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A scaling law to model the effectiveness of
identification techniques

Luc Rocher 1,2,3 , Julien M. Hendrickx2,5 & Yves-Alexandre de Montjoye3,4,5

AI techniques are increasingly being used to identify individuals both offline
andonline. However, quantifying their effectiveness at scale and, by extension,
the risks they pose remains a significant challenge. Here, we propose a two-
parameter Bayesian model for exact matching techniques and derive an ana-
lytical expression for correctness (κ), the fraction of people accurately iden-
tified in a population. We then generalize the model to forecast how κ scales
from small-scale experiments to the real world, for exact, sparse, andmachine
learning-based robust identification techniques. Despite having only two
degrees of freedom, our method closely fits 476 correctness curves and
strongly outperforms curve-fitting methods and entropy-based rules of
thumb. Our work provides a principled framework for forecasting the privacy
risks posed by identification techniques, while also supporting independent
accountability efforts for AI-based biometric systems.

Anonymity is an essential property of democratic life that underpins
freedomof expression anddigital rights. Anonymity appearsnaturally,
in the absence of identification, surveillance, or traceability in mass
societies1. Natural expectations of anonymity have been recognized by
regulators and legal scholars, and anchored by legal tests2. Anonymity
can also be defined normatively as a process that “obliterates the link
between data and a specific person” according to Barocas and
Nissenbaum3. In this case, anonymity appears by design: it is e.g. built
into data processing systems such as the private network Tor4 and
COVID-19 contact-tracing apps5–7, or results from de-identification
methods8.

Advances in computational power and machine learning are,
however, progressively challenging both natural and normative con-
ceptions of anonymity. Identification techniques—matching indivi-
duals across digital traces—can be broadly divided into three
categories: ‘exact’, ‘sparse’, and ‘robust’ matching. Exact matching
dates back to 19569 and was made famous by Latanya Sweeney’s re-
identification of the Governor of Massachusetts’s medical data in
199710 from his ZIP code, gender, and date of birth. Exact matching
refers to the process of identifying a known individual in an anon-
ymized dataset using known quasi-identifiers, e.g., a few pieces of

demographics10–12. Exact matching has since been applied broadly to
identify online users from, e.g., web browser fingerprints13) and cryp-
tocurrency transactions14). Sparse matching was then proposed ten
years ago to extendexactmatching to sparse ‘set-valued’datasets,with
each record including a large set of points, e.g. all the goods purchased
or locations visited by an individual. Research on ‘unicity’ in 2013
showed that a few points are enough to identify individuals in set-
valued data15. Sparse matching has since been used to identify users
from credit card transactions16, mobile phone apps17,18, or web brows-
inghistory19. Finally, recent advances indeep learninghave accelerated
the development of ‘robust’ matching techniques. Robust matching
includes methods that identify an individual from noisy or approx-
imate information, e.g., by learning similaritymetrics fromgeolocation
data20,21 or human faces22. It also includes profiling techniques, e.g.,
capable of handling distributional shifts in datasets across time23 and
allowing them to learn how people write24, communicate25, or speak26,
in order to identify them.

Measuring the performance of an identification technique in the
real world is, however, surprisingly difficult. While identification
techniques are often tested in small-scale benchmarks, identifiability is
known to decreasemonotonically with the ‘gallery size’, the number of
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individuals against which a target is compared to, as erroneous mat-
ches become more prevalent. Intuitively, it is e.g. much easier to
identify someone amongst pictures of five people than pictures of a
million people. The speed and shape with which erroneous matches
appear depend on a number of factors, related to the identification
technique and the underlying data on which it is trained and evaluated
on, so far hard to predict. Some identification techniques, e.g., those
relying on geolocation traces or images, have been shown to scale to
large populations27,28 while others, e.g., relying on writing style or
smartphone app usage17,18,29, have not.

WeproposeaBayesianmodel toestimatehowtheperformanceof a
specific identification technique, tested on a set of auxiliary information
known by an attacker, scales with the gallery size (n). We focus first on
exact matching with discrete tabular data, where the gallery can be
partitioned into anonymity sets30 of records with same quasi-identifiers.
This partitioning encodes all the information required to calculate the
correctness κ(n), the fraction of individuals accurately matched in the
gallery (e.g., if four records share the same demographics, they would
formone setwhere eachhas 25%probability of being correctly identified
using thosedemographics).Wemodel anonymity set sizes asPitman-Yor
processes and derive an analytical expression for κ(n) using two para-
meters, the entropy (h) and tail complexity (γ).Wevalidate thismodel on
exact matching identification with 400 galleries, selected by sampling
sets of quasi-identifiers from real-world datasets (census, survey, web
fingerprints) and synthetic datasets (geometric, Poisson, and Zipf dis-
tributions). For each gallery, we calculate frequency data of anonymity
sets and estimate the maximum a posteriori (MAP) values for h and γ.
From h, γ, and n, we estimate κ(n) with the model reaching a low RMSE
error of 1.7 percentage points (p.p.).

