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Abstract
Drawing upon recent developments in structural equation modeling, the current study presents an analytical
framework for addressing research questions in which, rather than focusing on means, it is intraindividual
(or intragroup) variability that is of direct research interest. Beyond merely serving as an alternative to exist-
ing multilevel modeling approaches, this framework allows for extensions to accommodate a variety of com-
plex research scenarios by parameterizing variability as a latent variable that can in turn be embedded within
a broader covariance and mean structure involving other observed and/or latent variables. The estimation
procedures and parameter interpretation for the latent random variability models are discussed. The versatil-
ity of the proposed methods is demonstrated through four empirical examples. The Mplus, BUGS, and Stan
model syntax for the illustrative examples are supplied to facilitate the application of the methods.

Translational Abstract
In many research and applied settings across the social, behavioral, and health sciences, it is variability,
rather than averages, that is of key interest. Examples include consistency/stability of an individual over mul-
tiple measurements (intraindividual variability), and cohesiveness among members within a group or team
(intragroup variability). Drawing upon recent developments in structural equation modeling, the current
study presents an analytical framework for addressing research questions that focus on intraindividual, or
intragroup, variability. Beyond merely serving as an alternative to existing multilevel modeling approaches,
this framework allows for extensions to accommodate a variety of complex research scenarios by parameter-
izing variability as a latent variable, which can be studied as the outcome, predictor, and/or mediators simul-
taneously in relation to other observed and/or latent variables. This study delineates the latent random
variabilitymodels and offers a discussion ofmodel estimation aswell as parameter interpretation. To demon-
strate the versatility of the proposed methods, the latent random variability models are fit to empirical data
and parameter estimates are obtained via Bayesian estimation. The Mplus, BUGS, and Stan model syntax
for the illustrative examples are supplied for applied researchers’ reference.
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In many research and applied settings across the social, behav-
ioral, and health sciences, it is variability, rather than averages,
that is of key interest. Examples include consistency/stability of an
individual over multiple measurements (intraindividual variabili-
ty), and cohesiveness among members within a group or team
(intragroup variability). Focusing on the former, for instance, an
infant often has daily fluctuations in crying behaviors and motor
movement, an adult usually experiences day-to-day variations in

bedtime and emotional status, and a senior tends to have varying
reaction times across trials on cognitive tasks. Instead of treating
such within-person fluctuations as random errors, modern develop-
mental science theorizes that intraindividual variability contains
valuable information about human development (Hamaker, 2012;
van Dijk & van Geert, 2015). As intraindividual consistency, and
how it changes over time, have important implications across the
life span, intraindividual variability has thus become an important
research topic across a variety of domains, such as motor skill de-
velopment, socioemotional development, cognitive and language
development, and cognitive aging (e.g., Adolph et al., 2015; Fagot
et al., 2018; Hultsch & MacDonald, 2004; Kupers et al., 2019).
Methodologically parallel, intragroup variability is also of wide
interest across several disciplines. For example, organizational
researchers are intrigued by how group members develop increas-
ingly similar perceptions over time (e.g., Lang et al., 2018), while
workforce diversity more broadly (e.g., task-related attitudinal di-
versity) and intrateam cohesion are believed to have impacts on
group performance and productivity (e.g., Cox & Blake, 1991;
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Easley, 2001; Jehn et al., 1999; Petersen et al., 2004; Van Knip-
penberg et al., 2004). Even in biological science, understanding
intraspecies variation in genotype and phenotype helps to explain
diverse collective behaviors of group-living animals (e.g., Kauf-
hold & Van Leeuwen, 2019; Knebel et al., 2019).
Given that many essential research questions involve variability

(equivalently, heterogeneity, diversity, consistency, stability, cohe-
sion), researchers from a wide variety of disciplines have an
increasing need for analytical tools that can directly model such
intraindividual (and intragroup) variability, as well as help to
examine factors that might impact it, and in turn, how it could
affect other distal outcomes. Additionally, research may also
require methods to examine differences in variability (intraindivid-
ual or intragroup) across contexts or time (e.g., pretest and postt-
est) and/or across different types of individuals/groups (e.g., males
or females, novices or experts). Even more challenging still,
researchers studying individuals or groups need to be able to study
longitudinal trajectories of their variability, parallel processes
across multiple outcomes, and mixtures of different underlying
populations. These, and many other increasingly complex scenar-
ios (see Table 1), constitute a collective call for a broad analytical
framework that can model the intraindividual or intragroup vari-
ability as the focal random variable, such that model parameters
can be estimated and meaningfully interpreted to make inferences
about that variability in the population. To be clear, statistical
modeling approaches do currently exist that can accommodate ran-
domly varying variability in specific research scenarios, but there
is not yet a well-articulated, versatile, and comprehensive frame-
work dedicated to random variability modeling that can be flexibly
utilized across disciplines to address the wide range of research
questions involving random variability (e.g., Table 1). Building
upon the increasingly flexible structural equation modeling (SEM)

paradigm, the current study aims to introduce a unified analytical
framework for when intraindividual (or intragroup) variability is
of research interest, modeling variability as a latent random vari-
able that can be embedded within a complex covariance and mean
structure involving other observed and/or latent variables. The pro-
posed system will have broad implications for addressing research
needs in the social, behavioral, educational, organizational, health
sciences, and beyond.

In what follows, we will first review the existing analytical
approaches for modeling variability, in terms of theoretical back-
ground as well as important limitations. Next, we will present the
conceptual framework for the proposed alternative modeling
approaches based on modern SEM, followed by illustrative exam-
ples using empirical data. To conclude, we will discuss the broad
implications of the proposed analytical methods and how this
modeling approach can be further extended to accommodate a
wide variety of complicated research scenarios in future research.

Theoretical Background

Multistep Approach

Acknowledging that individuals may have varying levels of
intraindividual variability, one of the commonly used methods in
developmental science is to first compute a summary statistic
across an individual’s observed repeated measures, and then sub-
mit these individual-level summary statistics to conventional sta-
tistical approaches for further analysis. Common examples of the
summary statistics that are utilized to capture the intraindividual
variability include intraindividual standard deviation (iSD), intra-
individual mean square of successive differences (iMSSD), intra-
individual residual standard deviation (iSDr), coefficient of
variation (CV), and range (e.g., Adolph et al., 2015; Fagot et al.,

Table 1
A Selective List of Random Variability Models and the Corresponding Example Research Questions

Type of model

Example research questions

Intraindividual variability Intragroup variability

Unconditional model - Do people vary in terms of bedtime consistency?
- Do people vary in terms of mental stability?

- Do teams differ in terms of cohesiveness?
- Do schools differ in terms of the achievement gap among
their students?

Variability as an outcome - Do person-level characteristics predict bedtime consis-
tency?

- Do person-level characteristics predict mental status
stability?

- Do team-level characteristics predict team cohesiveness?
- Do school-level covariates predict within-school hetero-
geneity in students’ math ability?

Variability as a predictor - Does bedtime consistency predict physical health and men-
tal health?

- Does mental status stability predict physical health?
- Does mental status stability predict mental well-being?

- Does team cohesiveness predict team productivity?
- Does within-school achievement heterogeneity have an
impact on student’s future academic performance?

Between-subject design - Do males and females differ in bedtime consistency?
- Do young adults and senior adults differ in mental status
stability?

- Do expert teams differ from novice teams in terms of
cohesiveness?

Within-subject design - Does an intervention program improve people's bedtime
consistency?

- Does a treatment improve individual’s consistency on cog-
nitive tasks?

- Does a training program improve teams' cohesiveness?
- Does an intervention program help close the achieve-
ment gap within schools?

Growth structure of variability - How does people's bedtime consistency change over time?
- Does the maturation of white matter predict the changes in
intraindividual behavioral consistency?

- How does teams' cohesiveness change over the course of
training?

- How does the achievement heterogeneity within schools
change over the course of intervention?
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2018; Hultsch & MacDonald, 2004; Ram et al., 2015). This multi-
step process is useful for person-oriented analysis, which does not
necessarily involve a population of interest. Such an approach,
however, is limited as the summary statistic conflates meaningful
intraindividual fluctuations with measurement error, which is not
properly accommodated in subsequent analytical steps. Further,
treating the summary statistics as if they were true variabilities
ignores the innate uncertainties in estimating the statistics from
sample data, which can result in higher false positive rates within
follow-up statistical tests (Dzubur et al., 2020).

Conventional Multilevel Modeling Approach

When there exists a population of individuals (or groups) of key
inferential interest and the research questions involve repeated
measures within those individuals (or groups), researchers often
choose to model such nested data structures using multilevel mod-
eling (MLM; also known as hierarchical linear modeling or mixed
effects models). This strategy partitions the variance into compo-
nents at different levels (e.g., within-person vs. between-person,
within-group vs. between-group) and thus inferences can be made
at each level accordingly (see, e.g., Hox et al., 2018; Raudenbush
& Bryk, 2002; Snijders & Bosker, 2011). The general form of a
two-level MLM can be written as:

Yij ¼ X0
ijbþ Z0

ijuj þ eij; (1)

where Yij is the observed outcome variable for Level-1 unit i
nested within Level-2 cluster j; Xij is the design matrix for fixed
effects b and Zij is the design matrix for random effects uj; eij is
the Level-1 residual, which is assumed to have a constant variance
across all the Level-2 units: eij � N(0, r2). Therefore, with con-
ventional MLM, the levels of the observed outcome are allowed to
randomly vary across clusters, whereas the residual within-cluster
variance of the observed outcome is fixed to be constant in all the
clusters. In other words, it assumes all the individuals have the
same level of stability over repeated measures, or all the groups
have the same level of cohesiveness among group members after
conditioning on the relevant covariates. Thus, while MLM pro-
vides a useful approach for modeling within-level variability and
between-level variability simultaneously within the same model,
it is less helpful when the clusters are heterogeneous regarding
the within-cluster variability and more importantly, when the
randomly varying within-cluster variability itself is of research
interest.

