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Measures of intrinsic brain function at rest show promise as predictors of cognitive decline in humans, including EEGmetrics such as
individual α peak frequency (IAPF) and the aperiodic exponent, reflecting the strongest frequency of α oscillations and the relative
balance of excitatory/inhibitory neural activity, respectively. Both IAPF and the aperiodic exponent decrease with age and have been
associated with worse executive function and working memory. However, few studies have jointly examined their associations with
cognitive function, and none have examined their association with longitudinal cognitive decline rather than cross-sectional impair-
ment. In a preregistered secondary analysis of data from the longitudinal Midlife in the United States (MIDUS) study, we tested
whether IAPF and aperiodic exponent measured at rest predict cognitive function (N= 235; age at EEG recording M= 55.10,
SD = 10.71) over 10 years. The IAPF and the aperiodic exponent interacted to predict decline in overall cognitive ability, even after
controlling for age, sex, education, and lag between data collection time points. Post hoc tests showed that “mismatched” IAPF and
aperiodic exponents (e.g., higher exponent with lower IAPF) predicted greater cognitive decline compared to “matching” IAPF and
aperiodic exponents (e.g., higher exponent with higher IAPF; lower IAPF with lower aperiodic exponent). These effects were largely
driven by measures of executive function. Our findings provide the first evidence that IAPF and the aperiodic exponent are joint
predictors of cognitive decline frommidlife into old age and thus may offer a useful clinical tool for predicting cognitive risk in aging.
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Significance Statement

Measures of intrinsic brain function at rest assessed noninvasively from the scalp using electroencephalography (EEG) show
promise as predictors of cognitive decline in humans. Using data from 235 participants from the Midlife in the United States
(MIDUS) longitudinal study, we found two resting EEG markers (individual peak α frequency and aperiodic exponent) inter-
acted to predict cognitive decline over a span of 10 years. Follow-up analyses revealed that “mismatched”markers (i.e., high in
one and low in the other) predicted greater cognitive decline compared to “matching” markers. Because of the low cost and
ease of collecting EEG data at rest, the current research provides evidence for possible scalable clinical applications for iden-
tifying individuals at risk for accelerated cognitive decline.

Introduction
Measures of spontaneous (i.e., resting-state) neural activity yield
important insights into the intrinsic functioning of the brain. For
example, individual α peak frequency (IAPF), the frequency at
which power in the α band (i.e., 7–13 Hz) is the strongest, is neg-
atively correlated with age (Klimesch, 1997; Clark et al., 2004;
Finley et al., 2022; Merkin et al., 2023), and may reflect neuroan-
atomical differences and age-related changes in white matter
(Babiloni et al., 2008; Valdés-Hernández et al., 2010;
Kramberger et al., 2017). Across adulthood, higher IAPF is asso-
ciated with better performance on multiple metrics of cognitive
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function, including working memory, reading comprehension,
and a general intelligence factor (e.g., Klimesch, 1997;
Angelakis et al., 2004; Clark et al., 2004; Grandy et al., 2013a).

In addition to the periodic (i.e., oscillatory) activity found in
canonical EEG bands, aperiodic activity is present across all fre-
quencies. Aperiodic activity follows a 1/f function and can be
described by the slope of the function (referred to as the expo-
nent), and where the function crosses the y-axis (referred to as
the offset; Donoghue et al., 2020). The aperiodic exponent is
thought to correspond to the synchronized firing of neurons,
such that flatter spectra are indicative of reduced synchroniza-
tion, or greater neural noise (Voytek and Knight, 2015). Recent
data suggest that the aperiodic exponent is related to the ratio
of excitatory to inhibitory neural activity, such that flatter slopes
(i.e., smaller exponents) relate to greater excitatory to inhibitory
activity (Gao et al., 2017), while the offset is related to neural spik-
ing rates, such that greater spiking activity is reflected in greater
overall spectral power (Manning et al., 2009; Miller et al., 2012).
Although research on aperiodic activity is in its infancy, work has
associated aperiodic activity, particularly the aperiodic exponent,
with age and cognitive functioning, such that flatter spectra are
associated with older age (Voytek et al., 2015; Finley et al.,
2022; Merkin et al., 2023), physiological markers of cognitive
decline (Tran et al., 2020), reduced processing speed (Ouyang
et al., 2020), and mediates cross-sectional associations between
age and cognitive function (Voytek et al., 2015).

This study aims to answer two main research questions: (1) to
what extent are individual differences in the slope of the aperi-
odic exponent and IAPF measured at fronto-central sites associ-
ated with cognitive function in adults, both cross-sectionally and
longitudinally? (2) Is the slope of the aperiodic exponent or IAPF
more strongly associated with cognitive function in adults both
cross-sectionally and longitudinally?

To answer these questions, we examined the relationship
between aperiodic exponent and IAPF in preregistered analyses
with longitudinally assessed cognitive function in the Midlife in
the United States (MIDUS) dataset. Prior work with MIDUS
EEG data has found IAPF and aperiodic exponent are both neg-
atively correlated with age, such that older individuals have lower
IAPF and flatter aperiodic component slopes (Finley et al., 2022).
Prior analyses of the full MIDUS2 and MIDUS3 longitudinal
sample with Cognitive Project data found cross-sectional negative
relationships between cognitive performance and age (n=4,268;
Lachman et al., 2014) as well as longitudinal negative relationships

(n=2,518; Hughes et al., 2018), such that older adults showed a
steeper longitudinal decline. Sex was related to initial performance,
such that women performed better on the episodic memory factor
and men performed better on the executive functioning factor,
with no influence of sex on the rate of longitudinal change
(Hughes et al., 2018). The relationship between cognitive func-
tion and age was replicated in two subsamples (Hamm et al.,
2020, n= 732; Knight et al., 2020, n= 843). No work to date
has examined the MIDUS2 resting EEG data with any cognitive
data.

Materials and Methods
Preregistration of the following methods, hypotheses, and analyses are
publicly available on OSF at https://doi.org/10.17605/OSF.IO/WYUCA.

Code accessibility. All code used for all analyses and plots are publicly
available onOSF at https://doi.org/10.17605/OSF.IO/SR4MB. Additionally,
all data are available at https://midus.wisc.edu/data/index.php. The
demographic and cognitive task data are available through the MIDUS
Portal or via the University of Michigan's Inter-university Consortium
of Political and Social Research (ICPSR). The EEG data are available
upon request through the MIDUS Neuroimaging and Psychophysiology
Repository.