Fromour generalmodel,we thenderivea functional formfor κ(n),
which can be used as a general scaling law to forecast the correctness
of exact, sparse, and robust matching. For instance, knowing that
κ =0.99 for n = 100 and κ =0.80 for n = 1k, this allowsus to ‘extrapolate
the curve’ and forecast that κ ≈0.21 for n = 10k.We validate this scaling
law on 476 correctness curves from exact, sparse, and robust match-
ing, achieving a low RMSE of 5.1 p.p. when forecasting the correctness
in galleries ten times larger. We compare this approach to ad-hoc
curve-fitting methods and rules of thumb, e.g. fitting κ(n) to a poly-
nomial function, an exponential decay, or a log-linearmodel, and show
that these methods all result in large over- or under-estimations.

Accurately estimating if an identification that was successful in a
small gallerywill have low,moderate, or high accuracy in amuch larger
gallery is key to better evaluating these technologies. Firstly, with only
access to a small-scale sample, researchers can now predict howmany
people would likely be re-identified in a large gallery without having to
collect further data. Secondly, researchers can now use the scaling law
to compare the reported performance of different identification
techniques, often each validated on their own unique datasets with
potentially different gallery sizes. Finally, they can also use it to com-
pare different sets of auxiliary information (e.g. demographic infor-
mation with admission dates to an hospital versus a noisy version with
approximate dates) on the same probabilistic matching technique, to
compare their applicability.

We see our method as a new tool to evaluate how successful an
identification attempt can be in practice, helping not onlymeasure the
risk of re-identication in data release but also support evaluations of
robust behavioral identification being deployed in high-risk settings31

such as in hospitals32,33, humanitarian aid delivery34, or border
control32,35. The scaling law can help test if identification techniques in
high-risk settings are accurate enough at scale and in non-adversarial
settings for the conditions in which they will be deployed.

Results
We consider a study evaluating the performance of an identification
technique. The studymeasures a standard privacy and biometrics task

called ‘closed-set identification’ (also called 1:N recognition or match-
ing), of whichwe adopt the terminology. In this task, an adversary aims
tomatch an unidentified ‘probe’ (a target individual’s record) against a
gallery of potential candidates, by comparing extracted features called
‘auxiliary information’ in the privacy literature (or ‘feature vector’ in
biometrics). The study reports a metric termed correctness (κ),
representing the average success rate of matching36. This metric is
calculated by iteratively selecting each record in the gallery, assuming
it to be the probe, and testing if the identification succeeds. Our
objective is to forecast the correctness of this identification technique
on a larger population of n0 records.

To define κ formally, we initially restrict ourselves to exact
matching attacks. We denote by G = fxlgnl = 1 the gallery of n enrolled
records. Each recordx∈G is a vector, fromwhichauxiliary information
ϕ(x) can be extracted. Each record x belongs to an anonymity
set37–39SðxÞ= fy 2 GjϕðyÞ=ϕðxÞg, an equivalence class of records shar-
ing the same auxiliary information. The larger the anonymity set, the
harder is it to correctly match records in that set. The correctness κ
measures the probability that a probe x matched using auxiliary
information ϕ(x) is assigned its correct identity in its anonymity set36:
κ = 1

n

Pn
l = 1jSðxlÞj�1. For instance, in a gallery of three records sharing

the same auxiliary information (a single anonymity set of size three),
each would have one chance out of three (κ = 1/3) to be correctly
identified based onϕ( ⋅ ). Conversely, if each record has its ownunique
auxiliary information, each would always be correctly identified (κ = 1).

Modeling auxiliary information and identifiability
Ourmodel assumes that each record x∈G is drawn i.i.d. according to a
distribution X and ϕðxÞ 2 N is an integer encoding the anonymity set
of x. The expected correctness κ is entirely determined by the dis-
tribution of anonymity set sizes. We denote by π = fπigi≥ 1 the family of
random frequencies of anonymity sets, with πi≥0 and ∑i≥1πi = 1. Here,
πϕ(x) represents the probability to draw the anonymity set of the
record x. Formally, κ can be expressed as:

κðnÞ=
X1
i= 1

πi
1� 1� πi

� �n
nπi

" #
ð1Þ

We propose a general Bayesian approach based on Pitman-Yor
processes to model the random frequencies π and the correctness κ.
The Pitman-Yor process, a generalization of the Dirichlet process, is a
flexible two-parameterdistribution over discrete distributions. Pitman-
Yor processes have been used to study how online social networks
grow40, count object frequencies for image segmentation41, build
species sampling models in ecology42, and can model a wide range of
discrete distributions including heavy-tail discrete distributions. A
Pitman-Yor process induces an ‘exchangeable partition’43 of arbitrary
size. This is particularly useful here to model the frequencies of
anonymity sets, since the ordering of anonymity sets does not matter.
Pitman-Yor processes are governed by two parameters, a discount
parameter d ∈ [0, 1] and a concentration parameter α ∈ [ − d, + ∞].

