiological vulnerabilities–‘distal risk factors’–is vital 

for prevention and treatment.
AUD is frequently viewed through the lens of proximal triggers–such 

as craving, stress, or relapse cues–but a growing body of evidence sug
gests that long-term risk may originate in more chronic, under- 
recognized patterns of physiological and psychological dysregulation 
(Cox and Olatunji, 2016; Dvorak et al., 2014; Gondre-Lewis et al., 2016). 
In particular, persistent sleep disturbances and anxiety symptoms–two 
commonly co-occurring yet under-treated conditions–may contribute to 
neuroadaptive vulnerability that heightens long-term risk for AUD 
through shared disruption of arousal systems (Koob and Colrain, 2020). 
However, few studies have examined how co-occurring sleep and anx
iety symptoms predict long-term AUD outcomes, particularly among 
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midlife and older adults, a population often overlooked in AUD pre
vention research (Patrick et al., 2023). Few have incorporated objective 
(actigraphy) and subjective sleep measures or used machine learning 
(ML) approaches to detect nonlinear, interacting risk factors across 
extended timeframes. Thus, the present study addresses these gaps by 
testing the Sleep-Anxiety Dysregulation Model of AUD Risk in a nine-year 
prospective sample, with implications for identifying modifiable at-risk 
individuals before full-syndrome heightened AUD severity emerges.

Sleep disturbances may serve as key distal risk factors for increased 
AUD through biopsychosocial mechanisms. They frequently co-occur 
with anxiety symptoms (Cox and Olatunji, 2016), which share neuro
biological pathways with sleep regulation (Harvey et al., 2011) and 
elevate the risk of maladaptive alcohol use (Brockdorf et al., 2022). Yet, 
few longitudinal models have explored their combined impact on long- 
term increased AUD risk in midlife. Neurologically, chronic sleep 
disruption may impair gamma-aminobutyric acid (GABA) and gluta
mate systems involved in reward, arousal, and anxiety regulation, 
increasing alcohol cravings, use, and tolerance for sleep regulation 
(Koob and Colrain, 2020; Lindberg et al., 2018). Cognitively, sleep 
fragmentation–often intensified by anxiety-driven hyperarousal–can 
heighten emotional reactivity, impair executive function, and fuel risk- 
taking, reinforcing a cycle of alcohol use to self-medicate poor sleep and 
distress, further degrading sleep quality (Panin and Peana, 2019). 
Although alcohol may offer short-term sedative effects (Gardiner et al., 
2025; Gilman et al., 2008), withdrawal can induce hyperarousal, 
worsening anxiety, and sleep (Hartwell et al., 2015). These dynamics 
may be exacerbated by academic or occupational stress, which, when 
coupled with anxiety and sleep issues, dysregulate the HPA axis and 
perpetuate alcohol misuse (Forrester et al., 2019). Genetic pre
dispositions may further heighten sensitivity to sleep-anxiety dysregu
lation, amplifying long-term increased AUD risk (Chakravorty et al., 
2023).

Most empirical data assessing the links between sleep disturbances 
and AUD symptoms have been cross-sectional (He et al., 2019; Hussain 
et al., 2022), hindering directional inferences (Blackwell and Glynn, 
2018). Additionally, existing longitudinal studies on this topic have 
mainly focused on college students and youth populations. For instance, 
daytime dysfunction, issues falling asleep, and later weekday and 
weekend bedtimes in childhood (Sabatier et al., 2025) and early 
adolescence (Hasler et al., 2022; Troxel et al., 2021) preceded more 
alcohol misuse in late adolescence or young adulthood. Similarly, 
shorter time dozing before rising preceded more alcohol consumption 
through executive functioning impairments in school-going youths 
(Warren et al., 2017). Moreover, poorer sleep quality among those with 
vs. without AUD persisted across five years in teenagers (Hasler et al., 
2014). Similarly, in young community adult samples, alcohol misuse 
might acutely enhance subjective sleep efficiency across days (Miller 
et al., 2021), but experiencing insomnia and hypersomnia increased the 
odds of AUD three years later by 1.72 to 3.92 times (Breslau et al., 1996). 
Relatedly, higher insomnia symptoms worsened alcohol misuse across 
several months among U.S. Veterans (Davis et al., 2022) but not across 
days among nurses (Thompson et al., 2024). However, these studies 
rarely account for co-occurring psychiatric symptoms, particularly 
anxiety, which are strongly linked to both sleep disruption and AUD. 
This limits our understanding of how these symptoms may jointly 
contribute to increased long-term risk of AUD. Although progress in this 
area has been made, there has been a dearth of studies on how sleep 
disturbances predict long-term AUD symptoms across years in midlife 
and older community adult populations. Further, few studies have 
employed multivariable approaches capable of capturing the complex, 
interacting contributions of joint risk factors (such as anxiety and sleep) 
over extended periods.