Participants. This study uses data from the MIDUS longitudinal
dataset, with variables collected during the MIDUS 2 Survey,
Cognitive, and Neuroscience Projects as well as MIDUS 3 Cognitive
Project. See Figure 1 for a diagram of the study design and participant
flow. Education, sex, and race demographics were collected during the
MIDUS 2 Survey Project, which was a prerequisite for participation in
additional MIDUS 2 Projects. As depicted in Figure 1, MIDUS 2 and
MIDUS 3 Cognitive Project are longitudinal and collected approximately
10 years apart (i.e., total lag;M= 9.71 years, SD= 0.92), while the MIDUS
2 Cognitive Project was completed before the MIDUS 2 Neuroscience
Project (M= 2.06 years, SD = 1.26). Additional details about the study
are available at http://midus.wisc.edu.

Based on our preregistered exclusion criteria, participants were
excluded if they had poor FOOOF algorithm fit [defined as more than
three standard deviations below the mean in R2 model fit for the frontal
composite (n= 4); see section Spectral parametrization: Fitting
Oscillations and 1/f (FOOOF) for more information], or had missing
data frommore than 50% of the frontal composite for any one EEGmea-
sure (note that no participants were excluded for this reason).
Additionally, participants needed to participate in at least one wave of
the Cognitive Project and have sufficient task data to compute at least
one cognitive function metric. Our final sample consisted of n= 235 par-
ticipants. See Table 1 for demographic information.

Figure 1. Participant flow and at which time point data were collected.
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Brief Test of Adult Cognition by Telephone (BTACT). During the
MIDUS 2 and MIDUS 3 Cognitive Project, participants completed the
Brief Test of Adult Cognition by Telephone (BTACT; Tun and
Lachman, 2006; Lachman et al., 2014; Hughes et al., 2018), which
includes seven neuropsychological tasks that load onto an episodic mem-
ory factor (immediate word list recall, delayed word list recall) and exec-
utive functioning factor (backward digit span, category verbal fluency,
number series, 30 s and counting task, stop and go switch task mixed tri-
als), as well as an overall BTACT composite score. The BTACT has good
construct validity and performs comparably to lab-based assessments
(Lachman et al., 2014). Participants’ performance on the BTACT (com-
posite and separate episodic memory and the executive functioning fac-
tors) were standardized to the MIDUS 2 sample scores (i.e., individual
task measures were z-scored within the retained sample) and averaged
across relevant tasks. BTACT scores were not computed for factors or
the overall composite if participants were missing data for one or more
tasks. See Lachman et al. (2014) for additional details on the BTACT
procedure.

EEG recording and preprocessing. Resting-state EEG data were
recorded in 1 min periods (3 min eyes open, 3 min eyes closed) using
a 128-channel geodesic net of Ag/AgCl electrodes encased in saline-
dampened sponges with an online vertex (Cz) reference [Electrical
Geodesics, Inc (EGI)]. Signals were amplified and sampled at 500 Hz
with an online bandpass filter (0.1–100 Hz, 16 bit precision). Offline
EEG data were filtered with a 60 Hz notch filter and 0.5 Hz high-pass
filter, bad channels were identified and removed, and bad sections of
data were identified and removed. A 20-component PCA/ICA was
used to visually identify and remove obvious blink, eye movement,
and other artifactual components. Bad channels were replaced using
a spherical spline interpolation. Data from the eyes open and eyes
closed conditions were collapsed for all analyses (Additional parallel
analyses were conducted on eyes open and eyes closed data separately.
Overall these analyses were consistent with the findings on the com-
bined data. These analyses are available on OSF at https://doi.org/10.
17605/OSF.IO/SR4MB) using a pre-registered fronto-central compos-
ite of F3/Fz/F4 analog channels (The fronto-central composite of F3/
Fz/F4 was comprised of the EGI GSN200 electrode montage
(Electrical Geodesics, Inc, 2007) sensors 12, 20, 21, 25, 29 (comprising
the analog for F3); sensors 4, 5, 118, 119, 124 (comprising the analog
for F4); and sensor 11 (comprising the analog for Fz). Note this is an
older montage than the EGI HydroCel nets). See Finley et al. (2022)
for additional details.

Spectral parametrization: fitting oscillations and 1/f (FOOOF). EEG
data were re-referenced to the average, and Cz was imputed before the
continuous resting data were epoched into 2 s segments with 50% over-
lap. Bad segments were rejected if there was a voltage deviation of
±100 µV in one or more channels. EEG spectral power was extracted
using a 2 s Hamming window padded by a factor of 2 from 0 to
250 Hz in 0.25 Hz increments for all sensors, then analyzed using
FOOOF 1.0.0 (Donoghue et al., 2020) to fit aperiodic and periodic com-
ponents from 2 to 40 Hz (estimated without a knee, peaks limited in
width from 1 to 6 Hz, minimum peak height of 0.05, relative peak

threshold of 1.5 standard deviations, and maximum of six peaks).
Aperiodic offset, exponent, and IAPF measures were extracted individu-
ally for the channels in the frontal F3/Fz/F4 ROI composite and then
averaged. See Finley et al. (2022) for additional details.

Experimental design and statistical analysis. A summary of preregis-
tered hypotheses and analyses are reported in Table 2 (As described in
the Table 1 note, analyses reported in the manuscript deviate from the
preregistered analyses, such that (A) after careful examination for possi-
ble interactions with education and finding none, we decided to include
education as a covariate instead of race, and (B) the specific equations
preregistered for analyses were overly conservative by including the
interaction between the covariates with wave, as well as splitting up lag
into separate terms instead of adding into a single term. These more con-
servative, complex analyses do not change the interpretations of our
findings. Because the results do not change regardless of covariates or
complexity of the analyses, we report the simplified analyses with educa-
tion here, and report the preregistered analyses as well as simplified anal-
yses with race instead of education as robustness checks on OSF,
available at https://doi.org/10.17605/OSF.IO/SR4MB). Additional details
are available in our preregistration (https://doi.org/10.17605/OSF.IO/
WYUCA). We used multilevel modeling implemented in R version
4.2.1 using the lmer() function within the lme4 package, which imple-
ments empirical Bayes slope estimation to handle missing data (Bates
et al., 2015; R Core Team, 2022).

As reported in our preregistration (https://doi.org/10.17605/OSF.IO/
WYUCA), we conducted a sensitivity analysis in G*Power 3.1. Based on
the most conservative estimate of complete data from our preregistration
of n= 207, we have 95% power to detect a Pearson's correlation of
r= 0.24. After our final sample size was known (n= 235), we conducted
a simulation sensitivity analysis in R based on our most complex prereg-
istered analysis in Hypothesis 7 (i.e., Hypothesis 7b and 7d, the interac-
tion between MIDUS wave, age, and EEG metric), and determined we
have 80% power to detect a small effect of B= 0.15. Simulation code is
available at https://doi.org/10.17605/OSF.IO/SR4MB.

