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A B S T R A C T

Background: Generalized Anxiety Disorder (GAD) is a chronic condition. Enabling the prediction of individual 
trajectories would facilitate tailored management approaches for these individuals. This study used machine 
learning techniques to predict the recovery of GAD at a nine-year follow-up.
Method: The study involved 126 participants with GAD. Various baseline predictors from psychological, social, 
biological, sociodemographic and health variables were used. Two machine learning models, gradient boosted 
trees, and elastic nets were compared to predict the clinical course in participants with GAD.
Results: At nine-year follow-up, 95 participants (75.40 %) recovered. Elastic nets achieved a cross-validated area- 
under-the-receiving-operator-characteristic-curve (AUC) of .81 and a balanced accuracy of 72 % (sensitivity of 
.70 and specificity of .76). The elastic net algorithm revealed that the following factors were highly predictive of 
nonrecovery at follow-up: higher depressed affect, experiencing daily discrimination, more mental health pro-
fessional visits, and more medical professional visits. The following variables predicted recovery: having some 
college education or higher, older age, more friend support, higher waist-to-hip ratio, and higher positive affect.
Conclusions: There was acceptable performance in predicting recovery or nonrecovery at a nine-year follow-up. 
This study advances research on GAD outcomes by understanding predictors associated with recovery or non-
recovery. Findings can potentially inform more targeted preventive interventions, ultimately improving care for 
individuals with GAD. This work is a critical first step toward developing reliable and feasible machine learning- 
based predictions for applications to GAD.

The trajectory of generalized anxiety disorder (GAD) is chronic and 
fluctuating. Epidemiological and clinical research revealed that GAD 
had a low probability of recovery and a high probability of recurrence 
(Bruce et al., 2005; Penninx et al., 2011; Scholten et al., 2013). Nearly 
half of all individuals with a lifetime history of the disorder still expe-
rienced it 12 months later (Martin, 2003; Ramsawh et al., 2009). Over 
two years, just 39 % of those initially diagnosed with GAD made a 
complete recovery. However, 30 % experienced a full relapse 
(Rodriguez et al., 2006). Up to six years after their initial anxiety dis-
order diagnosis, around 60 % of individuals had recurrent symptoms 
and relapses (Batelaan et al., 2014; Spinhoven et al., 2016). GAD course 
in those who relapse is often characterized by substantial levels of 
disability in social interactions, work engagement, and other vital as-
pects of life (American Psychiatric Association, 2013; Newman et al., 
2022).

The chronic and fluctuating nature of GAD is influenced and exac-
erbated by various factors. Variables affecting its trajectory include the 

state of familial relationships, the presence of coexisting conditions, and 
gender (Rhebergen et al., 2017). Weak ties with spouses or relatives and 
the existence of accompanying cluster C personality disorders have been 
linked with a decreased probability of GAD remission (Yonkers et al., 
2000). Additionally, the presence of comorbid Axis I disorders has 
shown an impact on its course; individuals with GAD who concurrently 
experienced depression, panic disorder with agoraphobia, or substance 
use disorders had reduced chance of recovering compared to those 
without these comorbidities (Bruce et al., 2005). Moreover, women had 
lower rates of remission than men, but showed greater stability, as 
evidenced by a reduced tendency for relapse (Yonkers et al., 2003).

Despite various predictors at the group level, the accuracy of the 
prediction of GAD outcomes for individual patients remains uncertain. 
No all-encompassing model is available with the necessary sensitivity 
and specificity for predicting its course in a manner that can be practi-
cally applied for individual use. Distinct diagnoses of anxiety disorders, 
according to the Diagnostic Statistical Manual (DSM; American 
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Psychiatric Association, 2013), have demonstrated limited efficacy in 
predicting psychopathology course (Batelaan et al., 2014). Without 
advanced models, GAD prediction relies on clinician judgment, which 
has shown poor accuracy (Bowes et al., 2020; Meehl, 1954).

A potential reason for the poor accuracy in predicting course out-
comes in GAD may be attributed to the intricate and multifaceted origins 
of anxiety disorders (Mineka & Zinbarg, 2006; Newman et al., 2013; 
Penninx et al., 2008). Studies have yielded significant findings, but 
single risk factors only explained parts of GAD etiology (Mineka & 
Zinbarg, 2006; Penninx et al., 2008). Given the wide array of potential 
influences, it is unlikely that there exists one single predictor that ex-
plains all of the variance in the naturalistic course of GAD. Therefore, it 
is essential to combine predictors from psychological, social, and bio-
logical domains (Merikangas & Pine, 2002). Predictive models based on 
machine learning are gaining popularity as they can incorporate a large 
amount of data into a single model, focusing on optimizing the assess-
ment of the model’s ability to predict outcomes for individuals. Thus, 
machine learning may have potential not encountered before for pre-
dicting GAD trajectories (Hahn et al., 2017). Such trajectories can be 
regarded as a classification problem where the algorithm assigns a value 
to a specific class, and in the case of GAD, the prediction would be based 
on recovery and nonrecovery classes, which can be solved using su-
pervised machine learning algorithms. These algorithms are trained on 
participants with known predictors and outcome data to establish a 
function capable of predicting outcomes for new participants based on 
their predictor values (Bokma et al., 2022).