We derive the Pitman-Yor Correctness (PYC) model by setting a
Pitman-Yor prior for the frequencies of anonymity sets π ~ PY(d, α). We
reparametrize the prior to introduce the information content of the
distribution π to model independently h, the expected Shannon
entropy, and γ, the tail complexity (see eq. (2)):

h = E HðπÞ jd,α� �
=ψ0ðα + 1Þ � ψ0ð1� dÞ

γ = ψ0ð1Þ�ψ0ð1�dÞ
ψ0ðα + 1Þ�ψ0ð1�dÞ

(
ð2Þ

withψ0 the digamma function44 (SI Section S2.2).While hmeasures the
average uncertainty over all possible auxiliary information known by
an adversary, γ measures the heaviness of the tail (the higher γ is, the
heavier the tail of anonymity set sizes). See Discussion for an analysis
of the impact of h and γ on the correctness.
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We derive an analytical expression for the expected correctness
using only h, γ, and the population size n by integrating on the infinite-
dimensional simplex from eq. (1) (proof in SI Section S2.2):

E κðnÞ jh, γ� �
=

v� 1
nðu� 1Þ

Γðn� u+ vÞ Γðv� 1Þ
Γðn� 1 + vÞ Γðv� uÞ � 1

� �
with

u=ψ0
�1ðψ0ð1Þ � hγÞ

v =ψ0
�1ðψ0ð1Þ +h� hγÞ

( ð3Þ

with Γ the standard gamma (factorial) function44.
Importantly, our approach does not assume a particular para-

metric form for the frequencies π of anonymity sets, nor prior
knowledge on the support size45.

Model specification of PYC on empirical frequencies
We first validate the specification of the PYCmodel, by testing that (a)
the Pitman-Yor process fits well typical frequencies of anonymity sets
and (b) the PYC accurately predicts the correctness when fitted on
empirical frequency data. Building uponpreviouswork in statistics45,46,
we propose a fast and scalable method to obtain the maximum
a-posteriori (MAP) estimates of h and γ from the empirical frequency
distribution of anonymity sets (SI Section S2.3). These estimates can
then be used to evaluate the equation (3).

We collect five corpora from publicly available sources (detailed
description in SI Section S1.1): population census (USA47, ADULT48),
survey (HDV49, MIDUS50), and web browser fingerprinting (WEB13,51).
We create 250 datasets by selecting 50 subsets of attributes (columns)
uniformly from every corpus, each with one unique set of auxiliary
information ϕ( ⋅ ) which would be used by an attacker to perform an
exact matching attack. We also create 150 synthetic data collections
from Geometric (GEOM), Poisson (POISSON), and Zipf’s law distribu-
tions (ZIPF). These distributions—traditionally used to model human
data—capture a larger range of information content (h) and heaviness
(γ). This allows us to validate suitability of themodel and effectiveness
of the fitting procedure across a broader range of scenarios, com-
plementary to the real data collections.

The PYC model accurately estimates the correctness across data
collections and population sizes, both for empirical data and synthetic
data (Fig. 1a). Over all 400 studied datasets, we obtain a low bias of
+ 1.3 percentage points (p.p.) and a high accuracy with an RMSE of 1.7
p.p. (see Table S1). We hypothesize this small bias to be due to the
choice of an informative PYP prior, in line with the literature45. Such
informative prior could indeed weight less on strongly heavy-tailed
distributions, leading in this case to a small positive bias for synthetic
data and a small negative bias for empirical data.

This accurate prediction of κ stems from a flexible model speci-
fication of the population. In Fig. 1b–i, we compare the empirical fit
between the empirical frequency distribution and expected fre-
quencies from the (h*, γ*)MAPestimates for 8 specific datasets (5 real in
orange and 3 synthetic in blue) each coming from a different corpus.
Across datasets, they exhibit a good approximation of the empirical
distribution, even for widely different forms of the random fre-
quencies π such as exponential (Fig. 1g) and heavy (Fig. 1i) tails. The
same is true across corpora with an average Kullback–Leibler (KL)
divergence52 (DKLðbπ k πÞ) of 4.14 ± 7.55 bits (see Table S2).

Finally, Fig. 1b–i (inset) show how–once fitted to the empirical
frequency data–the PYC model is able to correctly infer the correct-
ness κ across a wide range of subsampled population sizes from 1 to n.
The eight panels also show that the correctness curve can take a wide
range of decaying shapes, that our model captures well in each case.
This accurate inference across population sizes suggests that the PYC
model should bewell suited to forecast κ at larger population sizen0≫n
(see next section).