MLMExtensions

Recognizing the theoretical importance of stability for intraindi-
vidual processes, several extensions of conventional MLM have
been put forth to model individually varying residual variances.
Examples include the double hierarchical generalized linear mod-
els (Lee & Nelder, 2006), the dynamic multilevel first-order autor-
egressive model (Jongerling et al., 2015; Wang et al., 2012), and
the location scale model (LSM; Hedeker & Mermelstein, 2007,
2012; Hedeker et al., 2008; Leckie et al., 2014). The LSM frame-
work, which has well-documented applications with ecological
momentary assessment (EMA) data, not only allows random
effects in modeling the means of the observed outcome variable
(i.e., the location), but also explicitly includes random effects in

modeling the variability of the observed outcome variable (i.e., the
scale). By parameterizing the residual variance with a log-linear
model, the within-level residual variance is allowed to vary across
Level-2 units. Further, the random residual variance is also
allowed to covary with other Level-2 random coefficients, such as
the random intercepts. Covariates can also be included in the
model to explain the variability of the Level-1 residual variance.

The general form of the LSM can be expressed using Equation
1.1 Again, the important difference between this and conventional
MLM lies in the nature of the distribution for eij. Rather than
assuming the residual variance to be constant, as in MLM, the re-
sidual variance is assumed to follow a log-normal distribution as
per the following function:

r2
eij ¼ expðW0

ijsþ u1jÞ; (2)

where Wij denotes the covariates that predict the within-cluster
variability, and u1j is the random effect of the within-level variance
after controlling for the covariates. Within this modeling frame-
work, u1j is allowed to covary with other Level-2 random effects
contained in uj. For example, it is possible to assess whether there
is any linear relation between individuals’ long-run average on the
observed outcome (or starting level) and intraindividual fluctua-
tion over repeated measures. Researchers can further have Level-2
covariance components differ across Level-2 units, either by
directly modeling the covariance with a separate function (Leckie
et al., 2014) or by indirectly allowing the corresponding standard
deviations to vary (e.g., Rast & Ferrer, 2018; Williams et al.,
2021). Most commonly, the LSM is used for intensive longitudinal
data, such as EMA data (e.g., Hedeker et al., 2008), although it
has also been shown to be applicable for heterogeneous Level-1
variance in a more generalized two-level scenario (e.g., Leckie et
al., 2014). The LSM is thus a useful analytical tool when the focal
outcome variable of interest is observed and effectively without
measurement error (e.g., body weight).

The LSM approach is not without limitations, however. In the
social sciences and educational studies, for example, more often
than not researchers are interested in latent constructs that are diffi-
cult to measure directly, and thus are indicated by multiple error-
laden observed variables. Consider psychologists who care about
underlying depression but must collect symptom data through a
survey of individuals’ external behaviors and internal feelings, or
education researchers who are interested in true math ability but
must use responses to a set of test items. Simply put, observed var-
iables are almost never perfect measures of a latent construct, but
rather contain measurement error, and ignoring this fact by treat-
ing an observed variable as if it perfectly reflects the construct of
interest can yield misleading results. Unfortunately, with MLM
and its extensions, analyses are typically limited to observed varia-
bles or a linear composite thereof (e.g., an arithmetic mean or sum
score), and there really is no straightforward way to take into con-
sideration the measurement error. The sum score approach, how-
ever, is in fact a highly constrained measurement model, whose
use is not warranted without theoretical support and empirical vali-
dation (McNeish & Wolf, 2020). With regard to LSM more

1 Readers may refer to Kapur et al. (2015) for the multivariate extension
of LSM with intensive longitudinal assessments.
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specifically, the literature has focused primarily on a single
observed outcome with only very few extensions to multivariate
case for intensive longitudinal data (e.g., Kapur et al., 2015). Fur-
ther, this modeling approach only allows the intraindividual var-
iance or intragroup variance to be modeled as an outcome. In
some research scenarios, however, it may be of interest to investi-
gate whether such within-cluster variability is a predictor of other
distal outcomes, such as, for example, a gerontologist interested in
whether consistency in seniors’ short-term memory (STM) pre-
dicts their degree of self-sufficiency with regard to life-care skills.
Recent developments in LSM have introduced a multistage
approach, where the random effects are first imputed based on the
model parameter estimates obtained at the first stage and then car-
ried to the next-stage analyses as predictors (Dzubur et al., 2020).
It is, however, challenging to directly model variability as a ran-
dom variable while serving as an outcome, predictor, and/or medi-
ator simultaneously in a single model. Additionally, LSM is not
yet able to accommodate other more complicated scenarios that
are not typically considered under the MLM framework. For
instance, from a very practical perspective, when researchers wish
to directly assess the differences in Level-2 covariance structure
across different types of Level-2 clusters (e.g., female vs. male,
young adults vs. senior adults) it can be difficult to ensure positive
definiteness if the covariance components are each modeled as a
separate function of Level-2 covariates2.

SEM-Based Approach

SEM is a multivariate analytic framework that has been widely
used in the social, behavioral, and education sciences, and beyond.
It is highly versatile, able to model hypothesized causal (struc-
tural) and noncausal links among not just observed variables, but
can incorporate measurement models in order to allow the
researchers to investigate relations among latent constructs that are
free of measurement error.
Although historically SEM and MLM were developed as two

distinct modeling frameworks, SEM and MLM are actually far
more similar than different (e.g., Curran, 2003). The random
effects in MLM can be interpreted as the unobserved latent con-
founders that cause the dependence among the lower-level obser-
vations belonging to the same higher-level unit. In SEM, common
latent factors are usually introduced to account for the interde-
pendence among different observed indicators (Rabe-Hesketh et
al., 2012). Given the analytical similarity between SEM and
MLM, research efforts have been made to expand the capability of
SEM to accommodate multilevel data structure (e.g., Goldstein &
McDonald, 1988; McDonald & Goldstein, 1989; Muthén, 1989,
1994; Rabe-Hesketh et al., 2004). Multilevel SEM (MSEM) has
been developed as a synthesis of MLM and SEM, with perform-
ance comparable to traditional MLM but with the many versatility
advantages of SEM (e.g., Bauer, 2003; Curran, 2003). Within
MSEM, random effects can be conveniently modeled as latent var-
iables, and as such they are able to be embedded within a more
general latent variable framework and incorporated in a broader
causal modeling structure. Further, it is easy to incorporate mea-
surement models at both lower and higher levels. Following the
within-between framework notations (e.g., Asparouhov & Muthén,

2007; Rabe-Hesketh et al., 2012), the general form of two-level
MSEM can be summarized in the following equations:

Ypij ¼ Y�
Bpj þ Y�

Wpij (3)

Y�
Wij ¼ KWgWij þ eWij (4)

gWij ¼ BWgWij þ CWXWij þ nWij (5)

Y�
Bj ¼ vB þ KBgBj þ eBj (6)

gBj ¼ aB þ BBgBj þ CBXBj þ nBj; (7)

where Ypij is the pth observed indicator for lower-level unit i
belonging to higher-level unit j. The observed variable is modeled
as the sum of latent variables at the between-cluster level (Y*pBj)
and the within-cluster level (Y*Wpij). The measurement model at
the within level is expressed in Equation 4, where gWij is a vector
containing the latent constructs defined at the within level (e.g., an
individual’s depressive mood assessed each day, or the cultural
beliefs of all members of a team member’s cultural beliefs). The
structural model at the within level is given by Equation 5, where
XWij denotes the observed covariates at the within level, and nWij

denotes the within-level random residuals for the latent constructs.
Similarly, the measurement model and the structural model at the
between level are given in Equations 6–7, respectively. In the
MSEM literature, the residual vectors eWij, nWij, eBj, and nBj are
assumed to contain independent normally distributed random vari-
ables with means of zero and the corresponding variance-covari-
ance matrices HW, WW, HB, and WB (Asparouhov & Muthén,
2007). As suggested by the subscripts, the within-level variance-
covariance structures are conventionally assumed to be invariant
across clusters.

Recent work in SEM, however, has provided some promising
directions for relaxing such restrictions of constant within-level
variances. For example, as part of a multilevel confirmatory factor
analysis illustration, Stapleton et al. (2016) utilized a so-called
phantom variable (an unmeasured variable with no measured indi-
cators) at the within level, which is assumed to have a standard
normal distribution, thereby permitting the scale of within-cluster
variability to be modeled as a random path coefficient at the
between level. Another relevant recent development, designed for
modeling the dynamics of stable processes with intensive longitu-
dinal data, is dynamic structural equation modeling (DSEM;
Asparouhov et al., 2018; McNeish & Hamaker, 2020), which com-
bines time-series modeling with multilevel modeling along with
SEM techniques. By incorporating the log-transformed residual
variance as a person-level random parameter, DSEM allows indi-
vidually-varying intraindividual variability over repeated measures

2Within the literature a separation strategy has been proposed to model
the covariance matrix, which decomposes the covariance matrix into
standard deviations and correlations that can be modelled separately
(Barnard et al., 2000). It has been employed in the covariance modeling for
the LSM, which usually incorporates covariates in the log-linear model for
standard deviations (e.g., Rast & Ferrer, 2018; Williams et al., 2021).
Although this approach ensures the positive definiteness of the covariance
matrix, it assumes a constant correlation matrix, which may be less
desirable in, for example, multigroup analysis.
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that are collected within a relatively short observation window.
The current implementation of DSEM is limited to two-level mod-
els using Bayesian estimation (Muthén & Muthén, 1998–2021),
and its performance relies on large sample sizes with a relatively
large number of repeated measurement occasions (e.g., Schultz-
berg & Muthén, 2018).
It is worth noting that Nestler’s recent work on modeling intra-