The current study was the first one that aimed to use machine 
learning to predict naturalistic remission and nonremission 9 years later 
in individuals with a baseline diagnosis of GAD. Prior studies using 
machine learning in anxiety disorders have mostly focused on different 
research questions than the current study. For example, Li et al. (2024)
used machine learning to predict naturalistic onset of any anxiety dis-
order in participants with no anxiety disorders at baseline. Other re-
searchers applied machine learning models to understand the 
importance of clinical biomarkers for the concurrent diagnosis of anxi-
ety disorders (Calderon et al., 2024; Sharma & Verbeke, 2021) or to 
predict response to specific GAD treatments (Gyorda et al., 2023; Lueken 
et al., 2016; Zainal & Newman, 2024; Zainal & Newman, in press). Also, 
in the prior studies listed above, baseline predictors were examined for 
more short-term outcomes (i.e., 6 days to 3 years) than the current 
study. Similarly, the one study that examined prediction of naturalistic 
remission/nonremission did so for those with any anxiety disorder at 
baseline and predicted outcome 2-years later Bokma et al. (2022). Thus, 
by examining predictors of 9-year remission/non-remission of GAD, our 
study might be able to identify specific baseline variables that could be 
targeted by GAD specific interventions to prevent longterm nonrecovery 
or recurrence of GAD.

We compared two machine learning models, gradient boosted trees 
and elastic nets, to predict recovery or nonrecovery in participants with 
GAD. Baseline variables examined as predictors included clinical, psy-
chological, biological, sociodemographic, and lifestyle data from the 
Midlife Development in the United States (MIDUS) study. Our primary 
outcome was recovery or nonrecovery from GAD at a nine-year follow- 
up. Finally, we assessed which predictor domains contributed most to 
recovery or nonrecovery. We hypothesized that gradient boosted trees 
and elastic nets using a wide array of baseline data from different do-
mains would yield adequate nine-year recovery predictions.

1. Method

1.1. Participants

Data in the current study were drawn from MIDUS, a national, lon-
gitudinal collection that focused on the role of psychological, social, 
biological, sociodemographic, and health variables. The initial MIDUS 1 
probability sample (N = 7100) was generated in 1995–1996 through 

random digit dialing of U.S. households with at least one telephone in 
the contiguous 48 states, stratified by age with an oversample of those 
between 40 and 60. The second measurement occasion, MIDUS 2, was 9 
years later, and 75 % of the original sample, adjusted for mortality 
(N = 4955), was retested (Radler & Ryff, 2010).

In the present study, we used data from participants who satisfied the 
following criteria: presence of 12-month GAD diagnosis at baseline 
(MIDUS 1), based on the third edition of the DSM (American Psychiatric 
Association, 1980), and availability of nine-year follow-up on diagnosis 
of GAD (recovery or nonrecovery). In our sample, psychiatric comor-
bidity was allowed. Participants with GAD diagnosis at baseline were 
selected (n = 192). Of these participants, 66 were excluded due to 
missing diagnostic information at a nine-year follow-up. This yielded a 
sample of 126 GAD participants with sufficient data available. Mean age 
was 43.17 (SD = 10.66), ranging between 25 and 68, and 73 % of par-
ticipants identified as female. Concerning race, 87 % of participants 
identified as White, 6 % as Black, 2 % as Native American, and 5 % as 
Other. In terms of education, 49 % had graduated high school or less, 
and 51 % had attended college or more. The primary outcome classifi-
cation task in the current machine learning study was predicting re-
covery or nonrecovery from GAD at a nine-year follow-up.

1.2. Baseline predictor variables

At baseline, a wide array of predictors, including clinical, psycho-
logical, sociodemographic, biological, and lifestyle, were included, 
making up 80 variables.

1.2.1. Sociodemographic factors
Age, gender, race/ethnicity, marital status, and education.

1.2.2. Life challenges
Daily stressors (e.g., work overload, family arguments, traffic prob-

lems), chronic stressors (e.g., caregiving, perceived discrimination, 
perceived inequalities, work-family spillover, childcare difficulties, un-
employment), acute events (e.g., divorce, remarriage, job change, 
deaths, relocation).

1.2.3. Health behaviors
Smoking, alcohol consumption, physical activity, substance abuse, 

hormone therapy, preventive healthcare, alternative healthcare.

1.2.4. Psychological
Personality, affect, coping, control, goal orientation, optimism, 

religion/spirituality, and health beliefs.