Efforts to identify which unique sleep disturbances function as distal 
AUD symptom risk factors should integrate subjective and objective 
measures of sleep disturbances. However, most existing literature has 
relied on self-report measures of sleep disturbances (He et al., 2019), 

such as daily diaries (e.g., Miller et al., 2021) and the Pittsburgh Sleep 
Quality Index (PSQI; Buysse et al., 1989). Subjective self-reports indi
cate individuals' viewpoints of sleep quality and are influenced by 
cognitive and emotional factors, including anxiety, which has been 
shown to impact alcohol use experiences, including relapse risk, while in 
recovery (Dzierzewski et al., 2022; Smith et al., 2014). Sleep quality 
indices might include sleep efficiency (proportion of total sleep time 
[TST] to total time in bed), sleep onset latency (SOL; time taken to fall 
asleep), and wake after sleep onset (WASO; total wakefulness period 
after sleep onset but before final awakening; Shrivastava et al., 2014). 
Actigraphy wearables capture the same sleep quality indices more 
objectively, and actigraphy data have been shown to diverge from self- 
reports in the context of AUD research (Brooks et al., 2012). Sleep 
disturbance markers, such as TST, may be overestimated in self-reports, 
with actigraphy indices instead indicating extended wakefulness in in
dividuals with or at risk for future AUD symptoms (Brooks et al., 2020; 
Geoghegan et al., 2012). Dual measurements of sleep disturbances, 
using both actigraphy and self-reports, are thus necessary to identify the 
relative contributions of cognitively driven sleep appraisals and 
actigraphy-captured physiological adaptations of sleep (Brooks et al., 
2021). Taken together, objective actigraphy and subjective self-report 
markers of sleep disturbances might precede more long-term AUD 
symptoms across years in midlife and older adult samples.

However, linear model assumptions using traditional ordinary least 
squares (OLS) hinder the advancement of studying sleep disturbances 
and anxiety as distal risk factors of AUD symptoms. Traditional OLS 
regression often fails to account for multicollinearity among unique yet 
interrelated sleep predictors, and it also struggles to detect potential 
nonlinearities (Farahani et al., 2010) or complex higher-order in
teractions (Sheetal et al., 2023). These considerations are integral since 
the relationship between distinct sleep disturbance indicators and 
alcohol misuse, intoxication, cravings, tolerance, and related symptoms 
could be nonlinear (Zheng et al., 2024) and dependent on one another 
(Tracy et al., 2021). Data-driven ML methods could overcome these 
challenges, especially when relevant theories inform the predictor set 
(Elhai and Montag, 2020; Yarkoni and Westfall, 2017). Ensemble ML 
approaches, such as random forest (RF), optimize the bias-variance 
trade-off, detect nonlinear relations, identify higher-order interactions, 
and examine if such patterns generalize to unseen data (Fife and 
D'Onofrio, 2023). These goals could be achieved by using methods that 
separate model training and testing datasets, such as nested cross- 
validation (NCV), which prevents data leakage and overfitting (issues 
in generalizing patterns to unseen data; de Rooij and Weeda, 2020; Song 
et al., 2021). Further, ML approaches fall within the class of precision 
psychiatry techniques (Williams et al., 2024), where calls have been 
made to investigate their promises and pitfalls in AUD research 
(Ebrahimi et al., 2021). To this end, harnessing ML approaches would be 
a step toward developing an actionable clinical prognostic calculator to 
inform optimal prevention programs and tertiary treatments for those 
with or at risk for long-term AUD symptoms.

Addressing gaps in the literature, this study used ML to identify 
which sleep disturbances and anxiety symptoms predict AUD symptoms 
nine years later in midlife and older adults. First, we hypothesized that 
our multivariable model, which included actigraphy, sleep self-reports, 
and anxiety severity, would demonstrate good predictive performance, 
defined as an R-squared (R2) value of ≥10% (Gao, 2023). Second, we 
expected both sleep disturbance and anxiety variables to consistently 
emerge as linear and nonlinear predictors of higher nine-year AUD 
severity. As detailed below, we adjusted for clinical, demographic, and 
related covariates to minimize concerns about data mining and p- 
hacking (Wegener et al., 2024).
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2. Method

2.1. Study design

Data from the present study were derived from the publicly available 
Midlife Development in the United States (MIDUS) database (Ryff et al., 
2019a; Ryff et al., 2021; Ryff et al., 2019b). Participants were followed 
twice over nine years. Sleep disturbance, AUD, comorbid psychiatric 
symptoms, and sociodemographic data were collected from 2004 to 
2006 (Wave 1; W1). Data on AUD severity were collected again from 
2013 to 2014 (Wave 2; W2). Among the 1,054 participants who 
participated in W1 of the data collection protocol that provided 
adequate relevant data for the present study, 167 (15.8%) dropped out 
by not completing the W2 AUD severity measure. Dropouts were 
significantly older than completers (M = 59.5, SD = 14.9 vs. M = 54.7, 
SD = 11.0; t(degrees of freedom [df] = 192.7) = − 3.89, p < .001) and 
comprised a higher percentage of individuals who racially identified as 
non-White (26.9% vs. 14.8%; χ2(df = 1) = 8.43, p = .004). However, 
dropouts and completers were not statistically different in terms of self- 
reported sex (males: 17.4%; females: 14.6%; χ2(df = 1) = 1.38, p = .241) 
and education level (formal college education: 15.0%; up to high school 
education: 17.3%; χ2(df = 3) = 0.94, p = .817).