individual variability with intensive longitudinal data (Nestler,
2020, 2021) has successfully extended the LSM framework while
taking advantage of factor analysis techniques. By imposing a
latent factor structure on the individually-varying residual varian-
ces for multiple observed measures, Nestler’s work further exem-
plifies the flexibility of SEM framework, which has a great
potential to offer in conjunction with MLM-based LSM approach.
One important contribution of this work is that a latent variability
factor is introduced, which takes the reliability of variability indi-
cators into consideration. It is, however, a different modeling
approach than the one introduced in the current study. As detailed
in the next section, the proposed modeling framework is essen-
tially built upon on MSEM with broad applications to both intrain-
dividual and intragroup variability, where the within-level latent
constructs and between-level latent constructs are substantively
meaningful and of theoretical interest (see Stapleton et al., 2016).
The random variability is then introduced as a latent variable
based on this theoretically meaningful within-level latent construct
that is free of measurement error, rather than being indicated by its
own variability indicators. Essentially, the different modeling
approaches and parameterization strategies reflect different under-
lying causal structure that is believed to drive the data generation
process. They also have different implications for the covariance
structure among observed variables. For instance, with the models
presented in Nestler (2020), the within-individual residuals of the
observed measures are independent across different measures, af-
ter the between-individual random effects are taken into account
(as no meaningful within-level latent constructs are assumed to
drive the data generation). In contrast, the structural models pro-
posed in the current study imply that the within-level residuals
across different observed measures would covary even after the
between-level random effects are controlled for, which can be
explained by theoretically meaningful within-level latent construct
(s). The MSEM-based models can be very useful in many cases,
for instance, when multiple observed measures are collected at
each measurement occasion to indicate a latent construct (e.g.,
daily positive affect) or when multiple observed measures are
administered to group members to measure an individual-level
latent construct (e.g., personal perceived support). With that said,
we believe the choice between different modeling approaches
should ultimately be considered within a specific research context,
depending on substantive knowledge and theoretical beliefs.
In sum, then, although recent developments in SEM provide

several promising and viable options to accommodate heterogene-
ous clusters with varying within-cluster variability, there is not yet
a well-articulated and comprehensive framework within SEM that
is specifically dedicated to modeling random variability (both
intraindividual and intragroup). The current study thus aims to
unify the varying available approaches and introduce a compre-
hensive random variability modeling framework that capitalizes
on the versatility and power of SEM, one that can be applied
across a wide range of basic or complex research scenarios with
measured or latent variability as the focal construct. In the

following section, we introduce the details of the theoretical
framework for the proposed modeling approaches.

Conceptual Framework

In this section, we aim to introduce the conceptual framework
of the SEM-based approach for random variability under two dif-
ferent scenarios: observed outcomes and latent outcomes. The
structural equations and corresponding graphical representations
for each scenario will be first introduced in detail, followed by a
discussion of model estimation options and parameter interpreta-
tions for when heterogeneous within-level variability is of research
interest.

Random Variability for Observed Outcomes

We first present the structural equation models that can be
applied to study variability for observed outcome variables. For
simplicity and without loss of generality, we begin with the uncon-
ditional two-level random variability structural model that
involves only one continuous observed outcome variable, which
resembles the setting of an unconditional LSM. Building upon this
basic model structure, more complex models will be introduced
next to accommodate latent outcomes in the section that follows.

Consider a scenario where there are multiple repeated measures
nested within individuals (or individuals nested within groups),
while the focal research question concerns intraindividual (or intra-
group) variability and its relation with the cluster-level average. We
discuss the following two models: (a) Model A that models the ran-
dom variance of the Level-1 random effects using the log-transfor-
mation approach (Figure 1a); and (b) Model B that models the
random variability using the phantom variable approach (Figure
1b). As illustrated in the figures, both Model A and Model B have a
multilevel structure. In Model A, the Level-1 equation is

Yij ¼ c0j þ eij; (8)

where c0j is the cluster mean of the observed outcome in cluster j.
The lower level random effects are assumed to follow a normal
distribution given variance rj

2: eij j rj
2 � N(0, rj

2), therefore we
have Yij follow a normal distribution, given mean c0j and variance
rj

2: Yij j c0j, rj
2 � N(c0j, rj

2). Notice the Level-1 residual variance
rj

2 is group-specific, whose natural log-transformation is modeled
as a random latent variable at the higher level. The Level-2 equa-
tions for Model A are thus written as

gj
ðBÞ ¼ cðBÞ þ mj

ðBÞ; (9)

where gj
ðBÞ is a vector of between-level latent variables, c(B) is the

vector of fixed effects, and mj
(B) contains the between level random

effects:

gj
ðBÞ ¼ c0j

lnðrj
2Þ

� �
; cðBÞ ¼ c00

c10

� �
; mj

ðBÞ ¼ m0j
m1j

� �
:

The average log residual variance across clusters is thus denoted
by c10. The Level-2 random effects mj

(B) are assumed to be multi-
variate normal:
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mjðBÞ �N ð0;UmÞ
Um ¼ /0

/10 /1

� �
;

(10)

where /1 represents the between-level variance of the log residual
variance, and /10 denotes the covariance between the random
intercepts and random log variances. Therefore, the model implies
that the Level-2 latent variables (random effects) follow a multi-
variate normal distribution, given the mean vector c(B) and covari-
ance matrix Um:

gj
ðBÞ j cðBÞ;Um �NðcðBÞ;UmÞ: (11)

As an alternative, Model B (Figure 1b) can also be used to
model the random variability by introducing a phantom variable
that follows a standard normal distribution (Stapleton et al., 2016).
The Level-1 equation for Model B can be written as

Yij ¼ c0j þ bjfij; (12)

where fij is the phantom variable: fij � N(0, 1), and bj is a group-
specific scaling factor of the Level-1 residual. The outcome vari-
able Yij thus follows a normal distribution given mean c0j and var-
iance bj

2: Yij j c0j, bj
2 � N(c0j, bj

2). At Level-2, bj can be
conveniently modeled as a latent random variable. The Level-2

equation for Model B can also be expressed using Equation 9,
where the between-level latent variables are gj

ðBÞ = (c0j, bj)
T. Sim-

ilar to the log variance approach (Model A), the Level-2 latent ran-
dom variables follows a multivariate normal distribution as shown
in Equation 11. The only difference is that in Model B, c10 indi-
cates the average scaling factor bj across groups, /1 represents the
between-cluster variance of the scaling factor, and /10 denotes the
covariance between random intercepts and random scaling factors.

Random Variability for Latent Outcomes

As discussed earlier, for many disciplines it is crucial to take
measurement error into consideration, which also applies to the
research scenario when random variability is of focal interest. One
of the driving motivations for introducing the SEM-based frame-
work for random variability is to take advantage of its powerful
capability for latent variable modeling. A major goal of the current
study is thus to illustrate how the observed outcome models for
random variability can be extended to accommodate latent out-
come variables.

For simplicity, we will again start with a basic two-level sce-
nario, where there could be repeated measures nested within indi-
viduals (or multiple individuals nested within groups). For each
measurement occasion within an individual (subject within a
group), multiple continuous manifest indicators are collected to
inform a single latent construct (e.g., depression, cultural identity).

Figure 1
Random Variability Structural Model With One Continuous Observed Outcome Variable Y

Note. (a) Model A: log-transformation approach for modeling the random within-level variance; (b) Model B: phantom variable approach for model-
ing the random within-level variance.
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Suppose the focal research question concerns to what extent indi-
viduals’ depressive mood fluctuates over repeated measures and
how individuals differ in their mood stability (i.e., the average
level and variability of intraindividual consistency), or to what
extent people on the same team share similar cultural beliefs and
how different teams differ in the extent of shared cultural beliefs
among the team members (i.e., the average level and variability of
team cohesiveness). We therefore need to model the variance of
the Level-1 latent construct as a random coefficient that varies
across the Level-2 clusters. To this end, we can either use Model
C with a log-transformation approach (Figure 2a) or Model D with
a phantom variable approach (Figure 2b).
Similar to Model A and Model B for observed outcome varia-

bles, both Model C and Model D have a multilevel structure:

Ykij ¼ gkB; j þ gkW;ij; (13)

where hkB,j indicates the cluster average of indicator k for group j,
and hkW,ij indicates the individual deviation from the cluster average
of indicator k for person i. Assume that the observed indicators are
intended tomeasure a single latent construct, we can have the follow-
ingmeasurement models at Level-2 and Level-1, respectively:

gkB; j ¼ ck00 þ kkBnB; j þ ekB; j
gkW;ij ¼ kkWnW;ij þ ekW;ij;

(14)

where nB,j is the Level-2 latent construct and nW,ij is the Level-1
latent construct. Alternatively, we could also have a saturated
structure at the between level if the between-level latent construct

is not of interest or not interpretable (see Stapleton et al., 2016 for
more detailed discussion). In many cases, the factor loadings kkB
and kkW can be constrained to be equal (i.e., cross-level measure-
ment invariance; Stapleton et al., 2016). If we substitute Equation
14 into Equation 13, the multilevel measurement model becomes

Ykij ¼ ck00 þ kkBnB; j þ ekB; j þ kkWnW;ij þ ekW;ij; (15)

or equivalently in matrix form:

Y ¼ Cþ kBnB þ eB þ kWnW þ eW: (16)

Similar to conventional MSEM, the within-level residuals eW
and between-level residuals eB are assumed to be independently
and normally distributed: eW � N(0, HW), eB � N(0, HB). In
Model C (Figure 2a), the within-level latent construct nW,ij is
assumed to be normally distributed given variance rj

2, nW,ij j rj
2 �

N(0, rj
2). The variance of the Level-1 latent construct for group j is

denoted as rj
2, indicating it is cluster-specific. Next, the natural log-

arithm (ln) of rj
2 is modeled as a random latent variable at between-

level. The Level-2 structural equations in Model C can be written
as

nj
ðBÞ ¼ cðBÞ þ mj

ðBÞ; (17)

where nj
(B) = (nB,j, ln(rj

2))T, c(B) = (0, c10)
T, and mj

(B) = (m0j, m1j)
T,

with c10 denoting the average log-variance of the Level-1 latent
construct, and /1 denoting the between-cluster variance of the log-
variance. Similar to Model A and Model B, the Level-2 random

Figure 2
Random Variability SEM With One Within-Level Latent Outcome Variable nW and One Between-Level Latent Outcome Variable nB

Note. For each within-level unit, four observed measures (Y1–Y4) are collected as indicators of the latent construct. (a) log-variance approach for mod-
eling the random within-level variance; (b) phantom variable approach for modeling the random within-level variance.
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effects mj
(B) are assumed to follow a multivariate normal distribu-

tion. Therefore, the Level-2 latent variables also follow a multivar-
iate normal distribution

nj
ðBÞ j cðBÞ;Um �NðcðBÞ;UmÞ: (18)

As an alternative, Model D (Figure 2b) can be used to model
the heterogeneous within-cluster variances, by introducing a phan-
tom variable X that is assumed to follow a standard normal distri-
bution. Using this approach, the Level-1 latent variable is modeled
as

nW;ij ¼ bjXij; (19)

and the multilevel measurement model can thus be written as

Ykij ¼ ck00 þ kkBnB; j þ ekB; j þ kkWðbjXijÞ þ ekW;ij; (20)

whereXij is the phantom variable that follows a standard normal dis-
tribution, Xij � N(0, 1); bj is the scaling factor for the within-cluster
variance, such that nW,ij j bj2�N(0, bj

2). At Level-2, bj can be conven-
iently modeled as a latent random variable. The Level-2 structural
equation for Model D can also be expressed using Equation 17,
except that the Level-2 latent variables contain the scaling factor:
nj

(B) = (nB,j, bj)
T. More specifically, with this alternative parameter-

ization, c10 indicates the average scaling factor bj for the latent out-
come variable across clusters and /1 represents the between-cluster
variance of the scaling factor for the latent outcome.

