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Abstract 

Measurement of aging is critical to understanding its causes and developing inter-

ventions, but little consensus exists on what components such measurements should 

include or how they perform in predicting mortality. The aim of this study was to iden-

tify factors of aging among a comprehensive set of indicators, and to evaluate their 

relative performance in predicting mortality. Measurements on 34 clinical, survey, and 

neuroimaging variables, along with epigenetic age markers, were obtained from two 

waves (2004–2021) of the Midlife in the United States (MIDUS) study. Mortality data 

was also available on 11875 participants, including 1908 twins. Factor analyses were 

used to identify aging factors, and these were used to predict mortality as of 2022. 

Twin data were used to model predictors of mortality within families. Factor analyses 

identified 9 major dimensions of aging: frailty, cognition, adiposity, glucose, blood 

pressure, inflammation, lipids, adaptive functioning, and neurological functioning. The 

strongest predictors of survival among the aging dimensions were cognition, adap-

tive functioning, and inflammation, and among the epigenetic markers, the decline-

predictive markers (GrimAge and DunedinPACE). When entered in joint prediction 

models, cognition remained a significant predictor of mortality, but the epigenetic 

markers did not. Cognition, adaptive functioning, and inflammation remained sig-

nificant predictors of mortality within twin pairs as well. Aging is a multidimensional 

construct, with cognition, adaptive functioning, and inflammation being the strongest 

predictors of survival among the aging dimensions examined. Their association with 

mortality is observed within families, suggesting that early developmental factors can-

not entirely account for their association with survival. Interventions and assessments 

should prioritize cognition in measures of aging quality, along with adaptive function-

ing and inflammation.
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Introduction

Characterizing the aging process and its relationship with an endpoint in mortality 
is critically important, especially with populations increasing in age worldwide [1]. 
Various markers have been proposed as indices of quality and rate of aging, but how 
these markers are empirically organized into aging factors is poorly understood, and 
there is substantial disagreement about what constitutes the aging process, in terms 
of its essential features, its causes, and how it should be measured [2]. Relatedly, 
many widely used aging markers (such as epigenetic aging markers) were developed 
with aging conceptualized as a single dimension of biological or chronological age 
[3–5]. However, it is possible, if not likely, that aging is characterized differently in dif-
ferent individuals, and that different biological, behavioral, and health-related markers 
of aging might relate differently across various dimensions of aging.

Another key question is when in the lifespan aging markers first come to be asso-
ciated with accelerated age and mortality. Early environmental factors, for instance, 
have been linked to accelerated aging later in life [6], as have genetic factors [7]. 
Delineating when the relationship between aging markers and later mortality first 
manifests is important for understanding etiology and designing interventions, both 
in terms of determining the optimal timing for intervention and highlighting specific 
processes to target.

Here, we aimed to identify the empirical structure of markers that have been used 
as, or proposed for, general aging markers, to guide future research on aging pro-
cesses, to examine their relationships with epigenetic markers of aging, and to examine 
their ability to predict mortality in a longitudinal epidemiological US sample containing 
a unique breadth of survey, clinical, and biological measures of aging. We also exam-
ined associations between aging markers and mortality within twin pairs to distinguish 
between associations stemming from genetic or environmental factors shared within 
families from those unique to individuals, which often emerge later in life.

Methods

Sample and design

Participants were those from the Midlife Development in the United States (MIDUS) 
study with mortality data as of 2022 (N = 11875). Analyses focused on two waves of 
data collection in which biological and clinical data were collected: Waves 2 and 3 of 
the MIDUS Core sample, and Wave 1 of the Refresher cohort, which was designed 
to replicate the Core sample in a new cohort. For the purposes of the current anal-
yses, the Wave 3 Core and Wave 1 Refresher cohort were combined, as they were 
collected in overlapping years (2013–2021 and 2011–2015, respectively), were 
more proximal to the time of the mortality data collection, and had similar variables 
available that were not available in the Core Wave 2 collection (e.g., certain balance 
measures and neurobiological variables). Throughout this manuscript, the Core 2 
wave and the combined Core 3 and Refresher wave, are referred to as Time 1 and 
Time 2 respectively.