1.2.5. Social
Social support, spousal relations, parent-child ties, childhood 

violence, social participation, social responsibility, job characteristics, 
and neighborhood quality.

1.2.6. Health/Illness
Mental (depression, anxiety, psychological well-being, and cognitive 

function); physical (subjective health, health comparisons, chronic 
conditions, symptoms, and disability/functional limitations).

1.2.7. Baseline comorbid conditions
A count of the number of comorbid conditions.

1.3. Statistical analyses and machine learning algorithms

1.3.1. Data preprocessing
For this study, we followed the Transparent Reporting of a multi-

variable prediction model for Individual Prognosis Or Diagnosis guide-
lines (TRIPOD; Moons et al., 2015). There was no missing data in the 
current analyses. According to Occam’s Razor, also known as the Law of 
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Parsimony, the best explanation of a problem requires the fewest as-
sumptions. In line with Occam’s Razor, the primary goal of machine 
learning is to enhance the efficiency of predictive models. Initially, there 
were 80 potential predictors. However, considering our sample size 
(N = 126), we followed established heuristics that recommend a mini-
mum of 12 observations per candidate predictor (Jenkins & 
Quintana-Ascencio, 2020). Thus, we initially ran a logistic regression 
with all 80 potential predictors and then selected the top 11 with the 
strongest coefficients. Logistic regression is a widely used classification 
approach for feature selection in machine learning. It is a simple method 
for identifying the most relevant features in a dataset. See Table 1 for 
standardized coefficients of the strongest predictors for the logistic 
regression. The top predictors included:

1.3.2. Education
Dichotomous variable where 1 graduated high school or less, and 2 

graduated some college.

1.3.3. Age
Participants were asked about their current age in years.

1.3.4. Friend support
Participants were asked four questions about support from their 

friends, such as “How much do your friends really care about you?” and 
“How much can you open up to them if you need to talk about your 
worries?”. All items were answered on a 4-point Likert scale (1=often; 
2=sometimes; 3=rarely; 4=never). Items were recoded so that higher 
scores reflected higher support. Internal consistency in the current 
sample was .88.

1.3.5. Waist-to-hip ratio
This variable was calculated by dividing the waist size (in inches) by 

the hip size (in inches). Higher ratios can mean more fat around the 
waist.

1.3.6. Depressed affect
Participants were asked seven questions about depressed affect 

during a two week period in the past 12 months. Items included “feel 
down on yourself, no good, or worthless?” and “lose interest in most 
things.” The total score was constructed by adding the number of “Yes” 
responses.

1.3.7. Number of visits with medical doctors (in the past 12 months)
A continuous variable based on the total number of times the 

respondent reported seeing doctors for various reasons.

1.3.8. Number of sessions with a Mental Health Professionals (in the past 
12 months)

A continuous variable based on the total number of times the 

respondent reported seeing professionals for emotional or mental 
health.

1.3.9. Positive affect
Participants were asked six questions about how they felt during the 

past 30 days. Items included “cheerful?”, “in good spirits?”, and “full of 
life?”. All items were answered on a five-point Likert scale (1=all of the 
time; 2 =most of the time; 3 =some of the time; 4 =a little of the time; 
5 =none of the time). Items were recoded so that higher scores reflected 
higher levels of positive affect. Internal consistency in the current 
sample was .88.

1.3.10. Family affectual solidarity
This scale captured the degree of positive (and negative) sentiment 

between family members. It combined four items on family support (e. 
g., “How much can you rely on them for help if you have a serious 
problem”) and four family strain items (“Not including your spouse or 
partner, how often do members of your family make too many demands 
on you”). Items for the family support subscale were recoded such that a 
high score signified high levels of family affectual solidarity. The total 
scale score was constructed by calculating the mean of the eight items 
measured on a 4-point Likert scale (1 = often, 4 = never). Internal con-
sistency in the current sample was .65.

1.3.11. Life satisfaction
Respondents were asked to rate their life overall, work, health, 

relationship with spouse/partner, and relationship with children. Each 
item was rated from 0 (the worst possible) to 10 (the best possible). 
Items for relationship with spouse/partner and relationship with chil-
dren were averaged to create a family relationship score. This score and 
the remaining three items were used to calculate an overall mean score. 
Higher scores reflected higher levels of overall life satisfaction. Internal 
consistency in the current sample was .66

1.3.12. Daily discrimination
Participants were asked nine questions about discrimination. Items 

included “You are treated with less courtesy than other people”, “You 
are treated with less respect than other people”, and “You receive poorer 
service than other people at restaurants or stores.” All items were 
answered on a four-point Likert scale (1=often and 4=never). Items were 
recoded so that higher scores reflected higher levels of discrimination. 
Internal consistency in the current sample was .90.