Model Estimation

In practice, the true values of model parameters remain unknown
and thus need to be estimated; as such, the estimation of model pa-
rameters is an important topic to be addressed for variability model-
ing as well. In this section, we first review the existing estimation
procedures for both the MLM-based and the SEM-based
approaches that accommodate varying within-cluster variability.
We next provide a brief discussion about the application of Bayes-
ian estimation, specifically in the context of the proposed MSEM-
based models with variability as a latent random variable.
In general, two estimation approaches have been employed for

models with a heterogeneous variability component: maximum like-
lihood (ML) estimation and Bayesian estimation. The univariate
LSMwith one observed outcome variable has been traditionally esti-
mated by marginal ML with Newton-Raphson algorithm using SAS
PROC NLMIXED procedure (Hedeker et al., 2008) or the MIX-
REGLS program (Hedeker & Nordgren, 2013), when the random
variability is only treated as an outcome. ML estimation is also used
for the multivariate extension of LSM with latent variability, as
detailed by Nestler (2020). A potential issue with the ML estimation
approach for LSM is that it may be challenging to implement with
smaller sample size (e.g., small number of clusters, few individuals,
or measurement occasions), which can be circumvented by the
Bayesian framework. Therefore, in practice, researchers have also
employed the alternative Bayesian approach via Markov chain
Monte Carlo (MCMC) simulation for estimating univariate (Rast et
al., 2012) as well as multivariate longitudinal LSM (Kapur et al.,
2015) using JAGS/WinBUGS. Recent developments in LSM for
univariate observed outcomes further propose a two-stage approach

that utilizes the empirical Bayes methods to obtain multiple draws of
the random coefficients based on the Stage-1 ML parameter esti-
mates, which can in turn be used in Stage-2 statistical analyses as
predictors in theMixWILD program (Dzubur et al., 2020).

On the other hand, in the MSEM literature, although ML and
Bayesian estimation have both been employed to estimate MSEM
models (Asparouhov & Muthén, 2016; Rosseel, 2017), Bayesian
estimation is much more commonly utilized and easier to implement
given the novelty and complexity of such models, especially when
measurement models are present. The latest version of the popular
SEM software Mplus (Version 8.6; Muthén & Muthén, 1998–2021)
also offers built-in DSEM/MSEM modules that can model random
residual variance on its log transformed scale via Bayesian estima-
tion, which greatly facilitates the implementation of random variabil-
ity models in practice. With the current functionality of Mplus, it is
also straightforward and computationally efficient to fit the LSM as a
MSEM or DSEM via Bayesian estimation (e.g., McNeish, 2020;
Nestler, 2021). Given the anticipated increasing model complexity
as well as the corresponding computation burden for latent variable
models in the context of modeling random variability, in the current
study we focus on Bayesian estimation only. Below we provide a
brief overview of how Bayesian estimation can be applied for
MSEM-based random variability models. Readers who are inter-
ested can refer to Supplemental Material A for more technical
details, while those who are less familiar with the mathematical
terms may choose to skip this section without impacting their appli-
cation of these methods in practice.

With Bayesian estimation, inference can be made about the pa-
rameters of focal interest using the posterior distribution given the
observed data. For the models discussed above, we work with the
augmented posterior density given the observed data Y:

PðH jYÞ / PðY;HÞ; (21)

where H is a vector that contains the model parameters including
all the fixed effects, variance-covariance of the random effects, as
well as the between-level latent random variables (hence unob-
served; for more about the data augmentation approach, see Tan-
ner & Wong, 1987, 2010). In the case of Model A and Model B,
we have H = (hT, vec(gðBÞ)T)T, where the model parameters vector
h contains both fixed effects and variance-covariance of the ran-
dom effects: h = (c(B)T, vech(Um)

T)T. The augmented posterior
distribution under the normality assumption, as detailed in the
Supplemental Material A, is expressed as

Pðh;gðBÞ jYÞ / PðY jgðBÞ; hÞPðgðBÞ j hÞPðhÞ
¼
YJ
j¼1

Ynj
i¼1

1ffiffiffiffiffiffiffiffiffiffiffi
2pr2

j

q exp �ðyij � c0jÞ2
2r2

j

 !2
4

3
5

3
YJ
j¼1

1

2pm=2 jUm j1=2
exp � 1

2
ðgjðBÞ � cðBÞÞTU�1

m gj
ðBÞ � cðBÞ

� �� �2
4

3
5

3PðcðBÞÞPðUmÞ; (22)

where m is the number of Level-2 random effects.
In the case of Model C and Model D, we have H = (hT, vec

(n(B))T, eB
T)T, where the model parameter vector h = (CT, c(B)T,

kB
T, kW

T, vech(Um)
T, vech(HB)

T, vech(HW)
T)T. The augmented
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posterior distribution, as detailed in Supplemental Material A, can
be expressed as:

Pðh; nðBÞ; eB jYÞ / PðYjnðBÞ; eB; hÞPðnðBÞ j hÞPðeB j hÞPðhÞ

¼
YJ
j¼1

Ynj
i¼1

1

2pK=2 j kwr2
j kw

T þHw j1=2

2
4

exp � 1
2
ðYij � ðc00 þ kBnB; j þ eB; jÞÞTðkwr2

j kw
T þHwÞ�1

�

ðYij � ðc00 þ kBnB; j þ eB; jÞÞ
��

3
YJ
j¼1

1

2pm=2 jUm j1=2
exp � 1

2
ðnjðBÞ � cðBÞÞTU�1

m ðnjðBÞ � cðBÞÞ
� �2

4
3
5

3
YJ
j¼1

1

2pK=2 jHB j1=2
exp � 1

2
ðeB; j � CÞTH�1

B ðeB; j � CÞ
� �2

4
3
5

3PðCÞPðcðBÞÞPðkB; kWÞPðUmÞPðHBÞPðHWÞ; (23)

with K denoting the number of observed indicators for the mea-
surement model.
With the augmented posterior distribution, the parameter of

focal interest can be estimated by examining its marginal posterior
distributions via MCMC. For instance, the posterior mean can be
used as parameter point estimate and a posterior credible interval
can be obtained as the interval estimate. Bayesian estimation via
MCMC is flexible and straightforward to implement for the basic
models as well as for more complex models. It can be imple-
mented using software package such as rjags (Plummer, 2016)
and Stan (Carpenter et al., 2017). The popular SEM software
Mplus also offers convenient Bayesian estimation functionality
(Muthén & Muthén, 1998–2021).

Interpretation and Inference

The unconditional models (Models A–D) can each be applied to
research scenarios where the inferential interest is in how clusters
vary in terms of the intracluster variability. Model A and Model B
are useful when the research questions concern the within-cluster
variability regarding one single observed outcome measure (or mul-
tiple observed measures that do not indicate a common latent con-
struct), while Model C and Model D can both be applied to research
scenarios that concern the within-cluster variability in an unobserved
latent construct that is indicated by multiple observed measures (for
example, depression). For research questions that mainly aim to
address heterogeneous within-cluster variability, the model parame-
ters that are of most inferential interest are the fixed effects c(B) and
the variance-covariance of the between-level random effects Um.
With the log-transformation approach, researchers can thus describe
and test the average log within-cluster variance (c10), how much log
within-cluster variance varies across clusters (/1), as well as how log
within-cluster variance correlates with the cluster average level on
the outcome (/10). With the phantom variable parameterization, the
interpretations can be similarly done, except that it would involve the
within-cluster scaling factor rather than the log variance.
As readers may have already noticed, with either parameterization

(log-transformation or phantom variable approach), the within-level

residual variance is never directly modeled as a random variable,
and thus its distributional characteristics remain unknown. Given
that sometimes researchers may be more interested in learning about
the variance per se, which can make more intuitive sense than the log
variance or scaling factor, next we suggest some guidelines that can
be useful for making inferences about the within-cluster variability
on a variance scale. More specifically, the following moment trans-
formation approach is proposed.