2.2. Participant attributes

Community-dwelling adults (N = 1,054) offered voluntary informed 
consent to participate in the MIDUS study (Ryff et al., 2019a; Ryff et al., 
2021; Ryff et al., 2019b). Ethical approval for the MIDUS study was 
obtained from participating universities, and no additional approval was 
required for this secondary data analysis. Participants were primarily 
middle-aged adults (M = 55.32, SD = 11.78, range = 34–84), with a 
slight majority being women (577 [54.74%]) compared to men (477 
[45.26%]). Educational attainment varied: 214 (20.31%) held a uni
versity or postgraduate degree, whereas 840 (79.69%) had a high school 
education or less, or declined to report. Racially, most participants were 
White (988 [93.73%]); the remainder identified as Black, Asian, Native 
American, Pacific Islander, or Multiracial (66 [6.27%]).

2.3. Procedures

2.3.1. Protocol across W1 and W2
Participants completed surveys assessing AUD symptoms using the 

Michigan Alcohol Screening Test (MAST) at W1 and W2 (Selzer, 1971), 
sleep quality with the PSQI at W1 (Buysse et al., 1989), and SUD 
symptoms at W1 using a self-report developed by MIDUS (Turiano et al., 
2012). They also underwent clinical interviews assessing potential 
confounders–generalized anxiety disorder (GAD), major depressive 
disorder (MDD), and panic disorder (PD) symptoms–using the Com
posite International Diagnostic Interview-Short Form (CIDI-SF; Kessler 
et al., 1998), aligned with Diagnostic and Statistical Manual-Third 
Edition-Revised (DSM-III-R; Kessler et al., 2006). Additionally, partici
pants attended a two-day MIDUS-organized site visit to complete 
biomarker assessments, including instructions for the actigraphy pro
tocol (Love et al., 2010). The MIDUS project organized data collection 
across several universities by carrying out standardized protocols to 
facilitate alignment in actigraphy and self-report sleep measures at each 
site. All data were primarily overseen, managed, and integrated by the 
chief MIDUS coordinating center, which is situated at the University of 
Michigan's Inter-University Consortium at the Institute for Political and 
Social Research (ICPSR). ICPSR and the MIDUS center support harmo
nization and cross-site evaluations while preserving stringent quality 
checks and controls across the research network (Radler and Love, 
2018).

2.3.2. Objective sleep actigraphy protocol
To standardize actigraphy procedures, MIDUS researchers instructed 

participants to begin wearing the Actiwatch (Mini-Mitter, Philips) on the 
Tuesday after their site visit (Križan and Hisler, 2019; Uysal et al., 2019). 
Participants wore the device continuously for seven days, through 
Tuesday morning. The actigraphy passively recorded sleep efficiency, 
SOL, WASO, TST, activity counts, movement intensity, wake time, and 
other sleep-wake markers during wake, rest, and sleep stages (Hisler and 
Krizan, 2017; Teas and Friedman, 2021). Sleep and wake bouts were 
also tracked across these stages. Participants used daily diaries to mark 
the start and end of rest periods (Bhat et al., 2024); missing entries were 
supplemented using adjacent time points, following best-practice 
guidelines for actigraphy data (Owens et al., 2017).

2.4. Measures

2.4.1. W1 and W2 AUD symptoms
AUD severity was assessed using an adapted version of the MAST 

self-report, which asked participants how often they experienced spe
cific AUD symptoms in the past year (Selzer, 1971). Symptoms included: 
(i) mental health issues (e.g., depression, paranoia, bizarre thoughts); 
(ii) intense cravings or urges; (iii) prolonged periods of excessive 
drinking or recovery; (iv) increased alcohol tolerance; and (v) risk of 
serious harm. Each symptom was coded as present (1) or absent (0), 
yielding scores from 0 to 5. This scale demonstrated acceptable internal 
consistency (Cronbach's α = .70 at W1, .77 at W2) and strong construct 
validity (Zainal et al., 2024).

2.4.2. W1 GAD symptoms
Participants completed the CIDI-SF interview assessing GAD symp

toms over the past year, rating how often they experienced worries more 
frequently than most people, ranging from never (1) to most days (4). 
Symptoms included: (i) restlessness; (ii) nervousness; (iii) irritability; 
(iv) trouble falling or (v) staying asleep; (vi) concentration difficulties; 
(vii) memory lapses; (viii) fatigue; (ix) low stamina; and (x) muscle 
tension or soreness (score range = 4–40). The scale demonstrated 
excellent internal consistency (α = .98), reliability, and construct val
idity (Gigantesco and Morosini, 2008; Ng et al., 2024).

2.4.3. W1 MDD symptoms
Participants reported the presence (1) or absence (0) of past-year MDD 

symptoms related to depressed mood or anhedonia using the CIDI-SF 
interview (Gigantesco and Morosini, 2008). Symptoms included: (i) 
loss of interest; (ii) fatigue; (iii) appetite changes; (iv) sleep distur
bances; (v) concentration issues; (vi) feelings of worthlessness; and (vii) 
recurrent thoughts of death. Scores ranged from 0 to 14. This measure 
demonstrated high internal consistency (α = .93) and strong construct 
validity (Zainal and Newman, 2021; Zainal and Newman, 2022).