1.3.13. Main data analysis
Two machine learning algorithms were compared to predict recov-

ery or nonrecovery at follow-up. All analyses were conducted in Python 
using the scikit-learn library. Gradient boosted trees was selected over 
other machine learning algorithms because it incorporates regulariza-
tion techniques to prevent overfitting (Bentéjac et al., 2021; Boehmke & 
Greenwell, 2019). This method assembles weak prediction models 
through continuous feature splitting and the addition of new trees to 
generate a more accurate model. All the trees are connected in sequence, 
with each tree attempting to reduce the error of the previous tree. The 
final model combines the results of each stage, producing a strong 
learner.

Penalized (elastic-net) logistic regression employs ridge regulariza-
tion methods by decreasing model coefficients toward zero (Tikhonov, 
1963), as well as least absolute shrinkage and selection operator (Lasso) 
regression (which reduces certain coefficients to zero; Tibshirani, 1996). 
Therefore, elastic net penalty enables regularization via ridge penalty 
with feature selection of the lasso penalty (Boehmke & Greenwell, 2019; 
James et al., 2013). It is a linear regression approach incorporating two 
penalty terms into the standard least-squares objective function. These 
two penalty terms represent the coefficient vector’s L1 and L2 norms 
multiplied by two hyperparameters, alpha and lambda. The L1 norm is 
utilized for feature selection, and the L2 norm for feature shrinkage (Zou 

Table 1 
The strongest predictors discriminating between recovery and nonrecovery as 
indicated by the logistic regression.

Predictor variables Elastic net SC

Education − 3.96
Age − 1.57
Friend support − 1.57
Waist-to-hip-ratio 1.30
Depressed affect 1.26
No. of times seeing a medical health professional 1.00
No. of times seeing a mental health professional 0.96
Positive affect − 0.92
Family affectual solidarity − 0.91
Daily discrimination 0.78
Life satisfaction − 0.77

Note: Predictor variables are shown in order of importance (SC= standardized 
coefficients of log odds ratios).
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& Hastie, 2005). Elastic net was selected because, in contrast to less 
transparent machine learning techniques (e.g., neural networks), it can 
preserve clinical interpretability and has a track record of reliability and 
accuracy (Ogutu et al., 2012; Zou & Hastie, 2005). Elastic net produces 
coefficients equivalent to log odds ratios of logistic regression. The 
models’ hyperparameters were tuned with grid search, which involves 
training the models with different combinations of hyperparameters to 
find the best performance.

Comparing two machine learning algorithms, elastic net, and 
gradient boosted trees, is important in predicting recovery or non-
recovery when considering the no-free lunch theorem. This theorem 
states that no universally superior algorithm in machine learning can 
solve all types of problems. Performance of an algorithm depends on the 
specific problem at hand and the data (Gómez & Rojas, 2016). There-
fore, the theorem does not intend to find the perfect model to solve all 
problems but instead to find the best solution for a particular dataset and 
specific problem. Given the multifaceted nature of mental health pre-
diction, it is important to explore multiple machine learning algorithms. 
By evaluating the elastic net, a linear model, and gradient boosted trees, 
a non-linear ensemble algorithm, we ensured a comprehensive exami-
nation of potential solutions in line with the theorem.

There is a risk of overfitting in machine learning studies with small 
sample sizes because the model can learn noise instead of patterns in the 
data. Nested cross-validation mitigates this risk by minimizing biased 
estimates of the true error (Krstajic et al., 2014; Varma & Simon, 2006). 
This method provides unbiased performance by iteratively separating 
the data used for hyperparameter tuning from data used for performance 
evaluation (Mueller & Guido, 2017). The approach also ensures a more 
accurate assessment of a model’s generalizability (Varma & Simon, 
2006). Nested cross-validation is beneficial when there is a limited 
quantity of data since it enables multiple training and testing of a model 
utilizing non-overlapping subsamples (i.e., folds) of the full dataset. 
Unlike traditional machine learning models that divide the sample into 
one training and one testing sample, this method uses the entire dataset 
for both training and testing. The dataset was split into five outer and 
three inner folds (Cawley & Talbot, 2010). The model is trained on each 
outer training fold and tested using the dataset withheld from that outer 
fold. The “inner loop" uses a grid search for parameter training and 
hyperparameter selection, with performance averaged over three folds. 
This iteration is repeated for all five outer folds, and the combined 
predictions from unseen test data across the inner folds were compared 
with the actual outcomes for the outer test folds. All performance 
measures provide an average across the respective folds. Once the 
model’s performance was evaluated across all test partitions, a final step 
was performed by retraining the model with the optimal set of hyper-
parameters and selected predictors using the entire dataset.