Participants also included 1908 twins — 715 monozygotic (MZ) twins and 1193 
dizygotic (DZ) twins, with 874 complete pairs, 341 MZ pairs, and 533 DZ pairs. 
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Characteristics of the overall sample are presented in Table S1 in S1 File; Details regarding MIDUS are also available at 
the MIDUS website and in other publications (https://www.midus.wisc.edu).

Selection and factor analysis of aging variables

Aging variables were selected because they have appeared in previous papers on the structure of aging indicators [8–11], 
they have been used as indicators of general aging [3], or they have been recommended as aging indicators in the review 
or protocol literature [12,13]. Four variables were available during Time 2 that were not available at Time 1: two measures 
of balance (Romberg sway path area and path length), hearing acuity, and a measure of brain age [14]. Further details 
regarding the measures are described in the supplement.

Variables were modeled using exploratory factor analysis (EFA) with full information maximum likelihood (FIML) estima-
tion for the full set of indicators, followed by confirmatory factor analysis (CFA) to examine the fit of aging models used to 
construct factor indicators as used in predictive models. Structural models were fit to data from both waves and replicabil-
ity across waves was used as a criterion for model and indicator retention.

Epigenetic aging markers

Fasting blood draws were obtained from the MIDUS Core sample from 2004 to 2009 and from the MIDUS Refresher sam-
ple from 2012 to 2016. Whole blood samples were collected using a BD Vacutainer Tube with EDTA anticoagulant and 
frozen in storage. In 2019, DNA methylation profiling was conducted on the whole blood DNA samples from both the Core 
and Refresher samples. After DNA was tested for suitable yield and integrity, it was subjected to genome-wide methylation 
profiling using Illumina Methylation EPIC microarrays. The resulting beta values were noob-normalized to control for tech-
nical sources of variance, registered onto the list of CpG sites assayed on the Illumina Methylation 450K microarray, and 
screened using standard quality control metrics. Raw methylation data was used to score the following markers: Horvath 
[4], Hannum [5], PhenoAge [15], GrimAge Version 2 [16], and DunedinPACE epigenetic pace of aging markers [3]. The 
first two markers, sometimes referred to as first generation markers, were developed by identifying methylation sites pre-
dictive of chronological age; the second set of two, sometimes referred to as second generation markers, were developed 
using sites predictive of health and mortality variables; DunedinPACE, sometimes referred to as a second or third genera-
tion marker, was developed via methylation sites predictive of aging-related health decline. Epigenetic age acceleration by 
extension is defined as the residual of an individual’s value on an aging marker from their predicted chronological age. In 
addition, we examined State and Decline factors as summaries of the markers, with the first three epigenetic age acceler-
ation (EAA) markers being used to construct a state factor score (i.e., Thurstone regression score), and the others being 
used to construct a decline score, reflecting declining health including its extreme form in death [17]. More information on 
the collection and the derivation of epigenetic variables in MIDUS is available in the data documentation on the MIDUS 
Colectica Portal (https://midus.colectica.org/).

Mortality and its prediction

Aging factor indicators identified in the first step were used together with EAA markers to predict mortality. Survival 
was predicted using logistic regression [18], with survival status at 2022 as a binary outcome variable (coded such 
that survival = 1 and mortality = 0). Cox proportional hazard models were also attempted, but these did not always 
converge in estimation and were not available in the software for use in within-twin-pair models. Two sets of predic-
tive analyses were conducted, one using all available data with twin family treated as random effect; another set of 
analyses were conducted only using twins, modeling within-pair effects in a mixed effect model. In prediction models, 
all variables were adjusted for chronological age, sex, ethnicity, and cohort. Estimation was completed using maxi-
mum likelihood with full information treatment of missingness, with robust information matrices and standard errors, in 
Mplus 8.10.

https://www.midus.wisc.edu
https://midus.colectica.org/
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Results