2.4.4. W1 PD symptoms
Participants completed the CIDI-SF, which assessed past-year PD 

symptoms, indicating the presence (1) or absence (0) of symptoms 
experienced during unexpected panic attacks in safe situations (Wang 
et al., 2000). Symptoms included: (i) rapid heart rate; (ii) chest 
discomfort; (iii) sweating; (iv) trembling; (v) chills or hot flashes; and 
(vi) derealization. Scores ranged from 0 to 6. The scale demonstrated 
good internal consistency (α = .86) and strong construct validity 
(Bakhshaie et al., 2016).

2.4.5. W1 SUD symptoms
Participants completed survey items assessing past-year SUD symp

toms, indicating presence (1) or absence (0) of nonmedical use of sub
stances such as sedatives, stimulants, painkillers, antidepressants, 
inhalants, marijuana, cocaine, hallucinogens, or heroin (Zvolensky 
et al., 2015). One item captured any use, whereas others assessed un
planned use, functional impairment, risk of harm, mental health impact, 
and tolerance. Scores ranged from 0 to 18. The scale showed high in
ternal consistency (α = .81) and strong construct validity (Bakhshaie 
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et al., 2015; Zainal et al., 2024).

2.4.6. W1 subjective sleep quality
Participants completed the PSQI, which assessed seven dimensions of 

subjective sleep quality: (i) daytime dysfunction; (ii) habitual sleep in
efficiency; (iii) sleep disturbances; (iv) TST; (v) SOL; (vi) sleep medi
cation use; and (vii) overall sleep quality (Buysse et al., 1989; Carpenter 
and Andrykowski, 1998). All items were scored 0–3, except habitual 
sleep inefficiency (0–4). The PSQI demonstrated acceptable internal 
consistency (α = .70) and good construct validity (Hinz et al., 2017; Liu 
et al., 2021).

2.4.7. W1 childhood trauma
Since prior trauma could serve as a potential confounder, we statis

tically adjusted for this variable in all multivariable models. The 
Childhood Trauma Questionnaire (CTQ; Bernstein et al., 1994) was used 
to assess childhood maltreatment encounters across six dimensions: 
emotional abuse, physical abuse, sexual abuse, emotional neglect, 
physical neglect, as well as minimization and denial. Participants 
responded to each item on a 5-point Likert scale (1 = never true to 5 =
very often true), generating scores that could range from 28 to 140. The 
CTQ has shown high internal consistency (α = .79–.94) and strong 
retest-reliability (Bernstein et al., 1994). CTQ scores have also demon
strated good convergent validity and strong discriminant validity 

(Bernstein and Fink, 1998; Hoeboer et al., 2025).

2.5. Data analysis

All data management and analyses were conducted using R (R Core 
Team, 2025). RF nonparametric imputation was employed to address 
missing data, given its ability to capture complex interactions and 
nonlinearities that exceed the capabilities of standard parametric 
methods (Golino and Gomes, 2016; Shah et al., 2014). Continuous 
variables were standardized (M = 0, SD = 1), and nominal variables 
were one-hot encoded (James et al., 2013). Feature engineering was 
performed separately within training and testing folds under a five-fold 
nested cross-validation (5F-NCV) framework to prevent data leakage 
and overfitting (Qiu, 2024). Inner loops handled feature engineering, 
tuning, and training; outer loops conducted model testing. The W1 
predictor set included 42 variables, such as actigraphy scores averaged 
across seven days, with full descriptives in Table 1. Covariates were 
selected based on prior research: age (Daskalopoulou et al., 2018), sex 
(Freeman et al., 2022), education (Assari and Lankarani, 2016), GAD, 
MDD, and PD symptoms (Kushner et al., 2000; Rudenstine et al., 2020), 
as well as childhood trauma (Shin et al., 2019).

Seven multivariable ML models were evaluated using the nestedcv 
package, with RF emerging as the best performer (Lewis et al., 2023). RF 
integrates decision trees with stopping rules to reduce overfitting 

Table 1 
Descriptive statistics of variables in the W1 variables to predict W2 AUD severity.