Class imbalances can make machine learning outcomes skewed in 
favor of predicting the more prevalent class. We applied the borderline 
synthetic minority oversampling technique to handle these imbalances 
(SMOTE; Han et al., 2005). Borderline SMOTE generates new examples 
of the minority class using the nearest neighbors of these cases in the 
border region between cases (Han et al., 2005). To prevent data leakage, 
borderline SMOTE was used exclusively on the outer training folds, as 
balancing the entire dataset prior to cross-validation may lead to data 
leakage from the outer training folds to inner cross-validation hold-out 
test samples. In addition, data standardization was performed separately 
on the training and testing folds, so that the test set was not influenced 
by training data. Therefore, the test data was standardized without 
leakage from the training data.

Performance was measured with receiver operator characteristics 
(ROC) and area under the curve (AUC) metrics. An AUC value of .5 
signifies no distinction between classes, whereas values greater than .5 
indicate successful classification, effectively optimizing true positives 
and minimizing false positives. Although the interpretation of AUC 
values varies based on the specific classification task, we adhered to the 
generally accepted guidelines for AUC interpretation: AUC = .50 implies 

no distinction, AUC ≥ .70 and < .80 implies acceptable discrimination, 
and AUC ≥ .80 implies excellent discrimination (Mandrekar, 2010). 
Standard ROC metrics such as sensitivity (i.e., the proportion of posi-
tives correctly identified) and specificity (i.e., the proportion of correctly 
identified negatives) were evaluated. These metrics range between 0 and 
1 such that larger values indicate better performance. Accuracy was 
estimated as the percentage of total items classified correctly.

2. Interpretability and variable importance

Interpretability in machine learning is needed so that humans can 
understand and analyze models for real-world applications (Molnar, 
2019). Methods for explainable artificial intelligence were run using 
SHAP (Shapley Additive exPlanation) values to facilitate the interpret-
ability of the models. These values draw inspiration from game theory 
principles and provide consistent and accurate measures of feature 
attribution (Marcílio & Eler, 2020). SHAP values assign a value to each 
variable that represents the average contribution of that variable across 
all possible combinations of variables. The average SHAP value across 
the sample is 0, but the average absolute SHAP value determines relative 
variable importance. The resulting SHAP values represent the impor-
tance or influence of each feature on the model’s predictions. Since 
SHAP values are the industry standard for machine learning interpret-
ability, they were chosen as the interpretability metric (Lundberg & Lee, 
2017).

3. Results

Two models were tested: (i) gradient-boosted trees and (ii) elastic 
net. At nine-year follow-up, 95 participants (75.40 %) recovered, and 31 
participants (24.60 %) did not recover.

Gradient boosted trees were trained on demographic, clinical, psy-
chological, biological, and lifestyle predictors that discriminated be-
tween participants with and without a GAD diagnosis at 9-year follow- 
up with .62 AUC and 53 % balanced accuracy. As shown in Table 2, 
sensitivity was .34, and specificity was .85. The best model performance 
was associated with an Eta value of 0.1, depth of 3, and iterations of 200.

The elastic net trained on all predictors discriminated between par-
ticipants with and without a GAD diagnosis at 9-year follow-up with .81 
AUC and 72% balanced accuracy. Sensitivity was .70, and specificity 
was .76. The best model performance was associated with an alpha of 
1.0 and a lambda value of 0.01. See Table 2 for performance metrics and 
tuning parameters.

3.1. Variable importance

Fig. 1 visually represents the top predictors of recovery or non-
recovery and displays their feature importance ranking for recovery 
(white) and nonrecovery (black) outcomes using mean absolute SHAP 
values. In order of feature importance, these included some college 
education or higher (recovery), older age (recovery), friend support 
(recovery), having higher waist-to-hip-ratio (recovery), daily discrimi-
nation (nonrecovery), higher positive affect (recovery), a greater num-
ber of sessions with a mental health professional in the past 12 months 
(nonrecovery), and a greater number of visits to medical doctors in the 
past 12 months (nonrecovery). The elastic net regularization shrunk 
family affectual solidarity and life satisfaction coefficients to zero, which 
suggests that these variables did not contribute significantly to the 
model’s predictions.

4. Discussion

Our study compared two algorithms, gradient boosted trees and 
elastic net to predict recovery nine years later or not. Results suggested 
that prediction of individual recovery or nonrecovery of GAD was 
possible using supervised machine learning algorithms. The elastic net 
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model outperformed the gradient boosted trees model, achieving a 
balanced accuracy of 72 % with an AUC value of .81, which is consid-
ered excellent. To ensure robust and generalizable results, we employed 
nested cross-validation, which offers advantages over traditional vali-
dation methods like simple train-test split. By separating hyper-
parameter tuning from model evaluation, nested cross-validation 
prevents overfitting in machine learning studies with small sample sizes 
and reduces data leakage, resulting in an unbiased model performance 
(Mueller & Guido, 2017). This method is important for 
high-dimensional datasets with limited sample sizes, where standard 
methods can produce overly optimistic results (Lewis et al., 2023).