Evaluating the success of exact, sparse, and robust matching
from measurement data
The formal PYC model of identifiability is theoretically limited to exact
matching, assuming that each individual is represented by a unique
auxiliary informationϕ(x) thatnever changesover time.This assumption
would be violated in sparse matching attacks, where an adversary can,
e.g., aim to identify Alice in an anonymousmobility dataset from any set
of p = 4 random locations she posted online. The correctness of sparse
matching measures an average accuracy of identification across all
potential sets of p points known by an attacker (all equally likely to be
selected in this threat model). In our example, some locations are more
frequent than others and some sets of points p are more frequent than
others. The joint distribution of p points is thus not equivalent when
selecting different sets of p points. Similarly, the assumption would be
violated in a robust matching attack where an adversary uses a machine
learning model to identify Alice in a medical imaging dataset, with a
different X-ray taken days or months later.

We however believe that, despite the lack of theoretical guaran-
tees, the PYC model captures the correctness of sparse and robust
matching techniques, even if the auxiliary data is not necessarily fixed
and discrete. The PYC model associates each individual in the popu-
lation with a unique set of auxiliary information (ϕ(x)). The main dif-
ference between exact and sparse matching techniques lies in the
auxiliary information, as an individual canbe identifiedbymultiple sets
ϕ(x) for the latter. Similarly, robust matching methods can also iden-
tify an individual fromdifferent sets of imprecise auxiliary information,
by forming a robust representation or embedding of their behaviors.
For sparse and robust matching, we can intuitively see ϕ(x) as a
compressed latent representation of changing auxiliary information,
akin to a unique fingerprint. In that case, the correctness is equivalent
to the rank-1 identification rate of the matching performed by the
attacker (SI Section S2.2).

In this article, our goal is to evaluate the correctness of an iden-
tification technique on a population n' from access to only t≥2 obser-
vations of the correctness κ at population sizes nð1Þ,nð2Þ, . . . ,nðtÞ <n0.
To do so, we select the parameters bh and bγ minimizing the expected
quadratic loss:

Rðh, γÞ=
Xt

i= 1

logðniÞ bκðnðiÞÞ �E½κðnðiÞÞjh, γ�� �2 ð4Þ

using a derivative-free method (Nelder–Mead53) and a logarithmic
weighting. The latter aims to set more weight on larger sample sizes,
associatedwithmoreaccurate correctnessmeasurements.Given bh andbγ, the PYC yields an estimator E½κðn0Þjbh,bγ� for any population size n0.
We call this method PYC-MB for ‘measurement-based’.

We now evaluate the accuracy of PYC-MB on exact, sparse, and
robust matching. For exact matching, we use the same discrete data
corpora studied so far. We additionally use three corpora of unstruc-
tured set-valued data for sparse matching (installed apps on Android
phones (APPS54), shopping carts (SHOPS55), and mobile call metadata
(CALLS27); see SI section S1.2) and four corpora of machine learning
experiments for robust matching (identification from face photo-
graphs (FACEREC56), GPS mobility traces (GEO21), interaction graphs
with geometric deep learning (IIG25), written texts (TEXT29); see SI
section S1.3). We selected recent identification techniques and aux-
iliary information, for which we either had access to the data (sparse)
or precise measurements from peer-reviewed publications (robust).
We did not re-implement robust identification techniques but used
reported correctness, thus maximizing the applicability of our
findings below.

We evaluate the accuracy of PYC-MB using the same task across
identification techniques. For each identification, we compare the
empirical correctness κðn0Þ with the predicted correctness
E κðn0Þjκðnð1ÞÞ, . . . , κðnðtÞÞ�

. We predict the correctness from a small
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sample of t = 50 correctnessmeasurement points, evenly spaced in log
space from n(0) = 1 to n(t) (see SI section S3.2). For robust matching, we
rely on reported correctness scores from existing peer-reviewed

publications. Therefore, some experiments have fewer than t = 50 data
points and arenot necessarily evenly spaced in log space.We test three
sampling fractions μ=nðtÞ=n0 at 1%, 5%, and 10%.

Fig. 1 | Pitman-Yor processes model a wide range of discrete count distribu-
tions and the PYC correctly predicts their correctness. a Empirical vs. estimated
correctness for all 400 surveyed datasets, across all corpora. b–i Posterior pre-
dictive checks for the empirical frequenciesXΦ.We report the rank-size distribution
of empirical samples (black) and 95%CI sampled from theMAP estimate of the PYP
(orange for empirical data, blue for synthetic data).We sample random frequencies
of anonymity sets fromπ ~ PY(h*, γ*), using stick-breaking representations, to obtain
95% confidence intervals on the inferred probability mass functions. (Inset)