We conducted all analyses on the full BTACT composite as well as
separately for the episodic memory and executive functioning factors
to explore if one or both of the BTACT factors are driving effects.
Parallel exploratory analyses on the associations with the aperiodic
offset are described on OSF at https://doi.org/10.17605/OSF.IO/
SR4MB. We also explored whether the aperiodic exponent or IAPF are
independently and uniquely associated with cognitive functioning, as
well as if there is an interaction between the aperiodic exponent and
IAPF associated with cognitive functioning, as follows:

Equation 4:
Level 1:

Cognitive Functionij = b0 + b1Waveij + mij,

Level 2:

b0 = g00 + g01Exponentj + g02IAPFj + g03T1Agej + g04Exponentj
∗ IAPFj + g05M2M3TotalLagj + g06Educationj + g07Sex+ 1j

,

b1 = g10 + g11Exponent+ g12IAPFj + g13T1Agej

+ g14Exponentj ∗ IAPFj.

Results
Descriptive statistics for all variables as well as zero-order corre-
lations are presented in Table 3. Additional robustness check
analyses are reported on OSF at https://doi.org/10.17605/OSF.
IO/SR4MB, including analyses without controlling for sex and
education and analyses accounting for the presence of twins
and siblings to control for genetic dependencies, and analyses
using a parietal electrode composite. None of these variations
on the analyses change the interpretations of the following
analyses.

Table 1. Participant demographics, n= 235

Age in years: MIDUS 2 Neuroscience
Project

Sex

M(SD) = 55.10 (10.71) Male 94 (40.0%)
Female 141 (60.0%)

36–49 85 (36.2%) Race
50–65 105 (44.7%) White 173 (73.6%)
66–83 45 (19.1%) Total black, indigenous, and

people of color (BIPOC)
62 (26.4%)

Education
High school or less 67 (29.3%)
Some college 70 (30.6%)
Bachelor's or higher 92 (40.2%)
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Table 2. Summary of preregistered hypotheses and analyses

Hypotheses Analytic plana Results

H1: Cognitive function at time 1
(indexed by the BTACT composite
score) will be negatively
associated with age.

H2: Within-person changes in
cognitive function (indexed by
time 1 to time 2 changes in BTACT
composite score) will be
moderated by age, such that older
age will be associated with
greater decline in cognitive
function between time 1 and 2.

Multilevel linear model controlling for education, sex, and lag between waves in years as follows:
Equation 1
Level 1:
Executive Functionij = b0 + b1Waveij + mij ,
Level 2:
b0 = g00 + g01T1Agej + g02TotalLagj + g03Educationj + g04Sex+ 1j ,
b1 = g10 + g11T1Agej ,

H1: Negative coefficient for the main effect of age at time 1 (i.e., g01).

H2: Negative coefficient for the interaction between
Age and wave (i.e., g11).

H1: Supported for
BTACT composite
and both executive
functioning and
episodic memory
subfactors.

H2: Not supported.

H3: Cognitive function at time 1
(indexed by the BTACT composite
score) will be positively associated
with aperiodic exponent, such
that flatter spectra will be
associated with poorer cognitive
function.

H4: Within-person changes in
cognitive function (indexed by
time 1 to time 2 changes in BTACT
composite score) will be
moderated by the aperiodic
exponent, such that flatter spectra
at time 1 will be associated with
greater decline in cognitive
function between time 1 and 2.

H5: Cognitive function at time 1
(indexed by the BTACT composite
score) will be positively associated
with IAPF, such that lower IAPF
will be associated with poorer
cognitive function.

H6: Within-person changes in
cognitive function (indexed by
time 1 to time 2 changes in BTACT
composite score) will be
moderated by IAPF, such that
lower IAPF at time 1 will be
associated with greater decline in
cognitive function between time 1
and 2.

Multilevel linear model controlling for education, sex, and lag between waves in years. The placeholder “EEG” is used to
represent the different EEG metrics included separately in each of the models as per hypotheses.
Equation 2
Level 1:
Cognitive Functionij = b0 + b1Waveij + mij ,
Level 2:
b0 = g00 + g01EEGj + g02TotalLagj + g03Educationj + g04Sex+ 1j ,
b1 = g10 + g11EEGj ,

H3: Significant positive coefficient for the EEG metric (i.e., g01) when aperiodic exponent is included in the model.

H4: Significant coefficient for the EEG by Wave interaction (i.e., g11) when aperiodic exponent is included in the model,
such that flatter aperiodic spectra associated with faster decline in cognitive function.

H5: Significant positive coefficient for the EEG metric (i.e., g01) when IAPF is included in the model.

H6: Significant coefficient for the EEG by wave interaction (i.e., g11) when IAPF is included in the model, such that lower
IAPF are associated with faster decline in cognitive function.

H3: Supported for
BTACT composite
and executive
functioning
subfactor.

H4: Not supported.

H5: Not supported.

H6: Supported for
BTACT composite.

H7: The relationships between the
aperiodic exponent, individual α
peak frequency, and cognitive
function outlined in H3–H6 will
be moderated by age, such that
greater cognitive decline will be
observed in older-aged
participants with flatter aperiodic
exponents and lower IAPF. This
hypothesis can be broken down
into 4 parts (a–d) as described in
the “Analytic Plan”.

Multilevel linear model controlling for education, sex, and lag between waves in years. The placeholder “EEG” is used to
represent the different EEG metrics we aim to include in each of the models.
Equation 3
Level 1:
Cognitive Functionij = b0 + b1Waveij + mij ,
Level 2:
b0 = g00 + g01EEGj + g02T1Agej + g03EEGj ∗ T1Agej + g04TotalLagj + g05Educationj + g06Sex+ 1j ,
b1 = g10 + g11EEGj + g12T1Agej + g13EEGj ∗ T1Agej + g14TotalLagj + g15Racej + g16Sex,
H7a: Significant coefficient for the interaction between the EEG by Age (i.e., g03) when aperiodic exponent is included in
the model, such that older individuals with flatter aperiodic spectra will show the poorest time 1 cognitive function.

H7b: Significant coefficient for the interaction between the EEG by Age (i.e., g03) when IAPF is included in the model, such
that older individuals with lower IAPF will show the poorest time 1 cognitive function.

H7c: Significant coefficient for the interaction between the EEG by Age by Wave (i.e., g13) when aperiodic exponent is
included in the model, such that older individuals with flatter aperiodic spectra will show the steepest decline in
cognitive function.

H7d: Significant coefficient for the interaction between the EEG by Age by Wave (i.e., g13) IAPF is included in the model,
such that older individuals with lower IAPF will show the steepest decline in cognitive function.

H7a: Not supported.

H7b: Not supported.

H7c: Not supported.