Overall, the elastic net algorithm revealed that some college educa-
tion or more, older age, stronger support from friends, increased waist- 
to-hip ratio, and higher positive affect were associated with remission at 
nine-year follow-up. At the same time, depressed affect, daily discrimi-
nation, a greater number of sessions with a mental health professional, 
and a greater number of visits to medical doctors were associated with 
nonrecovery at a nine-year follow-up (see Fig. 1). Despite a wealth of 
research on factors predicting the onset of GAD, there is a notable gap in 
understanding predictors of remission, particularly within the context of 
GAD. Thus this study adds to those findings.

Having at least some college education was the most important 
protective factor associated with recovery according to SHAP feature 
importance. In particular, the mean absolute SHAP value was 0.61, 
indicating it had the greatest impact on the model’s predictions (see 
Fig. 1). Higher levels of education have been linked to improved mental 
health in other studies (Belo et al., 2020; Niemeyer et al., 2019). Edu-
cation is one of the most reliable predictors of life outcomes, including 
job, income, and socioeconomic status, and as such, may be viewed as an 
indicator of health and well-being (Galobardes et al., 2006; Javed & 
Khan, 2016). It may act as a protective factor by increasing receptivity to 
mental health messages and increasing the ability to communicate with 
mental healthcare providers to obtain appropriate psychotherapeutic 
treatments (Galobardes et al., 2006).

We also found that older age was the second strongest predictor of 
recovery at a nine-year follow-up, with a mean absolute SHAP value of 
0.35. This is in line with previous studies suggesting anxiety symptoms 
tended to decrease over time or with advancing age (Kelly & Mezuk, 
2017; Ramsawh et al., 2009). Possible mechanisms for a decrease in 
anxiety with advancing age include increased emotional control (Jorm, 
2000). Research suggests that older adults report less experience of 
negative emotions (Gross et al., 1997) and a greater ability to control 

Table 2 
Performance metrics and tuning parameters for gradient boosted tree and elastic net models.

Algorithm Sensitivity Specificity AUC Balanced Accuracy Tuning parameters

Gradient Boosting .34 .85 .62 .53 Eta= 0.1 Depth= 3 Iterations= 100
Elastic net .70 .76 .81 .72 Alpha= 0.10 Lambda= 0.01 -

Note. AUC= Area under the curve; ROC= Receiver operating characteristic curve.

Fig. 1. Feature importance ranking for recovery (white bar) and nonrecovery (black bar) outcomes using mean absolute SHAP values.
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their emotions (Gross et al., 1997; Lawton et al., 1992). Thus, advancing 
age may be associated with increased ability to enhance positive emo-
tions and dampen negative emotions (Lawton et al., 1992).

Friend support was pivotal at nine-year follow-up and (Gross et al., 
1997) was the third strongest predictor of recovery, reflected by an 
absolute SHAP value of 0.33. It is well-established that social support 
plays an important role in safeguarding against anxiety (Lente et al., 
2012; Zimmermann et al., 2020). For example, a study involving over 
700,000 college students demonstrated that when faced with a disease 
outbreak, those who felt they had low levels of social support were 4.8 
times more likely to experience anxiety and 6 times more likely to 
exhibit depressive symptoms, as compared to individuals who felt they 
had strong social support systems in place (Ma et al., 2020). Further-
more, positive social support was shown to act as a protective factor 
against the risk of emotional disorders by reducing stress and enhancing 
coping mechanisms (Cohen & Wills, 1985). Our study highlighted the 
important role of social support, encompassing personal relationships, 
in facilitating the recovery of GAD.

Greater depressed affect in those with GAD at baseline was the 
strongest predictor of nonrecovery at follow-up, demonstrated by a 
mean absolute SHAP of 0.32. Anxiety and depressive disorders are 
among the most common psychiatric illnesses, and they are highly co-
morbid with each other (Jacobson & Newman, 2017; Kessler et al., 
2007). The lifetime comorbidity with depression was estimated to be 
around 59 % for individuals with GAD (Carter et al., 2001). Research 
suggests that patients with anxious major depressive disorder, compared 
with patients with nonanxious major depressive disorder, were found to 
have more severe role impairment (Baik et al., 2024; Kessler et al., 
2015). Other data also suggest that those with comorbid anxiety and 
depression had a poorer course, greater functional impairment, greater 
disability, greater cardiovascular impairment, and more somatic mor-
bidities (Ter Meulen et al., 2021). The influence of depressed affect on 
non-recovery underscores the importance of addressing depressive 
symptoms in the treatment of GAD.