Empirical (black dots) and expected correctness according to the PYCmodel (solid
line) for a population size ranging from 1 to n individuals.bDemographics from the
ADULT corpus (ADULT-1). c Demographics from the HDV corpus (HDV-1).
d Demographics from the MIDUS corpus (MIDUS-1). e Browser fingerprints from
theWEB corpus (WEB-1). fDemographics from the USA corpus (USA-1). g Synthetic
Geometric corpus (GEOM-1). h Synthetic Poisson corpus (POISSON-1). i Synthetic
Zipf corpus (ZIPF-1).
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Figure 2 shows that the PYC-MB model predicts well the correct-
ness of (a) exact, (b) sparse, and (c) robust attacks from 1, 5, and 10%
measurement samples, strongly outperforming the three other base-
lines we considered (see Discussion). PYC-MB obtains a low RMSE
across corpora and sample size, reaching for instancea lowRMSEof 5.1
p.p. when predicting the population correctness from a 10% exact
matching study (Table 1). These accurate estimates stem from a good
model specification, since the PYC-MB reaches anRMSE of only 1.3 p.p.
when fitted on the complete population (μ = 100% with n0 =nðtÞ).
Table 1 further shows that PYC-MB obtains low RMSE across corpora
and sample size, reaching, for instance, an RMSE of 3.6 p.p. (sparse)

and 10.2 p.p. (robust) when predicting the population correctness
from a 10% sample.

Finally, we showhowourmethod canbe used in practice to reason
about the scalability of four popular identification techniques from
measurement data up to the world’s population. We consider the
identification ofmobile phones from 1-hop interaction graphs25 such as
those collectedby some contact tracing apps (IIG-1); authors from texts
they wrote, a problem known as authorship attribution29 (TEXT-1);
human faces from photographs56, a problem known as facial recogni-
tion (FACEREC-2); the identification of a browser through simple
technical identifiers, a problemcalled browser fingerprinting57 (WEB-2).

Fig. 2 | The PYC-MB extrapolation method captures the correctness more
accurately than previously-used heuristics and rules of thumb.We perform
measurement-based extrapolation of (a) exact, (b) sparse, and (c) robust matching
attacks. We report the performance of the PYC-MB method compared to three
other functional forms (ENT—Entropy baseline with no tail complexity, orange line;
EXP—exponential decay function, green line; POL—polynomial function, red line;
see Supplementary Note S3.2). We report the performance when trained on (a)
exact matching (ADULT-1, using discrete demographics), (b) sparse matching

(APPS-1, using 2 installed Android apps), (c) robust matching (GEO-1, ML-based
mobile phone geolocationmatching). Wemeasure the empirical correctness up to
μ ∈ {1%, 5%, 10%} of the original data and, for each sampling fraction μ, fit the four
functional forms. We display the fitted correctness with solid color lines and the
training part with a gray background. We display the empirical correctness with
black dots. In all examples, the PYC-MB achieves high accuracy with good model
specification. Figs. S1 to S17 include additional examples on all studied corpora and
Tables S3 to S7 report RSME values for all samples and corpora.
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Figure 3 reports the scalability of identification for these four
attacks up to 7.53B people using the PYC-MB model. While machine
learning methods such as 1-hop interaction graph matching and
authorship attribution can reach a very high correctness for small-scale
populations, their effectiveness decreases fast as soon as the popula-
tion of interest is above 100 to 1000 people. Indeed, both of them
exhibit a near-geometric tail (low γ, 0.43 for IIG-1 and 0.33 for TEXT-1)
with a fast transition from high to low correctness as the population
size increases. This means that while, e.g., identifying the author of a

comment amongst a small set of known forum authors is a risk, trying
to identify them within all Internet users of a country might currently
work only for a few outliers with particular writing styles or topics.

Othermethods, however, exhibit a verydifferent scalingbehavior.
The correctness of the facial recognition technique we consider here
(Google FaceNet V8, FACEREC-2) is roughly similar to both 1-hop
interaction graph matching and authorship attribution for a popula-
tion of 100 people. Yet, because of its high γ of 1.0, the correctness of
the facial recognition technique only decreases very slowly with
population size. Using a single photograph, it would correctly re-
identify 62% of individuals amongst the faces of all 7.53B humans
worldwide, according to our model. Due to both its high entropy
(h = 41.54) and tail complexity (γ = 0.68), simple web fingerprints
would similarly correctly identify 4B Internet devices with 75% accu-
racy, a risk feared by security researchers13,58 but that had never been
tested at scale59.

Discussion
Fromstatistical disclosure control andcomputational privacy tobrowser
fingerprinting and machine learning, an extensive literature has been
developing techniques tomatch and identify or re-identify digital traces.
Although scholars agree that more auxiliary information and small
population size both lead to higher rates of identification, there is no
consensus on the nature of the functional form to determine which
identification poses a risk when the population of interest is millions or
even billions of individuals17,18,27. The PYC model provides, for the first
time, a principled mathematical model to evaluate how identification
techniques will perform at scale. Our findings suggest that two para-
meters, the entropy and tail complexity, are sufficient to accurately
model the identifiability of human data in a wide range of applications.
This approach is particularly helpful for novel identification techniques,
costly to validate at scale hence often limited to small-scale empirical
evidence. Understanding the scalability of identification is essential to
evaluate the risks posed by these techniques, including to ensure com-
pliance with modern data protection legislations worldwide.