H7d: Not supported.

aThe exact preregistered analyses were overly complicated and conservative by including lag as two separate variables (instead of a linear addition into a single variable), as well as the interaction between covariates and wave.
Additionally, after extensive testing for possible interactions with education and finding none, we decided to include education as a more appropriate covariate than race. We report the preregistered analyses, which are consistent with
these findings, on OSF at https://doi.org/10.17605/OSF.IO/SR4MB.
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Time effects: Hypotheses 1 and 2
To test Hypothesis 1 (cognitive function at time 1 will be nega-
tively associated with age) and Hypothesis 2 (within-person
changes in cognitive function will be moderated by age), we con-
ducted a multilevel model as described in Table 2. Results are
reported in Table 4. Although age was significantly related to epi-
sodic memory, executive functioning, and overall BTACT com-
posite scores (p's < 0.010) in support of Hypothesis 1, the
age-by-wave interaction was not significant for any analysis,
(p's > 0.096), not supporting Hypothesis 2. Given our sample
size with Neuroscience, data (n = 235) is much smaller than the
smallest MIDUS subsample that previously reported an age by
wave interaction (e.g., n= 2,518; δEpisodic Memory =−0.010,
δExecutive Function =−0.012, (Hughes et al., 2018), we may have
been underpowered to detect this small interaction effect.

Aperiodic exponent effects: Hypotheses 3 and 4
To test Hypothesis 3 (cognitive function at time 1 will be posi-
tively associated with aperiodic exponent) and Hypothesis 4
(within-person changes in cognitive function will be moderated

by aperiodic exponent), we conducted a multilevel model as
described in Table 2. Results are reported in Table 5. We
observed a positive association between the aperiodic exponent
and the overall BTACT composite score (p= 0.018), such that
larger aperiodic exponents were associated with better cognitive
function, consistent with Hypothesis 3. This association
appeared to be primarily driven by the executive function factor
(p= 0.012), while the effect for the episodic memory factor was in
the same direction but not-significant (p= 0.254). However,
flatter spectra at time 1 was not associated with greater declines
in cognitive function, p's > 0.120, not supporting Hypothesis 4.

Individual α peak frequency effects: Hypotheses 5 and 6
To test Hypothesis 5 (cognitive function at time 1 will be posi-
tively associated with IAPF) and Hypothesis 6 (within-person
changes in cognitive function will be moderated by IAPF, such
that lower IAPF at time 1 will be associated with greater decline
in cognitive function), we conducted a multilevel model as
described in Table 2. Results are reported in Table 6.
Hypothesis 5 was not supported. The effect of IAPF on episodic

Table 4. Multilevel models to test Hypotheses 1 and 2

Predictors

Episodic memory Executive functioning BTACT composite

Estimates 95% CI P Estimates 95% CI p Estimates 95% CI p

Intercept (M2) −0.43 −0.60 to −0.26 <0.001 −0.07 −0.19 to 0.05 0.256 −0.12 −0.23 to −0.01 0.028
MIDUS wave −0.13 −0.26 to −0.00 0.043 −0.43 −0.50 to −0.36 <0.001 −0.38 −0.45 to −0.31 <0.001
Age −0.02 −0.03 to −0.01 0.001 −0.02 −0.03 to −0.02 <0.001 −0.02 −0.03 to −0.02 <0.001
Sex 0.74 0.53 to 0.94 <0.001 0.11 −0.03 to 0.26 0.128 0.22 0.08 to 0.35 0.001
Education 0.17 0.04 to 0.29 0.008 0.13 0.05 to 0.21 0.001 0.14 0.06 to 0.21 0.001
Lag between waves −0.10 −0.21 to 0.01 0.073 −0.21 −0.29 to −0.14 <0.001 −0.20 −0.27 to −0.13 <0.001
MIDUS wave × age −0.01 −0.02 to 0.00 0.096 0.00 −0.01 to 0.01 0.994 −0.00 −0.01 to 0.01 0.707
Random effects
σ2 0.46 0.16 0.14
τ00 0.38 M2ID 0.22 M2ID 0.19 M2ID

ICC 0.45 0.59 0.58
N 234 M2ID 235 M2ID 234 M2ID

Observations 451 458 443
Marginal R2/conditional R2 0.195/0.559 0.292/0.707 0.311/0.708

Repeated measured cognitive data nested within participant, indicated by M2ID. Sex coded as 0 = male, 1 = female. Education coded as −1 = high school or less, 0 = some college, 1 = bachelor's degree or higher. MIDUS wave coded
as 0 = MIDUS 2, 1 = MIDUS 3. Years between waves (i.e., between MIDUS 2 and MIDUS 3 Cognitive Projects) and age at M2 Neuroscience Project are mean centered. Empirical Bayes slope estimation used (Bates et al., 2015).
Bold values are significant at p< .05.

Table 5. Multilevel models to test Hypotheses 3 and 4

Predictors

Episodic memory Executive functioning BTACT composite

Estimates 95% CI p Estimates 95% CI p Estimates 95% CI p

Intercept (M2) −0.41 −0.59 to −0.23 <0.001 −0.05 −0.18 to 0.08 0.450 −0.11 −0.23 to 0.01 0.085
MIDUS wave −0.13 −0.26 to 0.00 0.051 −0.43 −0.51 to −0.36 <0.001 −0.38 −0.45 to −0.31 <0.001
Exponent 0.26 −0.19 to 0.71 0.254 0.40 0.09 to 0.71 0.012 0.39 0.10 to 0.68 0.009
Sex 0.71 0.49 to 0.93 <0.001 0.08 −0.08 to 0.24 0.306 0.19 0.04 to 0.34 0.012
Education 0.17 0.04 to 0.30 0.008 0.13 0.04 to 0.21 0.003 0.13 0.05 to 0.21 0.002
Lag between waves −0.08 −0.19 to 0.04 0.187 −0.19 −0.28 to −0.11 <0.001 −0.18 −0.26 to −0.10 <0.001
Wave × exponent −0.02 −0.48 to 0.44 0.926 −0.21 −0.47 to 0.05 0.120 −0.16 −0.42 to 0.09 0.204
Random effects
σ2 0.47 0.15 0.14
τ00 0.44 M2ID 0.28 M2ID 0.25 M2ID

ICC 0.48 0.65 0.65
N 234 M2ID 235 M2ID 234 M2ID

Observations 451 458 443
Marginal R2/Conditional R2 0.136/0.551 0.179/0.710 0.182/0.710

Repeated measured cognitive data nested within participant, indicated by M2ID. Sex coded as 0 = male, 1 = female. Education coded as −1 = high school or less, 0 = some college, 1 = bachelor's degree or higher. MIDUS wave coded
as 0 = MIDUS 2, 1 = MIDUS 3. Years between waves (i.e., between MIDUS 2 and MIDUS 3 Cognitive Projects) and age at M2 Neuroscience Project are mean centered. Empirical Bayes slope estimation used (Bates et al., 2015).
Bold values are significant at p< .05.
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memory scores, executive function, or the overall composite were
not significant, p's > 0.055. However, the direction of the coeffi-
cients were in the predicted direction. Hypothesis 6 was sup-
ported and in the predicted direction (p= 0.047), such that
lower IAPF at time 1 were associated with greater declines in cog-
nitive function as depicted in Figure 2.