With the log variance approach (Model A and Model C), the log
of the residual variance is assumed to follow a normal distribution
(Equations 11 and 18); the within-level residual variance thus fol-
lows a lognormal distribution, rj

2 � lognormal(c10, /1). Based on
our knowledge of lognormal distributions, the expectation and var-
iance of the within-level variance rj

2 can be expressed as functions
of the mean (c10) and variance (/1) of the log variance, respectively:

Eðr2
j Þ ¼ expðc10 þ

1
2
/1Þ; (24)

VARðr2
j Þ ¼ expð2c10 þ /1Þ expð/1Þ � 1½ �: (25)

For the phantom variable approach (Model B and Model D), it
is assumed that bj follows a normal distribution (Equations 11 and
18). The within-level residual variance bj

2 thus follows a scaled
noncentral v2 distribution. Given the common definition of var-
iance for any random variable X

VAR Xð Þ ¼ E X2ð Þ – E Xð Þ½ �2; (26)

the expectation and variance for this scaled noncentral v2 distribu-
tion can thus be computed, respectively, using the following equa-
tions after rearranging Equation 26:

Eðb2j Þ ¼ EðbjÞ2 þ VARðbjÞ
¼ c210 þ /1;

(27)

VARðb2j Þ ¼ Eðb4j Þ � Eðb2j Þ2; (28)

where the expected value of bj
4 can be obtained with the moment-

generating function for normal distribution (see more details in the
Appendix):

Eðb4j Þ ¼ Mð4Þð0Þ ¼ c410 þ 6/1c
2
10 þ 3/2

1: (29)

With the moment transformation approach outlined above,
inferences can be directly made about the average level of within-
cluster variance (E(rj

2), E(bj
2)) as well as its heterogeneity across

clusters (VAR(rj
2), VAR(bj

2)). Importantly, as we propose to use
Bayesian estimation via MCMC, it is convenient to implement the
moment transformation within each draw and thus monitor the
posterior distributions of the moments for within-cluster variance.3

3 This approach is preferred over performing the transformation on the
point estimate of the moments for the log-variance or scaling factor (either
obtained via ML or Bayesian MCMC). Based on Jensen’s inequality, for a
convex function g we have E½gðXÞ�$ gðE½x�Þ. Therefore, transforming the
point estimate of the moments for the original distribution will likely yield
biased estimates of the moments for the transformed distribution.
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Model Extensions

So far we have presented the most basic unconditional models
that can be used to model the random intraindividual or intragroup
variability for single group analysis. Building upon the above mod-
eling strategy, the models for random variability can be further
adapted to accommodate more complicated scenarios. For instance,
regarding the intraindividual variability over repeated measures, it
may be necessary to control for the time trend of the outcome varia-
bles (that is, detrending) when the outcome is believed to systemati-
cally change over time. Extending Model A and Model B, it is
straightforward to control for the time effect by either including the
time variable at Level-1 (for example, Figure 3), or by incorporat-
ing a latent growth component into the model (for example, Figure
4). Moving forward, we can envision a collection of SEM-based
random variability models to meet a variety of research needs that
are commonly seen across the disciplines in social and behavioral
sciences (see Table 1). Examples include conditional models with
random variability as the predictor, outcome, and/or mediator (for
example, Figure 5), between-subjects designs (for example, multi-
ple group comparison regarding random variability, Figure 6),
within-subject designs (for example, pre- and posttest random vari-
ability), longitudinal growth trajectories of random variability, par-
allel processes with multiple observed/latent outcomes, and mixture
modeling to detect heterogeneous subpopulations differing in terms
of random variability. Although more nuanced discussion of each
of the extensions is reserved for future methodological and applied
research, the modeling strategies and techniques presented in this
study present a promising foundation that can potentially grow into
a comprehensive framework for random variability modeling that
has wide applications.

Illustrative Examples

In this section, we demonstrate the application of the random var-
iability modeling framework with empirical data. Across the exam-
ples, we illustrate how the models can be employed to help address
research questions about random variability across four different
scenarios: (a) unconditional and conditional measured variable
models for intraindividual variability; (b) unconditional latent vari-
able models for intraschool variability; (c) conditional latent vari-
able models for intraindividual variability; and (d) conditional
latent variable models for intraindividual variability with time trend
and lagged residual correlation over time being taken into account.
For each example, the models are fit to the data via Mplus or rjags
and rstan. The corresponding Mplus code, BUGS model syntax for
rjags and Stan model syntax for rstan are provided in Supplemental
Material B. The interpretation of the model results is discussed
within the corresponding research context.

Example 1: Heterogeneous Intraindividual Variability of
Daily Curiosity

For this illustrative example, we applied the proposed models to
examine intraindividual consistency in daily curiosity. The empiri-
cal data used in this example were collected from the Knowledge
Networks Over Time (KNOT) study, an intensive longitudinal
investigation of day-to-day intraindividual variability in various
outcomes, with curiosity being of specific interest to the investiga-
tors (Lydon-Staley et al., 2020). The researchers theorized that

people not only differ in their trait-level curiosity, but also vary in
the fluctuations of their daily experience of curiosity. Further, they
hypothesized that an individual’s mental well-being depends not
only on a person’s trait-level curiosity, but on how consistent a
person’s curiosity levels are from day to day as well. More details
about the KNOT study can be found in Lydon-Staley et al. (2020).

The analytical data used for this illustrative example includes
166 participants (135 females, 29 males, and two with other gender
identities; M age = 25.41 years, SD = 7.35) who were instructed to
complete a daily diary consisting of various survey items for 21
days after the lab visit. Besides the daily diary, participants also
completed a survey to report their trait-level characteristics, includ-
ing demographics, mental well-being, and general curiosity. Daily
curiosity was assessed as part of the daily diary with two items
taken from the Curiosity and Exploration Inventory-II (CEI-II;
Kashdan et al., 2009): (a) “Today, I viewed challenging situations
as an opportunity to grow and learn,” and (b) “Everywhere I went
today, I was out looking for new things or experiences.” Partici-
pants responded to both the items on a slider from 0 (not at all) to
10 (very) in increments of .1, with a daily curiosity score derived as
the average score of the two items. A plot showing daily fluctua-
tions in this score for five randomly selected individuals is pre-
sented in Figure 7, showing for the sample that while some
individuals are more consistent, others vary quite a bit from day to
day.

We fit both an unconditional model (Model A) and a condi-
tional model (see Figure 8) to the data in response to the fol-
lowing research questions discussed in Lydon-Staley et al.
(2020): (a) Do daily fluctuations curiosity vary across individu-
als and if so, (b) do day-to-day curiosity fluctuations predict
individual well-being after the trait-level curiosity is controlled
for? In this example, the model parameters were estimated
using Bayesian estimation via MCMC with Mplus v.8.6
(Muthén & Muthén, 1998–2021). The Mplus syntax files are
provided in Supplemental Material B. For the unconditional
model, a diffuse prior N(0, 1010) was used for the fixed effects
and an improper uniform prior inverse Wishart W�1(0, �3) was
used for the Level-2 random effects variance-covariance ma-
trix.4 The priors were set up similarly for the conditional model,
except that the improper prior Inv-Gamma(�1, 0) (i.e., a uni-
form prior on interval [0, 1]) was used for the residual var-
iance of the distal outcome. Three chains were run with a
minimum of 5,000 iterations per chain, after which the itera-
tions terminated either when the potential scale reduction
(PSR) criterion falls below 1.05, or at the maximum number of
iteration (50,000). PSR compares the between-chain variation
against the within-chain variation (Gelman & Rubin, 1992),
with a PSR value lower than 1.10 generally suggesting that the
between-chain variation is small enough relative to the within-
chain variation to be considered evidence of stochastic conver-
gence. After a model converged, the posterior distributions
were examined, with posterior means used as the parameter

4 Given the relatively large sample size, the default noninformative
priors were employed in the illustrative examples only for illustration
purpose. We would suggest researchers make more informed decisions
about the priors in practice, by incorporating prior information from theory
and existing literature, especially when the sample size is small. For
discussions about prior specification in the context of latent variable
models, readers may consult Smid et al. (2019) and Zitzmann et al. (2020).
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point estimates with 95% highest posterior density intervals
(HPDI) as the interval estimates.5 Both the unconditional model
and conditional model converged in seconds (6 s and 12 s,
respectively) on Mac OS, with 2.6 GHz 6-Core Intel Core i7
and 32 GB RAM.
The results of the unconditional model suggest that indi-

viduals differ from one another in their daily fluctuations of
self-reported curiosity, with an average level of within-indi-
vidual log-transformed residual variance of .810, and a
between-individual variance of the log intraindividual varia-
tion of .690:

ĉðBÞ ¼ 3:111 ð2:842; 3:391Þ
0:810 ð0:680; 0:951Þ
� �

;

Ûm ¼ 3:375 ð2:600; 4:156Þ
0:734 ð0:450; 1:025Þ 0:690 ð0:525; 0:884Þ
� �

:

Translating everything onto the raw variance scale, the aver-
age level of intraindividual variance is estimated to be 3.186
with a 95% HPDI [2.657, 3.704], while the variance of intrain-
dividual variance is estimated to be 10.089 with a 95% HPDI

[5.240, 18.062]. The results also indicate, as seen in the covar-
iance term below the diagonal, that the average level of daily
curiosity is positively associated with the intraindividual fluc-
tuation of curiosity; these results translate to an estimated cor-
relation of approximately .48. Thus, people who have a higher
level of average curiosity are expected to be less consistent
from day to day in terms of their experience of curiosity
feelings.6

Next, a conditional model was fit to the data (see Figure 8), pre-
dicting individual flourishing with self-reported trait-level curiosity
at baseline, model-implied individual average curiosity over time,

Figure 3
Random Variability Structural Model With One Continuous Observed Outcome Variable Y, Controlling for the Linear Trend Over
Time

Note. A time variable (Timeti) is included at Level-1 as a predictor. The individual intercept (boi) and slope (b1i) are both modeled as random coeffi-
cients at level 2. (a) Model A: the log-transformed residual within-level variance (ln(ri

2)) is modeled as a random coefficient; (b) Model B: the scale of
the residual within-level variance (bi) is modeled as a random coefficient at Level 2.

5 Researchers can choose to interpret the estimation results either from a
frequentist perspective or Bayesian perspective. Readers who are interested
in HPDI’s coverage properties when it is interpreted as the frequentist
interval estimate may refer to Ghosh and Mukerjee (1993), Severini
(1991), and Peers (1968) for more detailed discussions.

6We would caution, however, that such linear associations should not
be interpreted causally without ruling out other possibilities that can
introduce potential confounding. For instance, the dependence between
individual level of curiosity and intraindividual variability in curiosity can
be partly due to the bounded measurements (e.g., as discussed by Mestdagh
et al., 2018).
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and intraindividual fluctuation of daily curiosity. After controlling
for the first two terms, the inconsistency of daily curiosity posi-
tively predicts personal flourishing (ĉ32 ¼ :296, 95% HPDI [.097,
.499]), thus suggesting that the intraindividual variability provides
unique information for predicting individuals’ flourishing above
and beyond the baseline and personal average trait-like characteris-
tics. Specifically, people who show a greater variability from day
to day in their curiosity are predicted to have higher-level of self-
reported flourishing.