Factor analyses of aging variables

Parallel analyses (using the 95th percentile of random eigenvalues as a threshold) suggested a best-fitting model with 10 
factors for Time 1 and 11 factors for Time 2. In the 11-factor EFA models (Tables S12-S13 in S1 File), 9 of the factors rep-
licated across waves: frailty, memory, executive function, adaptive function, adiposity, glucose, blood pressure, lipids, and 
inflammation. The factors unique to each wave included single measures and another factor: BMI and perceived health at 
Time 1, and brain age and vestibular function, which were not measured at Time 1, at Time 2. The 11-factor replicated fac-
tors were also present in the 10-factor model estimates (Tables S10-S11 in S1 File), with the exception of perceived health 
at Time 1 and lipids at Time 2. Given the closely related content of the cognitive factors, models with fewer factors were 
also fit (Tables S2-S9 in S1 File). In these factors the vestibular and neurological markers, and the memory and executive 
function factors, merged to form superordinate neurological function and cognitive factors.

Given the replicability of the factors across waves and models, the close relationships between the neurological and 
cognitive subfactors, the parallel analysis results, and to avoid single-indicator factors, an 8/9-factor model (9 with one 
factor not represented at Time 1) was fit using CFA. This model included factors reflecting frailty (or reversed as strength; 
with indicators including grip strength, peak flow, bone mineral density, and waist-hip ratio), cognition (BTACT), adipos-
ity (BMI, percent lean mass, CRP), blood glucose (fasting glucose and HbA1c), blood pressure (systolic and diastolic), 
inflammation (IL8, IL10, and TNF), blood lipids (total cholesterol and triglycerides), adaptive functioning (ADL score, chair 
stand task, timed walk task, and self-rated health), and neurological functioning (Cole brain age, hearing acuity, and 
Romberg balance). This model fit acceptably (Table S14 in S1 File), and better than a model with a single aging factor. A 
bifactor model with 9 specific factors and a superordinate general aging factor fit better, but in that model, cognitive mea-
sures were split again into working memory and memory components across the general and specific factors, respectively 
(Table S14 in S1 File); a model with that split but no superordinate factor fit best, raising questions about the nature of the 
general factor in the bifactor model (Table S15 in S1 File). We ultimately chose to use the 8/9 factor model for predictive 
analyses for two reasons: first, because the 9/10-factor model differed from the 8/9-factor model only in splitting indicators 
from the same measure into two subfactors, with the possibility of one (working memory, with its two indicators coming 
from the same subtest) reflecting a test method effect; and second, because of interpretive ambiguities about the nature 
of the general factor in the bifactor model. For predictive models, sum scores corresponding to each of the factors were 
created by summing centered and scaled markers of each factor; sum scores were used rather than other factor score 
estimates to minimize correlations due to cross-loadings, and to minimize error due to factor loading estimation error 
[19,20].

Mortality prediction and associations with epigenetic markers

Overall sample.  Regression results for the overall sample, predicting survival, are presented in Tables 1-2. The 
strongest predictions of survival across the two waves were cognition (β = 0.09 and 0.23 at T1 and T2), inflammation 
(β = −0.09 and −0.46), and adaptive functioning (β = −0.20 and −0.27), which were significantly predictive of survival at 
both time points, as well as on average (β = 0.14, −0.24, and −0.24, respectively). Strength was significantly predictive 
at both time points, but the average across timepoints was not significant. Blood glucose was significantly predictive 
only at T1.

Among the epigenetic age acceleration variables, all predictors were significantly predictive of survival except the 
Horvath and Hannum markers. The two decline markers, GrimAge and DunedinPACE, were more strongly predictive of 
survival than PhenoAge, and the difference between the state and decline markers was reflected in the respective factors, 
where the decline factor was significantly predictive of survival but the state factor was not (survival curves are illustrated 
in Fig 1 for the two epigenetic age acceleration factors and cognition and adaptive functioning).