Moderation of EEG metrics by age: Hypothesis 7
To test Hypothesis 7a (older individuals with lower aperiodic
exponents will show the poorest time 1 cognitive function) and
Hypothesis 7c (older individuals with lower aperiodic exponents
will show the steepest decline in cognitive function), we con-
ducted a multilevel model as described in Table 2. Results are
reported in Table 7. Hypothesis 7a was not confirmed as the
interaction between aperiodic exponent and age was nonsignifi-
cant for all BTACT scores, p's > 0.632. Hypothesis 7c was not
supported as the wave by aperiodic exponent by age interaction
was nonsignificant, p's > 0.201.

To test Hypothesis 7b (older individuals with lower IAPF will
show the poorest time 1 cognitive function) and Hypothesis 7d
(older individuals with lower IAPF will show the steepest decline
in cognitive function), we conducted a multilevel model as
described in Table 2. Results are reported in Table 8.
Hypothesis 7b was not confirmed as the interaction between
IAPF and age was nonsignificant for all BTACT scores, p's > 0.374.
Hypothesis 7c was not significant as the wave by IAPF by age
interaction was nonsignificant, p's > 0.301.

Combined effects of aperiodic exponent and individual peak α
frequency: Exploratory analysis
We also explored whether the aperiodic exponent or IAPF are
independently and uniquely associated with cognitive function-
ing, as well as if there was an interaction between the aperiodic
exponent and IAPF associated with cognitive functioning.
Results of these analyses are in Table 9. There was a significant
wave by aperiodic exponent by IAPF interaction on the overall
BTACT composite (p= 0.010), which was driven primarily by
the executive functioning factor (p= 0.013). These interactions
are plotted in Figure 3 with 95% confidence bands.

As shown in Table 10, we examined the 3-way interaction by
calculating the slope of the change in cognitive function over
waves by each EEG metric while holding the other EEG metric
constant at a low or high level by centering each EEG metric
separately at low (−1 SD below the mean) and high (+1 above
the mean). This is computationally equivalent to simple slopes
analyses in regression (Aiken andWest, 1991) at the second level
of the multilevel model, and represents the slopes of the lines in
Figure 2. More specifically, after centering one EEG metric at the
low or high level, we examined the g14 term from Equation 4.
These analyses suggest that for individuals who have higher ape-
riodic exponents, having higher IAPF is associated with less
decline in the BTACT overall composite (b= 0.15, p= 0.002)
driven primarily by the executive function factor (b= 0.15, p=
0.004), whereas there was no significant relationship between
IAPF and cognitive decline for individuals with low aperiodic

Table 6. Multilevel models to test Hypotheses 5 and 6

Predictors

Episodic memory Executive functioning BTACT composite

Estimates 95% CI P Estimates 95% CI p Estimates 95% CI p

Intercept (M2) −0.40 −0.57 to −0.22 <0.001 −0.03 −0.16 to 0.09 0.596 −0.09 −0.21 to 0.03 0.146
MIDUS wave −0.13 −0.25 to 0.00 0.052 −0.43 −0.51 to −0.36 <0.001 −0.38 −0.45 to −0.31 <0.001
IAPF 0.12 −0.00 to 0.25 0.055 0.07 −0.02 to 0.16 0.115 0.08 −0.00 to 0.16 0.058
Sex 0.68 0.47 to 0.89 <0.001 0.06 −0.10 to 0.21 0.469 0.16 0.02 to 0.31 0.030
Education 0.17 0.05 to 0.30 0.007 0.14 0.05 to 0.22 0.002 0.13 0.05 to 0.21 0.001
Lag between waves −0.06 −0.17 to 0.06 0.326 −0.17 −0.26 to −0.09 <0.001 −0.16 −0.24 to −0.08 <0.001
Wave × IAPF 0.07 −0.06 to 0.20 0.281 0.07 −0.00 to 0.15 0.061 0.07 0.00 to 0.14 0.047
Random effects
σ2 0.47 0.15 0.13
τ00 0.42 M2ID 0.28 M2ID 0.25 M2ID

ICC 0.47 0.64 0.65
N 234 M2ID 235 M2ID 234 M2ID

Observations 451 458 443
Marginal R2/conditional R2 0.156/0.553 0.188/0.711 0.196/0.715

Repeated measured cognitive data nested within participant, indicated by M2ID. Sex coded as 0 = male, 1 = female. Education coded as −1 = high school or less, 0 = some college, 1 = bachelor's degree or higher. MIDUS wave coded
as 0 = MIDUS 2, 1 = MIDUS 3. Years between waves (i.e., between MIDUS 2 and MIDUS 3 Cognitive Projects) and age at M2 Neuroscience Project are mean centered. Empirical Bayes slope estimation used (Bates et al., 2015).
Bold values are significant at p< .05.

Figure 2. Wave by individual peak α frequency interaction plot. Plot depicting the two-way interaction wave × individual peak α frequency reported in Table 6 with 95% confidence interval
error bars. Time 1 cognition assessed at MIDUS2 Cognitive Project, and time 2 cognition was assessed at the MIDUS 3 Cognitive Project.
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exponents. For individuals with low IAPF, having a steeper ape-
riodic exponent is associated with faster cognitive decline for the
overall BTACT composite (b=−0.36, p= 0.025) driven primarily
by the executive function factor (b=−0.42, p= 0.013), whereas
there was no significant relationship between aperiodic exponent
and cognitive decline for individuals with high IAPF. Put another
way, this suggests that individuals with “mismatched” IAPF and
aperiodic exponents (e.g., higher exponent with lower IAPF)
tend to experience faster rates of cognitive decline over a
10-year period compared to individuals with “matching” IAPF
and aperiodic exponents (e.g., higher exponent with higher
IAPF; lower IAPF with lower aperiodic exponent). As shown
in Figure 3, the pattern of association is similar in direction for

episodic memory, although the interaction fails to reach signifi-
cance. This may be because there was substantially less decline
in episodic memory performance (M=−0.11) than in executive
function in performance (M=−0.44) in standardized units, lim-
iting our power to detect an effect.