From a privacy perspective, our model however does not pre-
scribe if a data release is anonymous. For instance, showing that for
one identification technique and one set of auxiliary information leads
to a low correctness on average is not sufficient to conclude that the
risk of re-identification is low. Firstly, a correctness of e.g. 5% still
means that somepeople are identifiable, and techniques exist to single
out outlier records in de-identified data36, synthetic data60, and
machine learning models61,62. Secondly, the correctness depends on

Table 1 | RMSEwhen extrapolating the correctness κ of exact,
sparse, and robust matching

RMSE

μ Method c PYC-MB ENT EXP POL RND

Exact 216 0.290 0.370 0.315 0.484 0.347

0.1% Sparse 13 0.326 0.484 0.302 0.395 0.345

Robust 30 0.234 0.523 0.340 0.386 0.287

Exact 290 0.153 0.364 0.287 0.355 0.305

0.5% Sparse 16 0.191 0.430 0.330 0.369 0.308

Robust 44 0.154 0.479 0.346 0.312 0.287

Exact 316 0.122 0.357 0.262 0.330 0.282

1% Sparse 16 0.104 0.422 0.253 0.393 0.287

Robust 47 0.183 0.463 0.310 0.433 0.254

Exact 351 0.067 0.310 0.192 0.179 0.230

5% Sparse 17 0.056 0.373 0.149 0.149 0.233

Robust 58 0.134 0.411 0.224 0.361 0.216

Exact 365 0.051 0.276 0.155 0.146 0.214

10% Sparse 17 0.036 0.340 0.124 0.092 0.215

Robust 58 0.102 0.379 0.175 0.262 0.191

Exact 400 0.013 0.128 0.037 0.028 0.213

100% Sparse 18 0.013 0.152 0.051 0.055 0.202

Robust 58 0.060 0.256 0.099 0.155 0.172

We report the results for all selected data collections, grouped by method, for all sampling
fractions μ in 0.1%, 0.5%, 1%, 5%, 10%, 100%. For each data collection, wemeasure the empirical

correctness from n(0) = 1 to nðtÞ =n0μ records, fit four functional forms, and report themean RMSE
between empirical and estimated correctness of n records. The four functional forms are PYC-
MB (Pitman-Yor Correctness functional form, 2 degrees of freedom), ENT (Entropy baseline with
no tail complexity, 1 d.o.f), EXP (exponential decay function, 2 d.o.f), POL (polynomial function, 2
d.o.f.).We report results for RND (random)where the value for κ is drawuniformlybetween0and
n(t). We indicate in bold themethodwith the lowest error rate.We also report the number of data
collections c included fromeach corpus, left after selecting only data collections forwhich 0.01
< n(t) < 0.99. Tables S3-5 show the detailed results per corpus.

Fig. 3 | Forecasting the correctness of popular identification techniques with
the PYC-MB model. Each panel shows the empirical correctness κ (black dots) in
four identification scenarios, along with our prediction bκ (solid blue line) fitted on
the empirical κ scores. a Identification of mobile phone users from their pseudo-
nymized 1-hop social network (IIG-1, n = 43, 000 phones) by Creţu et al.25. b Facial
recognition using Google FaceNet V8 (FACEREC-2, n = 1M faces) by Kemelmacher-

Shlizerman et al.56. c Authorship attribution in textual data using Deep Learning
(TEXT-1, n = 500 authors) by Saedi et al.29. d Exact matching using simple browser
fingerprints (HTTP accept, cookies and JavaScript enabled, timezone, display size,
installed fonts, plugins, user agent, video) collected by Panopticlick (WEB-2,
n = 5.5M fingerprints)57.
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the choice of attack model and identification technique used by the
attacker and auxiliary information known by them. To evaluate the
risk, one would likely need to consider a range of attackers, both
strong and weaker ones, and identification techniques63,64. However,
and conversely, showing under reasonable assumptions that the
average correctness is high using our method would likely lead to the
conclusion that a risk exists.

From a biometrics and AI harms perspective, we believe that our
work can support analysis of robust behavioral identification in parti-
cular when deployed in high-risk settings31 such as in hospitals32,33,
humanitarian aid delivery34, or border control32,35. However, as for the
privacy case, a high correctness on average might not be sufficient on
its own to analysize the risk posed by the deployment of a AI identi-
fication system. For instance, a high correctness of 99% on average still
implies that 1% of the population is misidentified, potentially system-
atically the same group65. On the other hand, a low or even medium
correctness could mean that a system is not suitable to be used in
practice.