Higher waist-to-hip ratio predicted recovery at a nine-year follow- 
up, with a mean absolute SHAP value of 0.22. This finding is at odds 
with prior research. A waist-to-hip ratio measure indicates abdominal 
body fat and has been linked to obesity (Gariepy et al., 2010; Milaneschi 
et al., 2019; Zhao et al., 2009). Depression and anxiety are two of the 
most common psychiatric disorders highly associated with obesity 
(Jorm et al., 2003; Strine et al., 2008). According to findings from a 
meta-analysis, the odds ratio (OR) for a connection between obesity and 
anxiety was 1.40 (confidence interval: 1.23–1.57; Gariepy et al., 2010). 
Rivenes et al. (2009) found that an elevated waist-to-hip ratio was 
concurrently linked to higher rates of anxiety and depression and other 
studies found a prospective relationship between obesity and later 
anxiety or GAD (Bjerkeset et al., 2008; Kasen et al., 2008). In our study, 
however, after accounting for body mass index (BMI), physical activity, 
social isolation, and somatic disorders, higher waist-to-hip ratio 
remained independently related to remission. Concurrently measured 
variables are marked by difficulty differentiating a particular variable’s 
influence from confounding variables that may influence the study 
outcome. Our study controlled for other variables related to obesity such 
as BMI and lack of physical activity and it is therefore possible that 
without the influence of these factors, higher waist to hip ratio could be 
a more positive predictor of future GAD remission than expected.

Greater daily discrimination was the second strongest predictor 
associated with nonrecovery at follow-up, with a mean absolute SHAP of 
0.12, underscoring its importance at nine-year follow-up. Research 
suggests that perceived discrimination has been linked to a wide range 
of adverse physical and mental health outcomes (Lewis et al., 2015; 
Williams et al., 2019). In particular, people who reported greater in-
stances of discrimination had worse mental health (e.g., depression, 
psychiatric distress, and generalized anxiety disorder; Pieterse et al., 
2012; Schmitt et al., 2014). People who face discrimination may be 
subjected to potentially damaging events, such as structural 

impediments to getting resources and interpersonal threats like ostra-
cism or exclusion (Major et al., 2002). As a result, they may feel chronic 
stress due to the need to always be on alert against possible dangers 
(Lewis et al., 2015).

Positive affect was associated with recovery at follow-up, but it had 
less impact on recovery than other variables, with a mean absolute SHAP 
value of 0.08. Research suggests that positive affect is vital in main-
taining mental health (Fredrickson, 2003; Rackoff & Newman, 2020). 
Positive affect may guard against the excessive avoidance that is the core 
of anxiety and depression (Fredrickson, 2003; Rackoff & Newman, 
2020). For example, anxious individuals who reported positive emotions 
were less likely to engage in avoidance (Chow et al., 2017; Trew & 
Alden, 2012). Lastly, positive affect is believed to foster social connec-
tions, which lower the likelihood of mental disorders (Fredrickson, 
2003; Jacobson & Lord, & Newman, 2017). This has led some to suggest 
that positive emotions set off "upward spirals" in mental health (Garland 
et al., 2010).

Greater number of sessions with a mental health professional in the 
past 12 months was a predictor of nonrecovery nine years later. How-
ever, it had a relatively small influence on the model’s predictions of 
nonrecovery, as indicated by a mean absolute SHAP value of 0.05. In-
dividuals with more consultations may have been struggling with more 
severe or treatment-resistant forms of GAD. One possible explanation is 
that these individuals may not have been receiving adequate evidence- 
based treatments, such as cognitive-behavioral therapy (CBT), which are 
effective in treating GAD (Borkovec et al., 2002; Newman et al., 2011). 
Alternatively, it could indicate that whereas evidence-based treatments 
were being provided, they may not have been fully effective for these 
individuals. Although CBT is considered a first-line treatment for GAD 
(Carpenter et al., 2018), it leads to substantial improvements in only 
about 50 % of people (Erickson & Newman, 2005; Newman et al., 2020).

The number of times seeing a medical professional in the past 12 
months played a smaller but significant role in nonrecovery at follow- 
up, with a mean absolute SHAP value of 0.02. More medical visits 
likely indicated comorbid chronic medical conditions as those with 
general medical conditions in the past year were almost twice as likely to 
have a concurrent anxiety disorder (Sareen et al., 2005). In addition, 
those with both anxiety and general medical conditions tended to have 
significantly worse outcomes than those with either anxiety or general 
medical conditions alone (El-Gabalawy et al., 2011). For example, 
among older individuals with chronic conditions such as cataracts, al-
lergies, and arthritis, those with anxiety reported worse mental and 
physical health (El-Gabalawy et al., 2011). Studies also revealed that 
individuals with both anxiety disorders and general medical conditions 
had a higher risk of suicidal ideation compared to those without a 
general medical condition (Raposo et al., 2014). In sum, the combina-
tion of general medical conditions and anxiety disorders leads to worse 
functioning compared to anxiety disorders or general medical condi-
tions alone (Norman & Lang, 2005). Understanding these outcomes is 
essential, especially considering the prevalence of anxiety disorders in 
some general medical conditions (Norman & Lang, 2005).