Example 2: Heterogeneous Intraschool Variability of
Perceived Math Teacher Support

The second example illustrates an application of the pro-
posed model to study the within-school heterogeneity in stu-
dent perceptions, using the publicly available data from the
Program for International Student Assessment (PISA), a large-
scale international study administered by the Organization for
Economic Cooperation and Development (OECD). The U.S.

Figure 4
Random Variability Structural Model With One Continuous Observed Outcome
Variable Y, Controlling for the Linear Trend Over Time With a Latent Growth
Model

Note. The residual variance of the observed outcome after controlling for the latent growth fac-
tors is allowed to vary across individuals. (a) Model A: the log-transformed residual variance (ln
(ri

2)) is modeled as a random coefficient at individual level; (b) Model B: a phantom variable
(fT) is introduced to approach for modeling the random within-individual variance.
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data from PISA 2012 (OECD, 2013a, 2013b, 2013c) were
used for this example, where the outcome of focal interest is
the student perceived support from math teachers. The analytic
dataset was downloaded via the EdSurvey R package (Bailey
et al., 2021), containing the cross-sectional data from 3,232
students (1,580 females; M age = 15.52 years, SD = .5) in 162
schools. Three items asking how often each described scenario
occurs in math classes were used as indicators of latent per-
ceived support: (a) “The teacher gives extra help when stu-
dents need it,” (b) “The teacher helps students with their
learning,” and (c) “The teacher continues teaching until the
students understand.” Students responded to the items on a 4-
point perceived frequency scale (1 = every lesson; 4 = never
or hardly ever), with all items reverse coded prior to data
analyses such that higher values correspond to higher levels of
perceived support. Although a latent variable model is ana-
lyzed in this example, for visualization purposes Figure 9
shows a grouped boxplot of the distributions of averages of
the three perceived support items for a random sample of 16
schools. As seen in the figure, schools differ from one another
in terms of the within-school heterogeneity in student per-
ceived support: in some schools students have similar levels of
perceived support, while in other schools students have very
different perceptions regarding how much support they receive
from math teachers. For instance, while School 5 and School
155 have similar levels of average perceived support (M =
3.57 vs. M = 3.37), students in School 5 appear to be more

homogenous in their perspectives than students in School 132
(r2 = .12 vs. r2 = .58).

To further investigate the variability of within-school heter-
ogeneity in perceived support from math teachers across
schools, we fit a random variability model to the data using
the phantom variable approach (see Figure 10). We hypothe-
sized that the observed responses were governed by a latent
construct of perceived support both at the within-level as well
as at the between-level. The between-level latent construct is
measured by the school-level averages and the within-level
latent construct is measured by the individual students’ devia-
tions from their school-level average. At the school level, the
aggregated latent perceived support can be interpreted as an
aspect of the school climate. For instance, a school that better
trains teachers to provide support to students in math class
may have a higher school-level perceived support, which in
turn yields higher school averages for each item. At the stu-
dent level, the latent construct speaks to how much support an
individual student believes that they receive from the math
teachers, relative to the school average. Within the same
school, a student who perceives a higher-level of support is
expected to respond more favorably on each item compared
with other students. For this example, we are specifically inter-
ested in how intraschool heterogeneity in this student-level
latent perception varies across schools. For simplicity of illus-
tration, the item scores reported on the 4-point frequency scale
are treated here as continuous variables.

Figure 5
Conditional Random Variability Structural Model With One Continuous
Observed Outcome Variable Y

Note. The within-cluster variability is modeled as a mediator between cluster-level char-
acteristic W and outcome Z. The log-transformed residual variance (ln(r2

i)) is modeled as a
random coefficient at between level.
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Before introducing the random variability model, we begin
with a conventional MSEM model, where the within-cluster
variance is fixed across all schools. The fit indices of the fixed
variability model supported the hypothesized measurement
structure with cross-level measurement invariance: v2(2) =
.49, p = .783; within-level SRMR = .004; between-level
SRMR = .032. Next, we proceeded to fit a random variability
model (see Figure 10), and the parameters are estimated using
Bayesian estimation via MCMC with Mplus v.8.6 (Muthén &
Muthén, 1998–2021). The Mplus syntax files are provided in
Supplemental Material B. For the model set-up, the default
priors in Mplus were utilized: diffuse prior N(0, 1010) for all
the free factor loadings, fixed effects, and item intercepts;
improper prior Inv-Gamma(�1, 0) for both within-level and
between-level individual item residual variances; and improper
uniform prior W�1(0, –3) for the between-level random effects
variance-covariance matrix. The model was estimated with
three chains. A minimum number of 4,000 iterations per chain
was requested to avoid premature termination of iterations; the
model converged with PSR = 1.082. The posterior means were
then used as the point estimates for model parameters with
95% HPDI reported as the interval estimates. The model con-
verged in 39 s on Mac OS, with 2.6 GHz 6-Core Intel Core i7
and 32 GB RAM. To check the sensitivity to prior specifica-
tion, we also fit the model with a more informative prior (e.g.,

N(6, 1) for the fixed effect of the scaling factor), which
yielded similar results. Therefore, we will only discuss the
results obtained with the default noninformative priors in this
section:

ĉðBÞ ¼ 0
0:658 ð0:630; 0:684Þ
� �

;

Ûm ¼ 0:039 ð0:026; 0:055Þ
�0:028 ð�0:039; �0:020Þ 0:021 ð0:014; 0:029Þ
� �

:

The model estimation results also suggest that schools have
varying levels of intraschool heterogeneity in student perceived
support. On average, the within-school scaling factor is .658 with
95% HPDI[.630, .684], while the variance of the within-school
scaling factor is estimated to be .021 with 95% HPDI [.014, .029].
That is to say, for some schools the scaling factor within school

may be as low as .374 (.658 – 1:963
ffiffiffiffiffiffiffiffiffi
:021

p
; more homogeneous)

and for some it may be as high as .942 (.658 þ 1:963
ffiffiffiffiffiffiffiffiffi
:021

p
;

more heterogeneous). To interpret the results on the variance scale,
the posterior mean for the within-school variance is .454 with 95%
HPDI [.418, .488], and the posterior mean for the variance of the
within-school variance is .037 with 95% HPDI [.025, .051]. There-
fore, on average, the within-school variance in latent perceived
support is .454, and the variance of this within-school variance

Figure 6
Between-Subject Design for Random Variability Models With One Latent Outcome

Note. Between-subject design for random variability models with one latent outcome, comparing the within-cluster variability between two types of
clusters (classified into Group 1 and Group 2). Measurement invariance can also be tested with this model.
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across different schools is .037. Further, based on the covariance
term, the results yield a negative association between the school-
level perceived support and within-school heterogeneity of the stu-
dent perceptions (r = �.98), suggesting that schools that have
higher overall level of latent perceived support tend to be more ho-
mogeneous within the school in terms of how students feel they
are supported by the math teachers.7

Example 3: Intraindividual Sleep Quality Consistency and
Physical Health

In this example, the random variability models are employed
to study intraindividual sleep quality consistency, specifically its
relation with individual physical health. The data used for this
example are from the Biomarker Project of Midlife in the United
States Study series (MIDUS Refresher; Weinstein et al.,
2012–2016). MIDUS is a national longitudinal study on Ameri-
can adults’ health and well-being (Radler, 2014). Over decades
MIDUS has been collecting data from various resources, such as
lab assessment, self-administered surveys, bio-marker collection,
and daily diary report. For this example, we utilize the biological
assessment data collected in MIDUS Biomarker Project (MIDUS
Refresher). As part of this study, a group of participants were
instructed to wear a preprogrammed Actiwatch® activity monitor
for seven days in a row; besides the daily activity data, they also
provided one-time fasting blood draw, urine, and saliva samples
for biomarker assays. By continuously monitoring individuals’
movement, the Actiwatch generated a series of sleep quality meas-
ures for each day, including sleep onset latency (OL), sleep effi-
ciency (EFF), and wake after sleep onset (WSO). Meanwhile, the
biomarker specimen assays yielded various indicators reflecting dif-
ferent aspects of internal metabolic functioning, among which there
are interleukin-6 (IL6), c-reactive protein (CRP), and fibrinogen
(FGN), that are commonly treated as inflammation markers. Thus,
this example addresses the relation between sleep inconsistency and

physical health, an area in which scientists have shown increasing
interest (e.g., Dzierzewski et al., 2020).

The analytic data for this example consisted of the complete
Actiwatch sleep data and biomarker data collected from 90 adult
males (M age = 53.66 years, SD = 13.22). Plots showing the pat-
terns for each sleep quality indicator over the 7-day study period
are provided in Figure 11. These images suggest that participants
have varying levels of consistency in their sleep quality; some stay
more stable while others fluctuate to a greater extent in the three
observed sleep quality indicators. The random variability model is
thus applied to further examine the intraindividual consistency in
sleep quality. With repeated measures of OL, EFF, and WSO
nested within individuals, we hypothesized both a within-level
latent sleep quality as well as a between-level latent sleep quality.
The between-level latent sleep quality is the overall sleep quality
for an individual measured by the average OL, EFF, and WSO
over the days, and the within-level latent sleep quality refers to an
individual’s sleep quality on each day measured by the fluctuations

Figure 7
Pattern of Daily Self-Reported Curiosity Over 21 Days for Five Randomly
Selected Participants