While we focus on the correctness, our approach can be readily
used tomodel other privacy and biometricsmetrics from the literature
such as uniqueness, the fraction of unique individuals in a data col-
lection (Ξ)11,36,66–68 and k-anonymity, a popular guarantee to ensure that
at least k individuals in a data collection are indistinguishable fromone
another for any combination of ϕ(x)69. In SI Section S2.1, we derive
analytical expressions for the expected uniqueness Ξ of a data collec-
tion and the likelihood Vk of k-anonymity violations (counting how
many records will be part of an anonymity set of fewer than k records
amongst a data collection of n records) under a PYP prior. Using the
maximum a-posteriori (MAP) estimates of h and γ, we achieve a low
RMSE for both metrics on the 400 exact matching data collections
considered (see Table S1).

Above, we note that forecasting low average correctness is not
sufficient to conclude that the risk posed by a data release is low.
Likewise, forecasting a very high correctness is not enough to prove
that a new biometric method will not systematically misidentify
specific individuals andminorities. Predictingwhich records have the
least or most chance of being identified is difficult in the setting we
consider here. The intrinsic input of our method is the results of a
Bernoulli trial, the fact that m attempts at identifying people have
been made out of a total n. The average thus captures all the infor-
mation there is. Our work could be extended, e.g. by using individual

correctness for exact matching36, or by taking into account con-
fidence scores frommachine learning models60,61. This will, however,
require significant mathematical work and grounding into case-
specific threat models.

The PYC model can be used, in specific cases, to reason about
maximum risks of identification. In the context of exact matching, we
can estimate how many records are at maximum correctness, with a
standard metric: the fraction of people who will always be identified if
matched, the (population) uniqueness Ξ. Figure 4 shows that the
(absolute) number of individuals uniquely identified continues to grow
as the population riseswhen the distribution of auxiliary information is
heavy-tailed (γ > 0). It asymptotically stabilizeswhen the distribution is
geometric (γ = 0) and asymptotically decreases to zero when the dis-
tribution is finite (γ < 0). In SI Section S3.4, we show that accurately
predicting κ implies accurately predicting Ξ, suggesting that the
‘maximum correctness’ can be accurately predicted from a model fit-
ted on correctness measurement scores.

An extensive literature in statistical disclosure control attempts to
identify if a match, found in a random sample of disclosed discrete
data, will be unique in the complete population, hence modeling the
uniqueness Ξ of exact matching. These data-dependent methods
include, e.g., extrapolations of the contingency table of the data
sample66,70–77 and generative copula-based methods36. These methods
are however limited to exact matching, specific types of data (discrete
multivariate datawith lowdimensionality, such as census records) and,
crucially, require access to samples of the data—data that is rarely
available. Instead, our PYC-MB method can estimate the scalability of
identification for exact, sparse, and robust matching purely based on
reported correctnessmeasurements or other accuracymetrics such as
the uniqueness.

The entropy has long been used as a rule of thumb to evaluate
the anonymity and the risk of re-identification in data
collections39,78–82, with a popular saying suggesting that 33 bits of
information are sufficient to identify anyone on Earth57,83–87, 28.2 bits
in the USA83, and 24 bits in Hungary87. This approach, however, relies
on the simplifying assumption that the underlying data follows a
uniform discrete distribution78,88. This strong, and often largely
incorrect, assumption means that the entropy alone cannot accu-
rately model the correctness. As shown in Table S1 (Supplementary
Note S3.1), an entropy-based model (ENT) indeed obtains a RMSE of
0.187, 10.8 times higher on average than the PYC across all 400
surveyed datasets.

Ranging from γ = − 1 for finite uniform distributions to γ = 0 for
geometric tails and γ = 1 for heavy-tailed ones, the tail complexity has a
strong impact on the correctness. Figure 5a shows for instance how at
h = 40 bits the correctness for the world population can go from 99%
when γ = 0 (geometric tail) to 45% when γ = 1 (heavy tail). Importantly,
distributions with a low tail complexity (γ = 0, geometric tail) exhibit a
critical correctness regime as the entropy grows (Fig. 5b). This means
that a small increase of entropy can yield a significant increase of the
correctness, fromalmost 0 to 100%when γ=0. This criticality does not
occur with a heavy tail: a small increase of entropy only yields a small
increase of correctness (Fig. 5b).