M/n (SD)/(%) Minimum Maximum Skewness Kurtosis

W1 age (years) 55.32 (11.78) 34 84 0.30 − 0.67
W1 men vs. women 477 (45.26) – – – –
W1 college-educated 214 (20.31) – – – –
White 988 (93.73) – – – –
W1 MDD severity 0.85 (2.34) 0 14 2.82 7.36
W1 GAD severity 11.69 (6.85) 8 32 1.48 0.53
W1 PD severity 0.43 (1.18) 0 6 2.90 7.84
W1 AUD severity 0.07 (0.37) 0 4 7.03 56.43
W1 SUD severity 0.61 (1.89) 0 18 4.11 21.71
W1 CTQ severity 64.24 (6.72) 44 98 0.68 2.75
W1 PSQI daytime dysfunction 0.81 (0.67) 0.00 3.00 0.49 0.21
W1 PSQI habitual sleep inefficiency 0.72 (1.16) 0.00 4.00 1.47 0.90
W1 PSQI sleep disturbances 1.28 (0.56) 0.00 3.00 0.61 0.47
W1 PSQI total sleep time (TST) 0.78 (0.75) 0.00 3.00 0.82 0.51
W1 PSQI sleep onset latency (SOL) 0.88 (0.92) 0.00 3.00 0.86 − 0.12
W1 PSQI sleep medication use 0.57 (1.07) 0.00 3.00 1.57 0.79
W1 PSQI subjective poor sleep quality 0.97 (0.68) 0.00 3.00 0.46 0.52
W1 mean activity counts (resting phase) 31.44 (18.88) 6.90 120.42 1.82 4.02
W1 maximum activity counts (resting phase) 683.04 (207.62) 201.43 1420.33 0.83 0.82
W1 wake time (resting phase) 69.01 (34.19) 22.33 234.07 1.38 2.38
W1% of wake time (resting phase) 14.89 (7.38) 5.50 41.96 1.51 2.22
W1 average wake bouts (resting phase) 38.15 (13.52) 10.71 95.71 1.13 2.59
W1 average sleep bouts (resting phase) 12.50 (6.06) 3.29 81.16 4.32 35.83
W1 total activity counts (sleep phase) 7713.94 (4604.40) 1002.33 28,696.57 1.76 4.20
W1 mean activity counts (sleep phase) 18.66 (12.03) 2.59 74.10 1.92 4.39
W1 maximum activity counts (sleep phase) 510.46 (176.68) 185.43 1297.33 0.91 1.30
W1 average sleep onset latency (sleep phase) 25.77 (23.08) 0.21 128.57 1.87 3.58
W1 total sleep time (sleep phase) 13.46 (14.94) 0.50 84.92 2.28 5.61
W1 sleep efficiency (sleep phase) 81.61 (9.57) 44.27 93.61 − 1.52 2.50
W1 wake after sleep onset (sleep phase) 45.57 (21.87) 8.83 139.86 1.33 2.51
W1 wake time (sleep phase) 45.65 (22.13) 8.83 139.86 1.37 2.74
W1% of wake time (sleep phase) 10.79 (5.69) 2.28 31.08 1.49 2.06
W1 average wake bouts (sleep phase) 32.06 (10.59) 10.14 71.33 0.59 0.13
W1 average sleep bouts (sleep phase) 14.25 (7.43) 4.26 81.44 4.37 32.35
W1 total activity counts (active phase) 328,289.45 (105,549.46) 62,573.67 620,944.17 0.36 − 0.01
W1 mean activity counts (active phase) 335.93 (108.24) 65.49 660.60 0.42 0.29
W1 maximum activity counts (active phase) 1376.26 (364.51) 429.83 2406.83 0.38 − 0.10
W1 wake time (active phase) 818.20 (105.14) 504.92 1085.75 − 0.49 0.07
W1% of wake time (active phase) 83.23 (9.21) 48.62 97.64 − 1.02 0.94
W1 average wake bouts (active phase) 62.58 (30.14) 7.33 158.17 0.58 − 0.14
W1 average sleep bouts (active phase) 2.73 (1.46) 1.22 19.29 7.31 77.14
W2 AUD severity 0.13 (0.55) 0.00 5.00 5.53 35.03

Note. W1, wave 1 (2004–2006); W2, wave 2 (2013–2014); AUD, alcohol use disorder; MDD, major depressive disorder; GAD, generalized anxiety disorder; PD, panic 
disorder; SUD, substance use disorder; CTQ, Childhood Trauma Questionnaire; PSQI, Pittsburgh Sleep Quality Index.
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(Breiman, 2001; Lechner and Okasa, 2024). The default number of trees 
was 500. The ‘mtry’ parameter, or number of predictors randomly 
selected at each split, ranged from 2 to √(the total number of predictors) 
(Chen et al., 2023). Two splitting rules were tested: ‘variance’ (default) 
and ‘extra trees’ (Mishra et al., 2021). The minimum terminal node size 
was set at 5, 10, or 15 to restrict further splits. A 5F-NCV framework 
ensured separation of tuning and testing to prevent overfitting (Lewis 
et al., 2023). Predictor importance was assessed using permutation 
importance, which favors variables that most reduce tree impurity (Fife 
and D'Onofrio, 2023).

Model performance was evaluated using R2, root mean squared error 
(RMSE), and mean absolute error (MAE) point estimates (Pargent et al., 
2023). To quantify uncertainty, 95% confidence intervals (CIs) were 
computed via 1,000 bootstrap resamples, with narrower CIs indicating 
greater precision (Noma et al., 2021). Hypothesis 1 was supported if R2 

exceeded 10% (Gao, 2023). Model calibration assessed the alignment 
between predicted and actual outcomes (Lindhiem et al., 2018). Cali
bration plots displayed a dashed red line for perfect calibration (inter
cept = 0, slope = 1) and a bold blue line to show deviations. Brier scores, 
representing mean squared error, indicated better calibration with lower 
values (Fokkema et al., 2022).