7 Such a high correlation suggests a strong linear dependence between
the school levels of latent perceived support and within-school
heterogeneity in student perceived support. Therefore, researchers may not
wish to include both as predictors in a conditional model because of the
collinearity. With this model, a high correlation at the latent variable level
implies a high correlation between the school-level means and within-
school variability in the observed indicators, which is evident in the
observed data (r ranges from –0.67 to –0.81). Importantly, the estimation
of the correlation between latent variables is essentially driven by the
strong observed correlations. Because measurement error is removed, we
also expect to see an even higher correlation at the latent variable level. The
observed correlation in and of itself, however, as discussed earlier, can be a
result of bounded measurements (Mestdagh et al., 2018). It is also possible
that the relation between the school-level means and within-school
variability in the observed indicators is nonlinear in nature and thus a linear
association does not accurately characterize the true relation in population.
As in the previous example, for illustration purpose, we do not further
investigate the underlying mechanism for this linear association in the
current manuscript and it should not be interpreted as a causal relation.
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in OL, EFF, and WSO relative to individual’s average level. Addi-
tionally, we also hypothesized that there is a latent inflammation
variable at the between-level measured by the three biomarkers:
IL6, CRP, and FGN. With a just-identified Level-1 measurement
model, we tested the fit of the hypothesized measurement model
at the between-level. The baseline model with both saturated
Level-1 and Level-2 covariance structure was compared with the
model with saturated Level-1 covariance structure but hypothe-
sized Level-2 measurement model. The results suggested the
Level-2 measurement structure fits the data well: v2(8) = 8.019,
p = .432; between-level SRMR = .074. We thus proceeded with
the hypothesized measurement structure in subsequent random
variability modeling, but allowing the loadings for sleep quality
to differ cross-level. An unconditional model with random log
variance was first fit to the data using Bayesian estimation in
Mplus, following the similar procedure as we did in the second
example. The posterior mean of the log variance was –2.823
with 95% HPDI [–3.254, –2.355]; the posterior mean for the var-
iance of the log variance was 2.592 with 95% HPDI [1.868,
3.360]. It thus suggests that within-individual consistency in
sleep quality varies from person to person. In addition, the covar-
iance between overall sleep quality and (in)consistency in sleep
quality was estimated to be –.714 with 95% HPDI [–.991,
–.429], indicating a negative association—people who have
higher average sleep quality tend to experience less fluctuation
(i.e., are more consistent) in their daily sleep quality.
To address whether sleep consistency predicts individual

inflammation reactions, we fit a conditional model to the data
using Bayesian estimation (see Figure 12). The corresponding

Mplus code is supplied in Supplemental Material B. The model
was estimated with two chains and a minimum number of 13,000
iterations per chain. The MCMC posterior draws were thinned at
every third iteration; the model converged with PSR = 1.09. The
default diffuse priors in Mplus were used for the model parame-
ters: diffuse prior N(0, 1010) for all the factor loadings, fixed
effects, item intercepts, Level-2 path coefficients, and Level-2 ran-
dom effect variance-covariances; improper prior Inv-Gamma(–1,
0) for both the within-level and between-level individual item re-
sidual variances, as well as the Level-2 disturbance variance for
latent inflammation. The model converged in 1.02 min on Mac
OS, with 2.6 GHz 6-Core Intel Core i7 and 32 GB RAM. The pos-
terior means and standard deviation for the model parameters are
included in Figure 12. There appears to be a weakly negative asso-
ciation between average sleep quality and inflammation reaction in
this sample, although the 95% HPDI [–3.276, .836] of this model
parameter covers zero. Additionally, after controlling for the long-
term average sleep quality, the intraindividual (in)consistency of
daily sleep quality is barely predictive of inflammation reaction
with a point estimate of .031 and 95% HPDI [–.892, .354].

Example 4: Intraindividual Positive Affect Consistency

In previous examples when intraindividual variability was of in-
terest, we assumed there to be no systematic trend over time in the
repeated measures, and thus the fluctuation at each measurement
point was treated as idiosyncratic in nature. In some research sce-
narios, however, it may be necessary to account for the trend over
time so that intraindividual consistency can be meaningfully

Figure 8
The Conditional Model Predicting Individual Flourishing

Note. The conditional model predicting individual flourishing (Z) with self-reported trait-level curiosity at baseline (X), model-implied individual aver-
age curiosity over time (c0j), and intraindividual fluctuation of daily curiosity (ln(r2)). The posterior mean is listed as point estimate and the posterior
standard deviation is displayed in parentheses.
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interpreted. As mentioned earlier, it is straightforward to extend
the proposed SEM-based models to account for the systematic
change over time. In this example, we demonstrate how to detrend
the data by integrating a latent growth component into the pro-
posed random variability models. The data used for this illustrative
example come from the Daily Stress Project of MIDUS II (i.e.,
NSDE; Ryff & Almeida, 2004–2009) and MIDUS III (Ryff et al.,
2013–2014). Participants in NSDE were interviewed on the tele-
phone every day for 8 consecutive days and responded to ques-
tions about their daily experiences. People who completed the
phone interview in MIDUS II were invited to participate in
MIDUS III for follow-up phone interviews and self-administered
surveys. The analytic sample for this example consists of those
who participated in the follow-up wave (MIDUS III) as well as
provided complete daily diary data over phone interview in
MIDUS II (n = 1,251; 711 females and 540 males; M age = 56.6
years, SD = 11.84). The outcome of interest is positive affect, a
latent construct indicated by 13 survey items administered during
a phone interview. On each day, the respondents were instructed
to indicate how much of the time on that day they felt: (a) in good
spirits, (b) cheerful, (c) extremely happy, (d) calm and peaceful,
(e) satisfied, (f) full of like, (g) close to others, (h) like you belong,
(i) enthusiastic, (j) attentive, (k) proud, (l) active, and (m) confi-
dent. Participants responded to each of the items on a 5-point fre-
quency scale (0 = none of the time; 4 = all of the time). Based on
the descriptive plot in Figure 13 showing the mean of the 13
items, it appears that the participants do not only experience

varying levels of overall positive affect but also demonstrate dif-
ferent levels of intraindividual consistency in daily positive affect.
The hypothetical research scenario is to investigate to what extent
people vary in terms of intraindividual consistency in the underly-
ing latent positive affect.

Traditionally, an average score across the 13 items is treated as
the unobserved positive affect, treating the aggregate as though
there is no measurement error and assuming every item is equally
good indicator of the underlying latent construct. Alternatively, we
chose to model latent positive affect with a one-factor CFA model
at each time point (i.e., within-level) to explicitly account for mea-
surement error and validate the measurement structure via formal
testing. With measurement error accommodated, the fluctuation of
the latent positive affect at each measurement point was then
assumed to result from both a potential systematic linear trend over
time and an idiosyncratic process that reflects intraindividual con-
sistency. To account for the growth trend, a second-order latent lin-
ear growth model (LGM) was imposed at the person level with
measurement invariance8 constrained across time as shown in Fig-
ure 14 (see Hancock et al., 2001, for a treatment on second-order
latent growth models). Because the same set of items were used
across the days, we further allowed the residuals for each individual

Figure 9
Distribution of Student Perceived Math Teacher Support Within Each School for a Random Sample of 16 Schools

Note. Perceived support in this graph is computed as the average score of the three observed indicators for illustration purpose.

8 The measurement invariance over intensive longitudinal measurements
can also be tested by fitting a cross-classified factor analysis model and
testing the variance of random time effects on factor loadings and intercepts.
For more details about this approach, readers can refer to McNeish et al.
(2021).
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item to covary across different measurement points, as people are
likely to respond to the same item similarly on different days even
after controlling for the underlying positive affect. Importantly, dif-
ferent from the conventional parameterization of second-order
LGM, in this model we assumed that the disturbance terms of the
latent construct at each time point come from a normal distribution
that varies from individual to individual. The log-transformed var-
iance of the disturbance terms was in turn modeled as a random
coefficient at the person-level, which was allowed to covary with
the latent growth factors.
To start the modeling process, a conventional second-order

LGM with fixed disturbance variances across individuals was first
fit to the data to check whether the specification of the hypothetical
measurement model and growth model was reasonable. The model
had acceptable model-data fit: v2(5059) = 15094.189, p , .001;
RMSEA = .040, 90% CI [.039, .041]; SRMR = .073. Therefore,
building upon this second-order LGM, we further modeled the
random variability at the person-level with the log variance
approach (see Figure 14). The second-order LGM random vari-
ability model was estimated using Bayesian estimation with
MCMC using rjags in R (Plummer, 2016; RStudio Team,
2020). The model syntax defined in BUGS language (Lunn et al.,
2009) for this example is provided in Supplemental Material B.9

As in previous examples, we employed noninformative priors for

all model parameters: N(0, 107) for all the free factor loadings,
item intercepts, and Level-2 fixed effects, Inverse Wishart distri-
bution W�1(I8, 9) for the item residual variance-covariance matri-
ces, and W�1(I3, 4) for the variance-covariance matrix for the
between-level random coefficients. We estimated the model with
three chains and 20,000 iterations per chain after 10,000 iterations
of burn-in. The model converged with PSR = 1.011, after 11.35 hr
of running time on Windows 10, with 1.90 GHz 4-Core Intel Core
i7 and 16 GB RAM. The posterior means and 95% HPDI for the
Level-2 fixed effects were:

ĉðBÞ ¼
2:997 ð2:960; 3:034Þ
0:004 ð�0:000; 0:008Þ

�3:133 ð�3:241; �3:022Þ

2
4

3
5;

corresponding to the average latent intercept, latent slope, and
latent (in)consistency, respectively. The posterior means and 95%
HPDI for the Level-2 random effect variance-covariances were:

Figure 10
Multilevel Structural Equation Model With Random Scaling Factor Fitted to the
PISA 2012 Data, Assessing the Variation Between Schools Regarding Within-
School Heterogeneity in Student Perceived Support From Math Teachers

Note. Three survey items (Y1–Y3) are used as the indicators for the latent constructs at
both the within-level and between-level. The factor loadings are constrained to be equal at
both levels. The posterior mean is displayed as the point estimate, with posterior standard
deviation included in parentheses.