Previous studies have also used curve-fitting techniques to
extrapolate measurements of privacy metrics from small sample
measurements of sparse17,18 and robust28,89,90 matching. Exponential
decay functions have been used by Achara et al.17 to extrapolate the
unicity of installed smartphone apps and by Sekara et al.18 for human
mobility traces, as well as used in the NIST’s Face Recognition Vendor
Test (FRVT) to forecast the accuracy of facial recognition
technologies28. Similarly, polynomial functions have been used by
Friedman et al.89 and Baveja et al.90 to extrapolate the correctness of
facial recognition. Table 1 and Tables S3–7 compare the performance
of the proposed functional forms to the PYC-MB method (Supple-
mentary Note S3.2). Across all sampling fractions and types of

Fig. 4 | Regimes for the number of unique records.We report the expected
number of population unique records E½n � Ξ jh, γ� for γ = − 1 (finite uniform dis-
tribution of anonymity sets; green square), γ = 0 (geometric tail; purple circle), and
γ = 1 (heavy tail; orange cross), for a fixed entropy h = 10bits and a population
ranging from n = 1 to 8B.
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matching methods but one (0.1% for sparse matching), the PYC out-
performs often strongly curve-fitting techniques, despite having the
same degrees of freedom. This suggests that the PYC-MB and the
underlying PYC model offer a principled and accurate approach to
model and estimate the correctness, strongly outperforming both
previous functional forms and rules of thumb.

Methods
We study the expected value of privacy metrics, in a gallery G = fxlgnl = 1
containing n enrolled records, each drawn i.i.d. from the discrete dis-
tribution X. Wemodel any privacymetricΨG defined as themean of an
individual metric ψG, over all its records:

ΨG =
1
n

Xn
i = 1

ψGðxiÞ ð5Þ

Within the gallery G, the uniqueness Ξ is the expected fraction of
records x∈ Gwith a unique set of auxiliary information ϕ(x)36, with Xϕ
its marginal distribution. We compute its expression using:

ψGðxiÞ= ϕðxiÞunique in fϕðxiÞgni= 1
� � ð6Þ

In SI Section 2.1, we derive the following closed-form expression for
the uniqueness Ξ:

ΞðnÞ=
X

xϕ�Xϕ

pðxϕÞ 1� pðxϕÞ
� 	n�1

ð7Þ

Similarly, we can derive the correctness κ, the expected fraction of
records x ∈ G correctly matched from their auxiliary information xϕ36

using

ψðx,nÞ=Pðxϕ correctly matched in a sample of n recordsÞ ð8Þ

In SI Section 2.1, we derive the following closed-form expression for
the correctness κ:

κðnÞ=
X

xϕ�Xϕ

pðxϕÞ
1� pðxϕÞ
h in

n pðxϕÞ
ð9Þ

Finally, we can derive Vk, the expected fraction of k-anonymity viola-
tions, using:

ψðx,nÞ=Pð1 to k � 1 records share ϕðxÞ amongstnÞ ð10Þ

In SI Section 2.1, with I the regularized incomplete beta function, we
derive the following closed-form expression for Vk:

VkðnÞ=
X

xϕ�Xϕ

pðxϕÞ I1�pðxϕÞðn� k + 1, k � 1Þ ð11Þ

Pitman-Yor priors and expected privacy metrics
We denote by PY(d, α) the Pitman-Yor process with a discount para-
meter d ∈ [0, 1] and a concentration parameter α ∈ [ − d, + ∞]. In SI
Section 2.1, we show that, for XΦ ~ PY(d, α), the expected uniqueness in

Fig. 5 | Criticality and regimes of correctness.We report the expected correct-
ness E½κ jh, γ� in two scenarios for a fixed world population of n = 7.53 billion
people. a Effect of the tail complexity parameter γ on the expected correctness.
Each line represents the correctness for a fixed entropy h from 10 to 60 bits, with

color indicating the entropy h. b Effect of the entropy h on the expected correct-
ness. Critical behaviors arise for exponential tails (γ = 0, top) but not for heavy tails
(γ = 0.5, middle; γ = 1, bottom).
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a gallery of n records is:

E ΞðnÞ jd,α� �
=

Γðα + 1Þ
Γðd +αÞ

Γðn+d +α � 1Þ
Γðn+αÞ ð12Þ

We also show that the expected correctness is:

E κ jd,α� �
=

1
nd

Γð1 +αÞ
Γðd +αÞ

Γðn+d +αÞ
Γðn+αÞ � α


 �
ð13Þ

Using the generalized hypergeometric function 3F2, we finally show
that the expected fraction of k-anonymity violations is:

E VkðnÞ jd,α
� �

=
n� 1

n� k + 1


 �
Γðk � dÞ Γðn� k + 1 +d +αÞ

3F2ð1,n,n� k + 1 +d +α;n� k +2,n+ 1 +α, 1Þ
Bð1� d,d +αÞΓðn+ 1 +αÞ

ð14Þ

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study have been deposited on OSF at
https://osf.io/shnrx/. A complete description of all datasets and
accession codes is available in Supplementary Information (SI
Section S1).

Code availability
All simulations were implemented in Python. The source code to
reproduce the experiments is available at https://osf.io/shnrx/, along
with documentation, tests, and examples.
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