PLOS One | https://doi.org/10.1371/journal.pone.0324156  June 18, 2025 5 / 10

Table 1.  Prediction of Survival from Aging Factors: Overall Sample.

N* R2 β se(β) p q

Mean

  Strength 684 0.00 −0.06 0.08 0.40 0.46

  Cognition 988 0.02 0.14 0.05 < 0.001 0.01

  Adiposity 1063 0.00 −0.01 0.05 0.80 0.80

  Blood Glucose 678 0.02 −0.13 0.06 < 0.001 0.01

  Blood Pressure 686 0.02 0.13 0.09 0.25 0.33

  Inflammation 677 0.06 −0.24 0.10 < 0.001 < 0.001

  Blood lipids 677 0.02 0.14 0.10 0.22 0.33

  Adaptive Functioning (-) 1130 0.06 −0.24 0.04 < 0.001 < 0.001

T1

  Strength 1253 0.01 0.12 0.04 < 0.001 0.01

  Cognition 1152 0.01 0.09 0.04 0.02 0.04

  Adiposity 1255 0.00 −0.05 0.04 0.21 0.28

  Blood Glucose 1242 0.01 −0.08 0.03 < 0.001 < 0.001

  Blood Pressure 1253 0.00 −0.02 0.04 0.57 0.65

  Inflammation 1240 0.01 −0.09 0.04 0.01 0.02

  Blood lipids 1243 0.00 −0.01 0.05 0.85 0.85

  Adaptive Functioning (-) 1255 0.04 −0.20 0.04 < 0.001 < 0.001

T2

  Strength 1422 0.04 0.20 0.08 0.02 0.03

  Cognition 1774 0.06 0.23 0.04 < 0.001 < 0.001

  Adiposity 1804 0.00 0.01 0.05 0.93 0.93

  Blood Glucose 1415 0.00 −0.03 0.05 0.42 0.54

  Blood Pressure 1428 0.01 0.09 0.08 0.27 0.40

  Inflammation 1415 0.21 −0.46 0.11 < 0.001 < 0.001

  Blood lipids 1414 0.00 −0.01 0.07 0.79 0.89

  Adaptive Functioning (-) 1871 0.07 −0.27 0.04 < 0.001 < 0.001

  Neurological Functioning 495 0.01 −0.09 0.08 0.01 0.01

Values are sample size for the predictor values (N*; note that the N for the outcome variable is 11875 in all cases), R2, standardized slope (β), standard 
error of the slope, p-value, and q-value.

https://doi.org/10.1371/journal.pone.0324156.t001

Table 2.  Prediction of Survival from Epigenetic Variables: Overall Sample.

N* R2 β se(β) p q

Horvath 1200 0.00 0.00 0.07 > 0.99 >0.99

Hannum 1200 0.00 −0.05 0.06 0.32 0.45

PhenoAge 1200 0.02 −0.12 0.05 0.01 0.02

GrimAge 1199 0.07 −0.26 0.04 < 0.001 < 0.001

DunedinPACE 1200 0.08 −0.29 0.04 < 0.001 < 0.001

State Factor 1199 0.00 −0.04 0.07 0.52 0.61

Decline Factor 1199 0.08 −0.29 0.04 < 0.001 < 0.001

Values are sampl\e size for the predictor values (N*; note that the N for the outcome variable is 11875 in all cases), R2, standardized slope (β), standard 
error of the slope, p-value, and q-value.

https://doi.org/10.1371/journal.pone.0324156.t002

https://doi.org/10.1371/journal.pone.0324156.t001
https://doi.org/10.1371/journal.pone.0324156.t002
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Correlations between the aging factors and epigenetic markers are given in Table S16 in S1 File. Cognition and adap-
tive functioning were both significantly correlated with GrimAge and DunedinPACE at both waves (r = −0.107 to −0.148 
for cognition, and 0.157 to 0.185 for adaptive functioning), adiposity was correlated with DunedinPACE and PhenoAge 
at both waves (r = 0.163 to 0.315), inflammation was correlated with Hannum and PhenoAge at both waves (r = 0.054 
to 0.097), and blood glucose was correlated with DunedinPACE at both waves (r = 0.066 and 0.136). Other correlations 
between aging factors and epigenetic markers did not replicate across waves.