Discussion
In the current study, we investigated the role of periodic and ape-
riodic neural activity at rest measured from fronto-central sites in
predicting cognitive decline in midlife and old age community
dwelling adults. Due to their strong associations with age and
cognitive impairment, we focused on the individual peak α fre-
quency, or the frequency at which α oscillations peak (i.e.,

Table 7. Multilevel models to test Hypotheses 7a and 7c

Predictors

Episodic memory Executive functioning BTACT composite

Estimates 95% CI P Estimates 95% CI p Estimates 95% CI p

Intercept (M2) −0.44 −0.62 to −0.26 <0.001 −0.06 −0.18 to 0.06 0.340 −0.12 −0.23 to −0.00 0.046
MIDUS wave −0.11 −0.24 to 0.03 0.122 −0.43 −0.50 to −0.35 <0.001 −0.38 −0.46 to −0.31 <0.001
Exponent 0.07 −0.38 to 0.52 0.748 0.16 −0.14 to 0.46 0.304 0.15 −0.13 to 0.43 0.290
Age −0.02 −0.03 to −0.01 0.002 −0.02 −0.03 to −0.01 <0.001 −0.02 −0.03 to −0.01 <0.001
Sex 0.73 0.52 to 0.94 <0.001 0.11 −0.04 to 0.26 0.140 0.22 0.08 to 0.36 0.002
Education 0.16 0.04 to 0.29 0.010 0.13 0.05 to 0.21 0.002 0.13 0.06 to 0.21 0.001
Lag between waves −0.10 −0.21 to 0.01 0.080 −0.22 −0.29 to −0.14 <0.001 −0.20 −0.27 to −0.13 <0.001
Wave × exponent −0.14 −0.62 to 0.33 0.557 −0.23 −0.50 to 0.05 0.104 −0.19 −0.45 to 0.08 0.166
Wave × age −0.01 −0.02 to 0.00 0.122 −0.00 −0.01 to 0.01 0.687 −0.00 −0.01 to 0.00 0.476
Exponent × age −0.01 −0.06 to 0.04 0.677 0.01 −0.02 to 0.04 0.632 0.01 −0.02 to 0.03 0.695
Wave × exponent × age 0.03 −0.02 to 0.08 0.201 0.00 −0.02 to 0.03 0.755 0.00 −0.02 to 0.03 0.858
Random effects
σ2 0.46 0.16 0.14
τ00 0.39 M2ID 0.22 M2ID 0.19 M2ID

ICC 0.46 0.59 0.58
N 234 M2ID 235 M2ID 234 M2ID

Observations 451 458 443
Marginal R2/conditional R2 0.195/0.563 0.294/0.710 0.311/0.710

Repeated measured cognitive data nested within participant, indicated by M2ID. Sex coded as 0 = male, 1 = female. Education coded as −1 = high school or less, 0 = some college, 1 = bachelor's degree or higher. MIDUS wave coded
as 0 = MIDUS 2, 1 = MIDUS 3. Years between waves (i.e., between MIDUS 2 and MIDUS 3 Cognitive Projects) and age at M2 Neuroscience Project are mean centered. Empirical Bayes slope estimation used (Bates et al., 2015).
Bold values are significant at p< .05.

Table 8. Multilevel models to test Hypotheses 7b and 7d

Predictors

Episodic memory Executive functioning BTACT

Estimates 95% CI p Estimates 95% CI p Estimates 95% CI p

Intercept (M2) −0.42 −0.59 to −0.24 <0.001 −0.06 −0.18 to 0.06 0.360 −0.11 −0.22 to 0.00 0.052
MIDUS wave −0.13 −0.26 to 0.00 0.057 −0.44 −0.52 to −0.36 <0.001 −0.39 −0.46 to −0.32 <0.001
IAPF 0.08 −0.05 to 0.21 0.225 0.01 −0.07 to 0.10 0.797 0.02 −0.06 to 0.10 0.610
Age −0.02 −0.03 to −0.01 0.005 −0.02 −0.03 to −0.02 <0.001 −0.02 −0.03 to −0.02 <0.001
Sex 0.72 0.51 to 0.93 <0.001 0.11 −0.04 to 0.25 0.145 0.21 0.08 to 0.35 0.002
Education 0.17 0.04 to 0.29 0.009 0.14 0.06 to 0.22 0.001 0.14 0.06 to 0.21 <0.001
Lag between waves −0.09 −0.20 to 0.02 0.116 −0.21 −0.29 to −0.13 <0.001 −0.19 −0.26 to −0.12 <0.001
Wave × IAPF 0.05 −0.09 to 0.18 0.483 0.07 −0.01 to 0.15 0.071 0.07 −0.01 to 0.14 0.076
Wave × age −0.01 −0.02 to 0.00 0.165 0.00 −0.01 to 0.01 0.741 −0.00 −0.01 to 0.01 0.994
IAPF × age 0.00 −0.01 to 0.01 0.836 0.00 −0.00 to 0.01 0.350 0.00 −0.00 to 0.01 0.374
Wave × IAPF × age 0.00 −0.01 to 0.01 0.896 −0.00 −0.01 to 0.00 0.301 −0.00 −0.01 to 0.00 0.379
Random effects
σ2 0.47 0.15 0.14
τ00 0.38 M2ID 0.22 M2ID 0.19 M2ID

ICC 0.45 0.59 0.58
N 234 M2ID 235 M2ID 234 M2ID

Observations 451 458 443
Marginal R2/conditional R2 0.203/0.559 0.298/0.713 0.318/0.715

Repeated measured cognitive data nested within participant, indicated by M2ID. Sex coded as 0 = male, 1 = female. Education coded as −1 = high school or less, 0 = some college, 1 = bachelor's degree or higher. MIDUS wave coded
as 0 = MIDUS 2, 1 = MIDUS 3. Years between waves (i.e., between MIDUS 2 and MIDUS 3 Cognitive Projects) and age at M2 Neuroscience Project are mean centered. Empirical Bayes slope estimation used (Bates et al., 2015).
Bold values are significant at p< .05.
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IAPF), and the slope of 1/f-like nonoscillatory (i.e., the aperiodic
exponent) activity computed from a composite of frontal sites.
Using a sample across the adult lifespan (age range 36–83 years
at time of EEG assessment), we showed that the fronto-central
aperiodic exponent was related to cognitive function, such that
flatter aperiodic exponents were related to worse cognitive func-
tion overall (e.g., Hypothesis 3, Table 5). Additionally, IAPF was

predictive of cognitive decline over approximately 10 years, such
that lower IAPF was associated with more cognitive decline (e.g.,
Hypothesis 6, Table 6). However, our exploratory analyses dem-
onstrated that the relationships between aperiodic exponent,
IAPF, and cognitive decline was moderated by the interaction
between the fronto-central IAPF and fronto-central aperiodic
exponent: decline was more severe in participants with

Table 9. Multilevel models examine the interaction between aperiodic exponent and individual peak α frequency