To test Hypothesis 2 and visualize linear, nonlinear, and interactive 
effects of each multivariable predictor on W2 AUD severity, we used two 
explainable artificial intelligence (XAI) methods: partial dependence 
plots (PDPs; Molnar, 2022) and Shapley additive explanations (SHAP; 
Lundberg and Lee, 2017). PDPs, generated via the pdp package 
(Greenwell, 2017), show each predictor's global marginal effect while 
averaging over all other predictors. Because PDPs lack participant-level 
insights, SHAP bee swarm plots were also created to display both global 
and local effects (Lundberg et al., 2020). Using the kernelshap package 
(Mayer and Watson, 2024), SHAP visualized the distribution of each 
predictor's impact: rows represented predictors ranked by absolute 
SHAP value, with red (positive) and blue (negative) points indicating the 
direction and density of individual-level effects.

The dataset is already publicly available at the MIDUS repository (htt 
ps://tinyurl.com/icpsr-midus). The authors do not have permission to 
re-share the data with manuscript submission but are instead instructed 
by the MIDUS team to cite the MIDUS repository, as we have already 
done in our manuscript. R analytic codes and scripts are also available 
upon reasonable request.

3. Results

Hypothesis 1. Multivariable predictive ML model performance.

Table 2 presents performance metrics for all seven ML algorithms. 
The RF model performed best, yielding the highest R2 (42.7%, 95% CI 
[40.1%–45.8%]) and lowest RMSE (0.199, 95% CI [0.174–0.226]) and 
MAE (0.098, 95% CI [0.088–0.109]). As shown in Fig. S1, the calibra
tion plot indicated close alignment between predicted and actual values, 
aside from minor over- and underpredictions. The Brier score was low 
(0.010), as was the calibration intercept, which was close to 0 (− 0.023), 
and the calibration slope, which approached 1 (1.284), suggesting 
generally good model calibration. Overall, results supported Hypothesis 
1, which anticipated strong multivariate model performance. 

Hypothesis 2. Linear and complex relations between W1 predictors 
and W2 AUD severity.

Fig. 1 presents PDPs for the top 20 W1 predictors of W2 AUD 
severity; Fig. 2 shows corresponding SHAP bee swarm plots. These 
predictors included 5 psychopathology variables, 1 demographic vari
able, and 14 actigraphy-indexed variables, with their relative impor
tance denoted by the number (#) in parentheses. With respect to W1 
psychopathology variables, higher symptom severity of AUD (#1), GAD 
(#2), MDD (#4), PD (#5), and SUD (#6). For the 1 demographic vari
able, younger age (#3) was associated with higher W2 AUD severity. For 

rest stage variables at W1, lower total activity counts (#7), high and low 
percentage of wake time (#8), longer wake time (#10), higher average 
movement counts (#16), as well as high and low maximum movement 
counts (#19), predicted greater W2 AUD severity. For sleep stage vari
ables at W1, fewer wake bouts (#9), higher average sleep bouts (#13), 
greater maximum activity counts (#14), shorter TST (#15), and lower 
sleep efficiency (#17) predicted higher W2 AUD severity. For active 
wake stage variables at W1, fewer movement counts (#11), wake bouts 
(#12), higher sleep bouts (#18), and lower percentage of wake time 
(#20) predicted more W2 AUD symptoms. Overall, these findings were 
fully aligned with Hypothesis 2, which anticipated that linear and 
nonlinear patterns of W1 anxiety and sleep disturbance variables would 
predict higher W2 AUD severity.

4. Discussion

Our study tested the prognostic utility of a multivariate model pre
dicting nine-year AUD symptoms with a high-dimensional data set that 
comprised sleep disturbances (objective and subjective) and anxiety 
severity vis-à-vis clinical and demographic confounders. Encouragingly, 
this multivariate model had moderate predictive power with practical 
significance (Rights and Cole, 2018), accounting for 42.7%, 95% CIs 
(40.1%–45.8%) of the proportion of variance of nine-year AUD severity. 
Five top psychopathology predictors comprised AUD, GAD, and PD 
severity, as well as MDD and SUD symptoms. Fourteen top predictors 
were purely actigraphy-indexed sleep disturbances, while subjective 
appraisals of sleep disturbances based on the PSQI did not emerge as 
significant predictors. Younger age also predicted higher nine-year AUD 
severity. We propose that biopsychosocial mechanisms partly account 
for these outcomes, and we refer to our theory as the ‘Sleep-Anxiety 
Dysregulation Model of AUD Risk’ (Fig. 3) to spur further research that 
may bridge the gap between clinical psychological theory and practice.

Concordant with the theorized Sleep-Anxiety Dysregulation Model of 
AUD Risk, the outcomes showed that heightened W1 anxiety-linked 
psychopathology, namely GAD, MDD, PD, and SUD symptoms, pre
dicted higher AUD severity nine years later. These findings underscore 
the idea that shared physiological arousal systems may contribute to 
cross-cutting risk for excessive alcohol consumption across time (He 
et al., 2019). The finding that AUD severity at W1 emerged as the 
topmost predictor of future AUD severity also aligned with homotypic 
continuity models of risk (Nadel and Thornberry, 2017; Speranza et al., 
2023).

Table 2 
Multivariate ML model performance metrics of W1 variables predicting W2 AUD 
severity.