The relative ability of the aging factors and epigenetic markers to predict mortality was examined by including the 
aging factors and epigenetic markers that significantly predicted mortality at both T1 and T2 (strength, cognition, adaptive 
functioning, inflammation, PhenoAge, GrimAge, and DunedinPACE) together in a prediction model (Table 3). Cognition 
predicted survival at both waves (β = −0.24 and 0.29; i.e., improvements in cognition predicted greater probability of sur-
vival) and adaptive functioning predicted survival at T2 (β = −0.13), although this did not remain statistically significant after 
correction for multiple testing. Strength did not significantly predict survival in the presence of the other predictors, nor did 
any of the epigenetic markers.

Within Pairs.  Results of the within-pair analyses are given in Tables S17-S19 in S1 File. Among the aging predictors, 
cognition and adaptive functioning significantly predicted survival at T2 but not at T1 or on average, although these did not 
survive multiple correction. Mean inflammation across the time points significantly predicted survival, although again this 
did not survive multiple correction. Among the epigenetic markers, GrimAge was the only marker significantly predicting 
survival within pairs.

When strength, cognition, inflammation, and adaptive functioning were included in a predictive model together with 
the decline epigenetic markers and PhenoAge, cognition, adaptive functioning, and inflammation significantly predicted 

Fig 1.  Survival probability as a function of age and predictors (aging factors and epigenetic markers). Survival curve gradients are shown for 
cognition, adaptive functioning, inflammation, and epigenetic age acceleration state-predictive factor and decline-predictive factor in the overall sample, 
moving from left to right and top to bottom. Gradients are shown with regard to the standardized predictor value averaged over the two waves.

https://doi.org/10.1371/journal.pone.0324156.g001

https://doi.org/10.1371/journal.pone.0324156.g001
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survival at T2, and strength was significantly predictive of survival at T1. None of the epigenetic aging markers were pre-
dictive of survival within pairs.

Discussion

Nine empirical dimensions of aging were identified here: frailty, cognition, adiposity, blood glucose, blood pressure, inflam-
mation, blood lipids, adaptive functioning, and neurological functioning. Although these dimensions are not exhaustive of 
phenomena influencing or impacted by the aging process, nor of factors that might be identified from other phenomena 
not included here, they represent major features of aging as currently represented in commonly used and recommended 
aging markers. These results provide targets for future aging process research, and a common framework for conceptual-
izing aging processes.

Among the aging factors, cognition was the most strongly and consistently predictive of mortality, with adaptive func-
tioning and inflammation also being strongly predictive, and glucose and strength being predictive but less consistently. 
Among epigenetic markers, the two later-generation, decline-predictive markers, GrimAge and DunedinPace, were most 
predictive of mortality, especially GrimAge. Patterns of association among the aging factors and epigenetic markers were 
also generally internally consistent in their associations with each other, in that the aging factors most predictive of mortal-
ity were also most strongly associated with the epigenetic markers most strongly associated with mortality.

Results point to the importance of cognition in measurement of aging, along with adaptive functioning and inflamma-
tion. In simultaneous predictive models, the aging factors, especially cognition, remained significant in predicting mortal-
ity, but the epigenetic factors diminished in predictive importance. One interpretation is that the epigenetic markers are 
partially redundant with the cognitive measures for predicting aging and mortality risk, that they reflect aging and mortality 
risk less informatively, or that they represent a subset of processes comprised by the latter. Previous analyses of data 
from this study [21] have demonstrated the utility of cognition in predicting mortality. Our analyses extend those results by 
providing information on their associations with epigenetic markers, and showing that in comparative predictive models, 
cognition significantly outperforms other aging indices in predicting mortality. Our results also suggest that this predictive 
association cannot entirely be attributed to factors operating within families of origin.