Predictors

Episodic memory Executive functioning BTACT

Estimates 95% CI p Estimates 95% CI p Estimates 95% CI p

Intercept (M2) −0.43 −0.60 to −0.25 <0.001 −0.07 −0.19 to 0.05 0.228 −0.13 −0.24 to −0.02 0.024
MIDUS wave −0.12 −0.25 to 0.01 0.069 −0.41 −0.49 to −0.34 <0.001 −0.37 −0.44 to −0.30 <0.001
Exponent 0.06 −0.41 to 0.53 0.802 0.13 −0.19 to 0.45 0.417 0.13 −0.17 to 0.42 0.393
IAPF 0.07 −0.06 to 0.20 0.269 0.02 −0.07 to 0.11 0.634 0.03 −0.05 to 0.11 0.482
Age −0.02 −0.03 to −0.01 <0.001 −0.02 −0.03 to −0.02 <0.001 −0.02 −0.03 to −0.02 <0.001
Sex 0.73 0.52 to 0.94 <0.001 0.11 −0.03 to 0.26 0.135 0.22 0.08 to 0.35 0.002
Education 0.17 0.05 to 0.30 0.007 0.14 0.06 to 0.22 0.001 0.14 0.07 to 0.22 <0.001
Lag between waves −0.09 −0.21 to 0.02 0.116 −0.21 −0.29 to −0.13 <0.001 −0.20 −0.27 to −0.12 <0.001
Wave × exponent 0.09 −0.39 to 0.58 0.714 −0.08 −0.36 to 0.19 0.546 −0.03 −0.29 to 0.23 0.826
Wave × IAPF 0.07 −0.06 to 0.20 0.314 0.06 −0.02 to 0.13 0.146 0.06 −0.01 to 0.13 0.118
Exponent × IAPF −0.07 −0.51 to 0.38 0.773 −0.15 −0.44 to 0.15 0.327 −0.14 −0.42 to 0.13 0.316
Wave × exponent × IAPF 0.20 −0.26 to 0.67 0.397 0.34 0.07 to 0.61 0.013 0.33 0.08 to 0.59 0.010
Random effects
σ2 0.47 0.15 0.13
τ00 0.38 M2ID 0.23 M2ID 0.19 M2ID

ICC 0.44 0.60 0.59
N 234 M2ID 235 M2ID 234 M2ID

Observations 451 458 443
Marginal R2/conditional R2 0.202/0.557 0.302/0.722 0.323/0.724

Repeated measured cognitive data nested within participant, indicated by M2ID. Sex coded as 0 = male, 1 = female. Education coded as −1 = high school or less, 0 = some college, 1 = bachelor's degree or higher. MIDUS wave coded
as 0 = MIDUS 2, 1 = MIDUS 3. Years between waves (i.e., between MIDUS 2 and MIDUS 3 Cognitive Projects) and age at M2 Neuroscience Project are mean centered. Empirical Bayes slope estimation used (Bates et al., 2015).
Bold values are significant at p< .05.

Figure 3. Wave by aperiodic exponent by individual peak α frequency interaction plot. Plot depicting the three-way interaction wave × aperiodic exponent × individual peak α frequency
reported in Table 9, with wave depicted as the estimated change in cognitive function between the M2 and M3 Cognitive Projects.
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“mismatched”measures (e.g., higher exponent with lower IAPF)
compared to participants with “matching”measures (e.g., higher
exponent with higher IAPF; lower IAPF with lower aperiodic
exponent). Importantly, our results provide support for recent
work and theoretical models that have linked both IAPF and
the aperiodic exponent to individual differences in cognitive
function and provide the first evidence that these measures of
intrinsic brain function interact to predict cognitive decline
and not just impairment.

The declines in cognitive function associated with the IAPF
and aperiodic exponent were largely driven by the executive
function component of the BTACT. This may be due to the rel-
atively modest decline in the episodic memory component
resulting in a floor effect due to relatively restricted range of epi-
sodic memory decline. Alternatively, it may be that our choice of
fronto-central sites is uniquely sensitive to changes in executive
functioning as they are closer to prefrontal cortex regions.
Additional research in samples with larger declines in episodic
memory are needed to begin to tease apart these possibilities.

In previous studies, age-related slowing of IAPF (e.g., Grandy
et al., 2013b; Scally et al., 2018), and slower IAPF in general, have
been consistently associated with reduced processing speed,
poorer working memory, and reduced cognitive capacity
(Grandy et al., 2013a). The age-related slowing of α has been
linked to alterations in inhibitory neural processes (e.g., the tim-
ing of neural inhibition), with the slowing observed in older
adults attributed to an array of CNS pathology (e.g., vascular
changes, white-matter lesions), as well as linked to mild and
severe cognitive impairment (Babiloni et al., 2008; Kramberger
et al., 2017). The frequency of α oscillations is also instrumental
in the “gating” of stimuli, with relatively slower IAPF being
observed in individuals who struggle to rapidly adjust their atten-
tion to novel or task-relevant stimuli (Ramsay et al., 2021).
However, previous work has almost exclusively focused on vari-
ations in the speed of oscillatory activity. While there was a sign-
ificant IAPF by wave interaction, such that individuals with
higher IAPF showed less cognitive decline, it was moderated by
the higher-order aperiodic exponent by IAPF by wave

interaction. This three-way interaction suggests that considering
IAPF alone provides an incomplete understanding of neural
activity and cognitive decline, and that consideration of nonoscil-
latory, aperiodic activity is also necessary.

Current models of the aperiodic exponent propose that indi-
vidual differences – and state differences – in the aperiodic expo-
nent size reflect excitatory/inhibitory balance (Gao et al., 2017;
Waschke et al., 2021). Within this framework, relatively flatter
slopes (i.e., smaller exponents) are associated with poorer cogni-
tive performance due to the propagation of relatively dysregu-
lated excitatory activity, which manifests in “noisier,” less
efficient processing (Voytek et al., 2015; Dave et al., 2018;
Pertermann et al., 2019). Our findings are broadly consistent
with this perspective, with flatter exponents predicting overall
reduced executive function and BTACT scores, but highlight
the need to consider periodic oscillatory activity in conjunction
with aperiodic metrics.

Simultaneous EEG/fMRI eyes-open resting recordings have
found that the aperiodic exponent is related to increased
BOLD signal in the auditory-salience-cerebellar network (includ-
ing components of the salience network), and decreased BOLD
signal in prefrontal networks, suggesting that steeper aperiodic
exponents may be associated with increased arousal and/or
increased attention to external stimuli (Jacob et al., 2021). It
may be the case that individuals with “mismatched” aperiodic
exponent and IAPF reflect a suboptimal balance between arousal
and attention to external stimuli (indexed by the aperiodic expo-
nent) with the ability to flexibly gate external stimuli (indexed by
the IAPF) to perform complex cognitive tasks. Future research
should attend to this possibility and examine if there are differ-
ences in the neurobiological mechanisms underlying increased
rates of decline between individuals with low aperiodic expo-
nents plus high IAPF versus individuals with high aperiodic
exponents plus low IAPF and if these differences may signal
different underlying pathologies or vulnerabilities.