These variables represent a range of psychological and interpersonal 
factors and offer valuable insights into potential recovery or non-
recovery for individuals with GAD. Understanding what predicts re-
covery from GAD allows for appropriate interventions and treatment 
planning. Although no model can definitively determine who will 
recover and who will not, these predictors serve as essential tools in 
assessing the likelihood of recovery from GAD.

The elastic net model had a false positive rate of 24 %, indicating 
that the model incorrectly classified about one-fourth of the actual 
negative cases as positive, and a false negative rate of about 30 %, 
indicating that they incorrectly classified about one-third of actual 
positive cases as negative. Several factors may account for this obser-
vation. MIDUS is a naturalistic cohort study where participants were 
subjected to varying environmental stressors and treatments throughout 
the nine-year follow-up period. These varying exposures may have 
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influenced the outcomes over nine years.
To strengthen the generalizability of the findings, future research 

with larger sample sizes is required to ascertain whether the current 
results can be replicated. It should also aim to replicate similar outcomes 
using more diverse samples that encompass a wider variety of racial and 
ethnic groups. Additionally, the number of predictors in this study was 
relatively small compared to what is typically seen in machine learning 
studies that use larger datasets. Although our study utilized a compre-
hensive set of predictors from psychological, social, and biological do-
mains, existing research has also demonstrated the effectiveness of 
physiological data in classifying anxiety disorders. Studies utilizing 
electroencephalography (EEG) and electrocardiography (ECG) have 
shown promising results in accurately classifying anxiety (Baygin et al., 
2024; Sharma & Meena, 2024). These physiological measures provide 
valuable insights into anxiety’s neural and cardiac correlates, offering 
an additional dimension that could enhance the predictive power of a 
machine learning model. Moreover, individual item-level data may be 
worth looking at as potential predictors to add to the traditional 
aggregate sum scores approach. Notably, prior machine learning 
research has demonstrated the potential of social media data, such as 
Twitter, to predict the onset and duration of emotional disorders, as well 
as neuroimaging data to predict treatment response (Reece et al., 2017; 
Shin et al., 2013). Predictive accuracy may improve by including these 
kinds of data and collecting data more frequently throughout the 
follow-up period. Research points to GAD following a chronic course, 
with retrospective studies suggesting that this chronic pattern can last 
up to 20 years (Bruce et al., 2005; Keller, 2002; Rickels & Schweizer, 
1990). Although the current study focused on a 9-year follow-up, it may 
be necessary to consider the potential need for even longer tracking to 
fully understand the disorder’s trajectory and impact on recovery and 
nonrecovery.

Several limitations should be noted. GAD was examined at baseline 
and then at a nine-year follow-up, which makes it difficult to determine 
the duration of GAD over the nine years. Moreover, the diagnostic 
interview focused on the previous six months and was not conducted 
annually over nine years. Therefore, even if individuals in the study had 
GAD at baseline and the nine-year follow-up, it is not possible to know 
how long they had been experiencing GAD symptoms across the 9 years. 
For example, it is possible that some individuals had GAD at baseline, 
remitted, and then experienced GAD symptoms again at the nine-year 
follow-up mark. As such, caution is advised when interpreting the 
findings as indicative of the chronic nature of GAD since the data only 
sheds light on recovery or nonrecovery at a nine-year follow-up, without 
offering insights into remission or recurrence of GAD between the two- 
time points when GAD was assessed

To the best of our knowledge, this is the first study using a machine 
learning algorithm to assess predictors of longterm recovery or non-
recovery in GAD. This represents an innovative approach in the field of 
anxiety disorders that has mostly relied on clinical judgment to predict 
risk for GAD recovery or nonrecovery. The study incorporated a wide 
range of predictors, most of which were previously related to the course 
of GAD at the group level. A strength of our study was the imple-
mentation of an interpretable machine-learning model that selected 
essential features to understand individual factors related to 9-year re-
covery or nonrecovery of GAD. The results of our study can be used as a 
benchmark for further research, which will probably improve and hone 
prediction powers. It has long been argued that statistical modeling will 
outperform clinician judgment in prediction tasks, and optimal predic-
tive power is expected when statistical models and clinical interpreta-
tion are combined (Dwyer et al., 2018; Grove et al., 2000). As a result, 
clinical insights are increasingly being augmented by statistical models 
(Verma et al., 2021). As predictive models advance, they have the po-
tential to aid in the development of secondary preventative measures 
and focused treatment options. Clinicians can utilize predictive models 
to personalize treatments based on expected outcomes and 
individual-specific factors. Predictive models can also be used to identify 

which individuals are likely to recover or are at risk of developing 
chronic symptoms. This enables the provision of relapse prevention re-
sources, improving the overall efficiency of treatment. In the context of 
GAD, this study represents a noteworthy first step toward developing 
reliable machine learning-based predictions.
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