9 As a reference for interested readers, the corresponding Stan model
syntax is also supplied in Supplemental Material B, which yielded very
similar results as rjags. It is noted that the Hamiltonian Monte Carlo
(HMC) sampling in Stan took a longer run-time for this example, compared
with the Gibbs sampler in JAGS. The running time for three chains with
5,000 iterations per chain and 1,000 iterations of warm-up is 62.59 hr on a
Windows laptop.
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Ûm ¼
0:326 ð0:294; 0:358Þ
0:000 ð�0:002; 0:003Þ 0:003 ð0:003; 0:004Þ

�0:270 ð�0:328; �0:208Þ 0:002 ð�0:004; 0:009Þ 2:018 ð1:760; 2:303Þ

#
;

2
4

with the rows and columns corresponding to the latent inter-
cept, latent slope, and latent inconsistency in this order. The
results suggest no evidence of a linear growth trend for posi-
tive affect over time; nevertheless, after controlling for trend,

the extent to which individuals fluctuate in daily positive
affect differed from person to person. The average inconsis-
tency defined as the within-individual log disturbance variance
was –3.133 with 95% HPDI [–3.241, –3.022], and the variance
of the inconsistency was 2.018 with 95% HPDI [1.760, 2.303].
Further, the individual inconsistency in daily positive affect
was negatively associated with the initial level of positive
affect, such that people who started with higher positive affect
were likely to experience more stable positive affect over the
time span. To interpret the intraindividual inconsistency on a
variance scale, we also monitored the posterior distribution of
the mean and variance of the within-individual disturbance
variance via the transformed moments approach discussed ear-
lier. On average, the within-individual disturbance variance
was estimated to be .120 with 95% HPDI [.103, .138], while
the variance of the within-individual disturbance variance was
estimated to be .097 with 95% HPDI [.051, .157].

Discussion

As a characteristic that potentially plays an important role in
human development, group performance, and beyond, there has
been growing interest in questions related to variability across a
wide variety of research fields. Unfortunately, whether in the form
of intraindividual consistency/fluctuation over repeated measures,
or intragroup cohesion/heterogeneity among group members, this
interest has been met with methodological barriers that have
impeded such scientific inquiries, primarily due to traditional sta-
tistical methods’ focus on modeling means while treating parame-
ters related to variability as fixed, peripheral, and/or a complete
nuisance. In short, opportunities have been lost without compre-
hensive methodological tools and guidance on how to operational-
ize variability, how to model variability, and how to interpret
statistical results informing relevant conclusions thereof. The cur-
rent study is in response to this collective need, introducing a
system of structural models for random variability modeling appli-
cable to investigations of intraindividual or intragroup variability.
Specifically, by specifying a random coefficient for either the log-
transformed variance or the scaling factor, variability can be con-
veniently modeled as a latent variable. These approaches, built
upon the developments in SEM and MSEM, have the flexibility to
embed variability within a broader covariance and mean structure,
which can then be further extended to accommodate many com-
plex research scenarios.

Aiming to complement currently existing methods that can
accommodate heterogeneous variability, the modeling approaches
discussed in this study have wider applicability across different
research contexts involving observed/latent outcomes, covariates,
mediators, and distal outcomes. While in some research scenarios
single observed measures can be meaningfully studied and inter-
preted, in many cases—especially within the social and behavioral
sciences—researchers are often interested in underlying latent con-
structs that are not directly observable (e.g., perception, attitude,
ability). Existing analytical methods for studying variability, how-
ever, generally assume no measurement error, and therefore either
only focus on single observed variables or an aggregate across mul-
tiple observed indicators as a (potentially crude) operationalization

Figure 11
Patterns of the Three Observed Sleep Quality Indicators on Their
Raw Scale Over the 7-Day Period, Plotted for a Random Sample
of Eight Males
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of a latent construct of interest. By treating the observed score as a
perfect measure of the underlying latent construct, the outcome
itself as well as its variability are conflated with variation due to
measurement error, which may in turn lead to biased results and
reduced power for statistical tests regarding variability. Studying
variability within the framework of SEM, on the other hand, allows
the possibility of incorporating and testing measurement models,
such that the structural features of variability are not driven by falli-
ble measures.
Of course in some research contexts the focal outcome can

indeed be meaningfully represented by a single measure varia-
bles (e.g., response time, blood pressure, heart rate), and there-
fore researchers do not need to consider the integration of
measurement models. In such cases, model-based approaches
are still preferable to multistage strategies that treat point esti-
mates of variation as if they were observed variables, and
LSM is a clever multilevel approach that can meet such
research needs. It is important to note that the SEM-based
strategy discussed in this article is not incompatible with the
MLM-based approach. Indeed, the development of MSEM
shows that when the two frameworks come together, we can
enjoy greater flexibility than when we rely on a single frame-
work alone. In fact, LSM can be conveniently specified and

estimated as a MSEM or DSEM model (e.g., McNeish, 2020;
Nestler, 2021). Readers may also find that Model A for
observed outcomes with random log-variance shares great sim-
ilarities with LSM,10 but with the key exception that Model A
can be expanded to model the random log-variance as predic-
tor, outcome, and/or mediator simultaneously in one step.
Therefore, whether the research focus is on observed variables
or latent variables, the SEM-based framework for random var-
iability serves as a powerful complement to currently available
analytical tools.

Most importantly, the SEM-based approaches for random var-
iability have great potential to grow into an even more compre-
hensive modeling framework that can be flexibly adapted to a
wide range of research scenarios (see Table 1). Based on the
foundational modeling structure presented in the current study,
in which variability is parameterized as a random latent variable

Figure 12
Conditional Model Predicting Inflammation Reaction With Sleep Quality Consistency and Average
Sleep Quality

Note. OL = sleep onset latency; EFF = sleep efficiency; WSO = wake after sleep onset; INF = inflammation;
SQW = within-level sleep quality; SQB = between-level sleep quality.

10 In its most general form, Model A does not specify the within-level
residual variance as varying across within-level units, which is different
from the LSM parameterization (see Equation 2). Although it is possible to
also include time varying covariates for intraindividual variability in Model
A, we chose not to do so considering it does not make much theoretical
sense for intragroup variability (e.g., it is hard to interpret if the intragroup
variability is individual-specific).
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in a structural model, various features of variability can be
investigated, opening up a plethora of new possibilities for
research on variability across different fields. Future studies can
further investigate and illustrate, for example, models for
between-subjects designs, within-subject designs, longitudinal
models for variability, parallel processes with multiple out-
comes considered simultaneously, mixture modeling for random
variability, and much more.
With the many advantages and great potential of the pro-

posed modeling framework, there are some caveats to be noted
as well. The current study introduced and illustrated two dif-
ferent parameterization strategies for modeling random vari-
ability: variability as the natural log-transformed variance and
variability as the random scaling factor by introducing a phan-
tom variable. Conceptually, both are viable for random vari-
ability modeling, although the different parameterization
strategies represents different distributional assumptions about
the variance. Utilizing the log transformation approach implic-
itly assumes that the within-level variance follows a lognormal
distribution (via the exponential function), while modeling a
random scaling factor with phantom variable assumes the
within-level variance follows a scaled noncentral v2 distribu-
tion (via the quadratic function). As such, the exponential
function is monotonically increasing over its entire domain
while the quadratic function is only monotonically increasing
on (0, 1). Therefore, the Level-2 parameters of the scaling
factor may not be interpretable if the random coefficient bj
takes on both positive and negative values. Depending on how
far bj falls from zero, additional positivity constraints may be
needed (e.g., to force the MCMC draws to sample from a trun-
cated distribution). Although this issue is of less concern in
practice when individuals actually fluctuate to a great extent or

group members differ considerable from one another, it may
yield misleading results when there is minimal within-level
variability for the individuals or groups in the sample. In such
cases, the scaling factor approach may overestimate the
within-level variability without the positivity constraints.
Future research could look into this issue by systematically
evaluating the performance of the phantom variable approach
with and without these constraints under different scenarios.

Although beyond the scope of the current study, a thorough
treatment of model fit assessment within the context of SEM-
based random variability modeling would be welcome. As the
model for random variability is rather complex to begin with,
model misspecification at any layer can adversely impact pa-
rameter estimation across the entire model. In the illustrative
examples, we only briefly mentioned model fit. For instance,
in the case of a multilevel CFA model with random variability
(Model C and Model D), we examined the model (mis)fit in
three separate aspects whenever applicable: (a) measurement
model at the within level, (b) measurement model at the
between level, and (c) heterogeneous within-level variability
structure. The first two sources of model misfit are assessed by
comparing the saturated model to the corresponding reduced
model with a restricted structure at either the within level or
between level, via ML-based model fit indices (e.g., v2). The
third piece of model misfit can be assessed by comparing the
random variability model to the reduced model that con-
strained zero variation of the within-level variability, via the
information criterion (e.g., DIC). Although the literature has
provided useful guidance regarding model fit assessment for
MSEM (Ryu, 2014; Ryu & West, 2009) and Bayesian SEM
(Garnier-Villarreal & Jorgensen, 2020; Levy, 2011), it is not
entirely clear how to properly assess model data fit for random

Figure 13
Daily Positive Affect Mean Score Over the 8-Day Study Period for Eight
Randomly Selected Subjects

Note. The mean score is only used here for easier data visualization.
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variability models in the context of Bayesian MSEM. There-
fore, it would be important for future methodological research
to investigate optimal procedures and fit indices for assess-
ment of random variability models.
In summary, the current study introduced and delineates

SEM-based approaches for modeling variability as a random
latent variable. These not only complement and unify the exist-
ing analytical methods for variability, but they also open up
many possibilities for more advanced methodological and
applied developments. It is our hope that the proposed models
provide applied researchers with relatively straightforward
tools that can be implemented to answer a wide range of
research questions about variability. We also look forward to
future research on SEM-based variability modeling that further
expands this framework.
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Appendix

Moment Generating Function

The moment generating function (MGF) for random vari-
able X that follows a normal distribution N(l, r2) is:

MXðtÞ ¼ exp lt þ 1
2
r2t2

	 

:

It is also known that for the random variable X with MGF
MX (t), we have:

EðXnÞ ¼ MðnÞ
X ð0Þ;

where MðnÞ
X ð0Þ is the n-th derivative of MXðtÞ with respect to t,

evaluated at t ¼ 0:

MðnÞ
X ðtÞ ¼ dn

dtn
MXðtÞ

����
t¼0

:

Therefore, we thus can compute the expectation for X4 as:

EðX4Þ ¼ Mð4Þ
X ð0Þ

¼ d4

dt4
expðlt þ 1

2
r2t2Þ j t¼0

¼ r804 þ 4lr603 þ 6r4ðr2 þ l2Þ02 þ 4lr2ð3r2 þ l2Þ0

þ3r4 þ 6l2r2 þ l4 ¼ 3r4 þ 6l2r2 þ l4
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