Table 3.  Prediction of Survival from Aging Factors and Epigenetic Variables: Overall Sample.

N* β se(β) p q

T1

  Strength 1253 0.03 0.08 0.68 0.75

  Cognition 1152 −0.24 0.06 < 0.001 < 0.001

  Adaptive Functioning (-) 1255 −0.03 0.05 0.53 0.64

  Inflammation 1240 0.00 0.05 0.94 0.94

T2

  Strength 1422 0.11 0.11 0.33 0.46

  Cognition 1774 0.29 0.07 < 0.001 < 0.001

  Adaptive Functioning (-) 1871 −0.13 0.06 0.02 0.07

  Inflammation 1415 −0.33 0.19 0.08 0.21

Epigenetic Markers

  PhenoAge 1200 0.06 0.06 0.29 0.45

  GrimAge 1199 −0.10 0.06 0.10 0.22

  DunedinPACE 1200 −0.08 0.07 0.24 0.45

Values are sample size for the predictor values (N*; note that the N for the outcome variable is 11875 in all cases), R2, standardized slope (β), standard 
error of the slope, p-value, and q-value.

https://doi.org/10.1371/journal.pone.0324156.t003

https://doi.org/10.1371/journal.pone.0324156.t003
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The finding that variables such as inflammation or strength did not significantly predict survival consistently after adjust-
ing for variables such as cognition and adaptive functioning may be unexpected, given previous evidence linking them to 
mortality risk in older adults [22,23]. One possibility is that variation in these factors becomes more important to prediction 
in later life, when cumulative health burdens intensify in relevance. It is also possible that the predictive information pro-
vided by strength measures is also captured by cognition or adaptive functioning indicators more comprehensively or in a 
way that is functionally more commensurate with mortality risk. Future studies might explore whether the predictive validity 
of such biomarkers emerges more consistently in older samples or with repeated measures extending into late adulthood.

Analyses of effects within twin pairs suggest that the predictive power of the aging markers and epigenetic markers 
does not entirely reflect early developmental processes, at least as they occur in families of origin, as many of the effects 
replicated within twin pairs. At the same time, results point to the possibility that some aging measures might differ in 
the extent to which their associations with mortality reflect early versus later life effects. DunedinPACE and GrimAge, for 
example, both predicted mortality in the overall sample, but the former was less consistently associated with mortality 
within twin pairs, suggesting some of its association with mortality might reflect family-of-origin effects, including genetic or 
environmental effects shared by siblings who were raised in the same home.

An important direction for future research involves the delineation of specific causal pathways between antecedent 
factors, adult aging processes, and mortality. Previous research in MIDUS, for example, has illustrated the importance of 
stress and allostatic load in predicting aging and mortality [24–26]. These pathways likely include lifestyle behaviors such 
as substance use as well [26]. More careful delineation of the causal sequencing of environmental, genetic, and epigene-
tic variables, and possible dynamic systems pathways of behavior and health processes, is needed to better understand 
when and how to intervene to improve healthy aging and prevent mortality.

The current study was limited in the number of time points that some of the variables were observed, which precluded 
more detailed longitudinal modeling of relationships between them. For instance, observing the epigenetic variables at 
multiple time points in parallel with the aging markers might have afforded modeling of lagged relationships between 
them. Similarly, observation of the aging measures at more than two times would help characterize how change patterns 
in these variables relate to outcomes over time. Although the MIDUS study is reasonably representative of the US pop-
ulation, replication in other samples is needed, to verify the findings presented herein but also to generalize conclusions 
to other populations. Finally, larger samples are needed to better characterize the sources of within-family variance that 
might be responsible for the patterns of observed results, and to better disentangle longitudinal from cohort and other 
effects.

Overall, however, results presented here point to the importance of cognition among markers of aging and predictors of 
mortality, along with adaptive functioning and inflammation. These markers reliably predict mortality, especially cognition, 
and are themselves predicted by the two epigenetic markers that predicted mortality in our models.

Supporting information

S1 File.  Supplement. 
(PDF)
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