While our work focused on periodic and aperiodic measures
at rest, recent work suggests that the aperiodic exponent may
change in response to a stimulus itself, consistent with an
increase in inhibitory activity with an increase in attentional
demand, independent from ERPs elicited by the stimulus. This
suggests flexible shifts in the aperiodic exponent in response to
task demandsmay be important for attention and cognitive func-
tion (Gyurkovics et al., 2022). Future work would benefit from
exploration of whether flexible adjustments in aperiodic activity
during tasks are integral to long-term cognitive function and
decline and whether any role changes in IAPF during a task
may play in moderating these effects.

Given research into the aperiodic exponent is in its infancy, it
is unclear exactly why a high exponent paired with a low IAPF
would be associated with increased rates of cognitive decline. It
may be that the optimal excitatory/inhibitory balance reflected
in the aperiodic exponent is not uniformly consistent across par-
ticipants, but may vary with IAPF, such that higher aperiodic
exponents may not always be better. Alternatively, excitatory/
inhibitory balance can be shifted in complex ways between and
across neural circuits, and the same endpoint may be achieved
from reduction in excitatory activity or an increase in inhibitory
activity, or some combination of both (Sohal and Rubenstein,
2019). It is possible that age-related slowing of IAPFmay be asso-
ciated with specific patterns of changes in inhibitory and or excit-
atory activity, such that lower IAPF associated with higher
aperiodic exponents may reflect a suboptimal shift in activity.
Future research would benefit from examining IAPF and

Table 10. Examining the wave × aperiodic exponent × individual peak α frequency
interaction through the slope of the change in cognitive function over waves for
each BTACT measure at high and low levels of each EEG metric

Change in BTACT episodic memory factor from M2 to M3
Slope of IAPF 95% CI p-value

Low exponent (−1 SD) 0.01 −0.18 to 0.20 0.903
High exponent (+1 SD) 0.12 −0.05 to 0.30 0.173

Slope of exponent 95% CI p-value
Low IAPF (−1 SD) −0.11 −0.67 to 0.45 0.709
High IAPF (+1 SD) 0.29 −0.47 to 1.05 0.457
Change in BTACT executive functioning factor from M2 to M3

Slope of IAPF 95% CI p-value
Low exponent (−1 SD) −0.04 −0.15 to 0.07 0.482
High exponent (+1 SD) 0.15 0.05 to 0.25 0.004

Slope of exponent 95% CI p-value
Low IAPF (−1 SD) −0.42 −0.75 to −0.09 0.013
High IAPF (+1 SD) 0.25 −0.17 to 0.67 0.244
Change in BTACT overall composite from M2 to M3

Slope of IAPF 95% CI p-value
Low exponent (−1 SD) −0.04 −0.14 to 0.07 0.502
High exponent (+1 SD) 0.15 0.05 to 0.25 0.002

Slope of exponent 95% CI p-value
Low IAPF (−1 SD) −0.36 −0.67 to −0.04 0.025
High IAPF (+1 SD) 0.30 −0.11 to 0.70 0.149

Bold values are significant at p< .05.

10 • J. Neurosci., March 27, 2024 • 44(13):e1332232024 Finley et al. • Resting EEG Components Predict Cognitive Decline



aperiodic exponent in normally and pathologically aging partic-
ipants to begin to tease apart these potential explanations and to
determine when – or if – these shifts reflect pathological aging.
Future work should also focus on better understanding what is
causing age-related shifts in IAPF and how this may impact excit-
atory/inhibitory balance.

Overall, our findings challenge a simplistic view of the neuro-
behavioral and neuropsychological consequences of varied aperi-
odic and periodic activity. On one hand, gradual flattening is
typically associated with poorer performance – potentially
reflecting an excess of excitatory to inhibitory activity, resulting
in elevated noise. However, many diseases, such as Parkinson's
disease, are characterized by an excess of inhibitory activity,
and previous studies have emphasized that excessive inhibitory
activity reduces behavioral flexibility (Song et al., 2021;
Vinding et al., 2022; McKeown et al., 2023). These results hint
at the importance of considering excitatory/inhibitory balance
within an individual differences context, as what is optimal
may differ based on a variety of neuroanatomical and physiolog-
ical parameters.

Our findings are particularly striking given the nearly 10 year
span between data collection waves. This suggests that EEG rest-
ing measures of periodic and aperiodic neural activity may be a
promising biomarker for predicting who is at risk for cognitive
decline. Given the relative ease and low cost of collecting EEG
data, these metrics could be easily scalable to provide important
information to clinicians for early interventions in a rapidly aging
population. However, our sample is relatively modest in size and
is composed of community-dwelling aging individuals who are
able and willing to travel to participate in a multi-component
study. Future work is needed to replicate these results in addi-
tional samples as well as investigate these measures in a variety
of clinical samples and samples varying in demographic charac-
teristics (including but not limited to race, ethnicity, education,
and socioeconomic status) to further investigate the utility of
IAPF and aperiodic exponent as a risk factor for accelerated cogni-
tive decline. Particularly important would be a longitudinal study
with repeated EEG and cognitive assessments completed at smaller
time lags to assess when in aging measures of IAPF and aperiodic
exponent signal increase the risk of cognitive decline.

Our results are, however, limited by the lack of resting EEG
measures at both time points. Although the MIDUS 3
Neuroscience Project was recently completed, EEG data were
not recorded. The lack of a second measurement point prevents
us from partialling out the variance associated with longitudinal
change in aperiodic activity and IAPF and examining whether
this predicts a change in cognitive function. Moreover, we are
unable to examine how individual differences in EEG predict
cognitive change independently from the intra-individual
changes. Given the substantial age-related differences (Hill et
al., 2022; Merkin et al., 2023) and changes (Chini et al., 2022)
in aperiodic activity and IAPF, we anticipate that the inclusion
of a second measurement point would increase the sensitivity
of our model.

In summary, our study highlights the importance of consider-
ing periodic and aperiodic measures in combination when exam-
ining resting-state EEG and measures of cognitive decline. In
particular, a “mismatch” between low IAPF and high aperiodic
exponent is associated with faster rates of cognitive decline
over 10 years. Once considered meaningless, invariant noise,
the features of the 1/f aperiodic neural activity are being recog-
nized as an important feature of EEG signals, potentially reflect-
ing global excitatory/inhibitory balance. Our work further

emphasizes that aperiodic activity is a critical feature of EEG sig-
nals and needs to be systematically investigated in conjunction
with more typical periodic features, to fully understand the links
between neural activity and cognition across the lifespan.

Data Availability Statement
Data are available at https://midus.wisc.edu/data/index.php. All
code used for all analyses and plots are publicly available on OSF
at https://doi.org/10.17605/OSF.IO/SR4MB. Preregistration of
analyses are available at https://doi.org/10.17605/OSF.IO/WYUCA.
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