Model RMSE (95 % CI) MAE (95 % CI) R2 (95 % CI)

LASSO 0.255 
(0.239–0.271)

0.121 
(0.115–0.128)

0.058 
(0.024–0.090)

Ridge 0.254 
(0.239–0.271)

0.121 
(0.114–0.128)

0.064 
(0.034–0.094)

Elastic net 0.254 
(0.239–0.270)

0.121 
(0.114–0.128)

0.065 
(0.032–0.097)

Decision trees 0.252 
(0.219–0.286)

0.119 
(0.105–0.133)

0.079 
(0.011–0.152)

Random 
forest

0.199 
(0.174–0.226)

0.098 
(0.088–0.109)

0.427 
(0.401–0.458)

GBM 0.249 
(0.217–0.282)

0.120 
(0.107–0.134)

0.105 
(0.059–0.156)

SVM 0.202 
(0.172–0.235)

0.071 
(0.060–0.083)

0.409 
(0.376–0.446)

Note. ML, machine learning; W1, wave 1 (2004–2006); W2, wave 2 
(2013–2014); AUD, alcohol use disorder; RMSE, root mean squared error; CI, 
confidence interval; MAE, mean absolute error; R2, R-squared; LASSO, least 
absolute shrinkage and selection operator; GBM, gradient boosting machine; 
SVM, support vector machine. All ML models were based on five-fold nested 
cross-validation, and the model performance metrics were derived from aggre
gating across all outer-loop folds.
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Beyond mental disorders, 14 actigraphy-based variables in active 
wake, rest, and sleep stages forecasted nine-year AUD severity. These 
outcomes might be implicated by circadian rhythm misalignment, 
restorative sleep impairments, and somatic hyperarousal mediated by 
imbalances in the GABA or glutamate pathways (Nam et al., 2012) or an 
overactive HPA axis (Koob and Colrain, 2020). These complex, U-sha
ped relations, such as both low and high wake time percentages in rest 
stages predicted more AUD symptoms, highlight the expected nonlinear 
patterns. For example, during rest stages, minimal physical activity, 
high and low percentages of wake time, and longer wake duration 

predicted more future AUD symptoms. This pattern might have reflected 
anticipatory somatic arousal during planned rest intervals and auto
nomic imbalances, such as overactivation of the sympathetic branch 
compared to the parasympathetic branch (Koob and Colrain, 2020). 
Likewise, lower sleep efficiency and shorter TST during sleep stages 
predicted more nine-year AUD symptoms. Such disrupted non- 
restorative sleep patterns might be explained by deficits in emotion 
regulation and reward processing (Martindale et al., 2017; Yang et al., 
2024). Postponements in dim light melatonin onset (DLMO; Burgess 
et al., 2022) may contribute to evening chronotype patterns captured by 

Fig. 1. Partial dependence plots of W1 sleep disturbance variables predicting W2 AUD severity 
Note. W1, wave 1 (2004–2006); W2, wave 2 (2013–2014); AUD, alcohol use disorder; GAD, generalized anxiety disorder; MDD, major depressive disorder; PD, panic 
disorder; SUD, substance use disorder; TST, total sleep time.

Fig. 2. SHAP bee swarm plot of W1 sleep disturbance variables predicting W2 AUD severity 
Note. SHAP, Shapley additive explanations; W1, wave 1 (2004–2006); W2, wave 2 (2013–2014); AUD, alcohol use disorder; GAD, generalized anxiety disorder; 
MDD, major depressive disorder; PD, panic disorder; SUD, substance use disorder; TST, total sleep time.
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actigraphy, potentially negatively affecting sleep onset and prolonging 
circadian misalignment that sustains AUD symptoms. Active wake stage 
predictors, including fewer wake bouts and lower physical activity 
counts, as well as more sleep bouts, likely indicated issues with delayed 
or evening chronotype and sleep-wake boundary regulation. These 
outcomes might be attributed to impulse control problems that could be 
persistent in those with or at risk for increased alcohol use (Sirtoli et al., 
2023). Higher allostatic load, cumulative wear-and-tear from persistent 
physiological burdens and stressors, could aggravate sleep-anxiety 
dysregulation and prolong alcohol misuse via continued HPA axis acti
vation (Guidi et al., 2021). Collectively, these bidirectional and 
nonlinear patterns expand on prior work by identifying actigraphy- 
based indices of circadian disturbances and rest-stage arousal factors 
as essential predictors of nine-year AUD severity. They emphasize the 
theory's primary hypothesis that persistent sleep-wake circadian dis
turbances and anxiety issues jointly contribute to long-term excessive 
alcohol use.

Additionally, younger adults were more susceptible to drinking more 
alcohol in the long term than their middle-aged and older adult coun
terparts. This observation might be due to several developmental con
siderations. Those who started drinking excessively earlier on might be 
more likely to accrue more binge drinking episodes over time, gradually 
leading to more deeply ingrained, maladaptive alcohol use habits in the 
long run (Merline et al., 2008). Earlier alcohol use could also prolong 
decision-making deficits, externalizing behaviors, and impulse control 
issues (Nurnberger Jr. et al., 2019). Such entrenched alcohol use pat
terns might evolve into alcohol dependence that could be difficult to 
“mature out of” as these individuals grow older (Hingson et al., 2006). 
Together, this finding highlights the importance of early identification 
and intervention.

Another noteworthy outcome was that objective, actigraphy-based 
indices, rather than subjective PSQI-based self-reports of sleep distur
bances, predicted higher AUD severity nine years later. A plausible ac
count relates to the capacity of actigraphy to capture physiological 
aspects of active wake, rest, and sleep stages that are often missed by 
subjective self-reports of sleep (Brooks et al., 2012). Across long dura
tions, sleep self-reports may be influenced by memory, mood, and per
sonal biases (Piekarski et al., 2022), which can be better accounted for 

by psychiatric comorbidities, such as GAD and PD symptoms, that have 
emerged as top predictors. Comparatively, actigraphy markers might do 
a better job of capturing circadian rhythms, such as sleep continuity and 
fragmentation, that converging evidence would suggest are essential for 
predicting future AUD severity (Brooks et al., 2020). To this end, 
actigraphy markers could be an improvement over sleep self-reports by 
identifying sleep disturbances that would be subtle yet meaningful in
dicators of persistent alcohol use.

Our findings and theory should be interpreted under some limita
tions. First, our Sleep-Anxiety Dysregulation Model of AUD Risk posits 
reciprocal, longitudinal associations between sleep disturbances, anxi
ety symptoms, and AUD symptoms, aligned with existing literature 
(Helaakoski et al., 2022). However, since our goal was to examine the 
etiological importance of sleep disturbances and anxiety symptoms in 
predicting long-term AUD symptoms, future studies should focus on the 
opposite pathway of how AUD symptoms precede and predict sleep 
disturbances. Second, genetic factors (Hatoum et al., 2022) and related 
confounders should be adjusted in future longitudinal studies assessing 
the proposed theoretical tenets. Third, later investigations should 
explore the boundary conditions–distinct measures, time-lag durations, 
sample attributes, and analytic approach–within which sleep distur
bances and anxiety predict long-term AUD symptoms. Fourth, external 
validation is required before an actionable prognostic calculator can be 
built and implemented in clinical and routine care settings (Oliver, 
2022). Fifth, as no diagnostic measures of AUD were administered, we 
were unable to ascertain the proportion of individuals with clinical 
levels of AUD at W1 and W2. Future replication studies should thus 
include and model AUD diagnostic status. Simultaneously, we believe 
our use of the MAST as a dimensional severity measure remains justified 
and appropriate for understanding AUD risk and trajectories in this 
population-based cohort. Nonetheless, the study's strengths included the 
nine-year time lag, large community sample, and robust multivariate 
NCV ML analyses.

Several clinical implications merit consideration if future studies 
were to replicate similar findings in diverse populations and offer evi
dence for external validation (Collins et al., 2024). Our findings may 
point to a modifiable risk phenotype–characterized by chronic sleep 
problems, anxiety symptoms, and maladaptive coping–that may precede 

Fig. 3. Theoretical pathways based on the sleep-anxiety dysregulation model of alcohol use disorder risk 
Note. GABA, gamma-aminobutyric acid; HPA, hypothalamus-pituitary axis.
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the onset of AUD, and for whom early, tailored intervention may prevent 
the escalation into chronic AUD. By identifying individuals with this 
pattern early, particularly in midlife when both sleep and anxiety dis
turbances often become entrenched yet remain under-recognized, there 
may be a critical opportunity to intervene before the development of 
chronic AUD. This interpretation builds on and expands beyond tradi
tional self-medication models by showing how subjective sleep 
dysfunction and anxiety co-occurrence predict long-term alcohol risk 
through alcohol-specific biobehavioral pathways rather than more 
general alcohol use vulnerability. Although most existing interventions 
targeting sleep in the context of AUD focus on relapse prevention among 
individuals already diagnosed with the disorder (cf. meta-analysis by 
Miller et al., 2017), the present findings highlight the need for early, 
targeted prevention strategies. Specifically, adults presenting with 
chronic sleep disturbances and anxiety symptoms, particularly those 
with evening chronotypes or misaligned sleep-wake patterns, may 
represent a high-risk subgroup for whom brief, tailored interventions 
could be particularly impactful. Behavioral sleep interventions that 
incorporate biofeedback (Penzlin et al., 2015), progressive muscle 
relaxation (Murphy et al., 2019), and sleep restriction (Geoffroy et al., 
2020) may be adapted to concurrently address anxiety-related hyper
arousal and alcohol expectancies related to sleep (e.g., using alcohol as a 
sedative). It might simultaneously improve sleep and decrease AUD risk 
in the long run. Delivering these interventions via digital health plat
forms or just-in-time adaptive interventions (Zainal et al., 2025) could 
enhance accessibility and support the real-time use of skills in daily life. 
Embedding such approaches into primary care or behavioral health 
screening settings, before the emergence of full-syndrome AUD, offers a 
promising public health strategy (Williamson et al., 2022). Overall, 
findings may support a shift toward proactively addressing sleep-anxiety 
dysregulation as a modifiable pathway for AUD prevention rather than 
solely as a maintenance factor in those already in treatment.

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.jad.2025.120035.
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