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Low parasympathetic regulation of cardiac activity, known as cardiac vagal control (CVC), is robustly associated
with poor health outcomes. However, the etiological mechanism that undergirds this association remains largely
unknown. One explanation is a causal relationship wherein health problems cause low CVC, or vice versa.
However, an alternative explanation is that a common set of genetic factors contributes to both increased lia-
bility for poor health and low CVC (i.e., pleiotropy). The present study uses polygenic risk scores for a number of

health-related phenotypes (physical, mental, behavioral) to test whether genetic liability for poor health has
pleiotropic effects on CVC. We report evidence for shared genetic liability between low CVC and both poor
physical health (elevated triglycerides) and risky health-related behaviors (increased drinking and sexual ac-
tivity). The present findings are consistent with shared genetic liability explaining, at least in part, the well-
documented correlation between CVC and health.

1. Introduction

A mounting body of evidence links poor cardiac vagal control (CVC;
parasympathetic regulation of the heart) with a constellation of nega-
tive health conditions and psychosocial factors including cardiovascular
disease, symptoms of anxiety and depression, dysregulated emotions,
and limited behavioral control (Beauchaine, 2015; Thayer, Yamamoto,
& Brosschot, 2010). In light of the myriad associations between low
CVC and dysregulated health and behavior, researchers routinely use
CVC as a biomarker, particularly for health-related outcomes (Gidron,
Deschepper, De Couck, Thayer, & Velkeniers, 2018; Holzman &
Bridgett, 2017). However, scientists’ utilization of low CVC as a risk
factor for poor health may have outstripped comprehensive scientific
understanding of how CVC relates to health.

Despite strong evidence for an association between low CVC and
poor health-related outcomes, particularly poor physical and beha-
vioral health (Appelhans & Luecken, 2006), the etiology of these re-
lationships remains largely unknown (Heathers, Brown, Coyne, &
Friedman, 2015). On the one hand, some evidence suggests poor health
may precede low CVC (Gidron et al., 2018). On the other hand, direct
augmentation of CVC can precede improvements in mental health and
performance on socio-emotional tasks (Sellaro, de Gelder, Finisguerra,
& Colzato, 2018; Wheat & Larkin, 2010). Consequently, the etiology of
the association between health and CVC remains difficult to discern, in

part, because evidence is consistent with bi-directional or reciprocal
effects.

However, little to no work has tested an alternative explanation for
the association between low CVC and poor health: a common set of
genetic factors contributes to both increased liability for low CVC and
poor health (for a relevant exception, see Su et al., 2009). The present
article explores this possibility by testing whether polygenic liability for
poor health (physical, mental, and behavioral) is associated with CVC
in a large, nationally-representative sample of adults in the United
States.

2. Method
2.1. Sample

The present sample includes data from participants who were en-
rolled in the biomarker project of the Study of Midlife Development in
the United States (MIDUS). Participants consented to provide genetic
data and were of European ancestry as determined by genotype prin-
cipal components analysis (N = 1293, M,ee = 56.61, 51 % female).
Additional information regarding participant recruitment and data
collection can be found elsewhere (Ryff & Krueger, 2018).

* Corresponding author at: 6 Washington Place, New York, NY, 10003, United States.

E-mail address: jm5788@nyu.edu (J.D. Martin).

https://doi.org/10.1016/j.biopsycho.2020.107892

Received 9 September 2019; Received in revised form 28 March 2020; Accepted 22 April 2020

Available online 11 May 2020
0301-0511/ © 2020 Elsevier B.V. All rights reserved.


http://www.sciencedirect.com/science/journal/03010511
https://www.elsevier.com/locate/biopsycho
https://doi.org/10.1016/j.biopsycho.2020.107892
https://doi.org/10.1016/j.biopsycho.2020.107892
mailto:jm5788@nyu.edu
https://doi.org/10.1016/j.biopsycho.2020.107892
http://crossmark.crossref.org/dialog/?doi=10.1016/j.biopsycho.2020.107892&domain=pdf

J.D. Martin, et al.

2.2. Measures

2.2.1. Genotyping, imputation, & polygenic risk scoring

DNA collection and genotype calling for MIDUS are detailed elsewhere
(http://midus.wisc.edu/Projects/Genetics/DNA/MRM2). Genotypes were
imputed using the Michigan Imputation Server pipeline and the 1000
Genomes phase 3 as a reference panel, including phasing and imputation
using Eagle (Loh et al., 2016) and minimac3 software (Das et al., 2016).
Single nucleotide polymorphisms (SNPs) with ambiguous strand orienta-
tion, > 5% missing calls, or out of Hardy-Weinberg equilibrium (p < 0.001)
were excluded. SNPs with minor allele frequency below 0.01 or imputation
R? < 0.5 were also excluded. PLINK (Chang et al., 2015) was used to handle
all genomic data and perform quality control checks. Using an a priori p-
value threshold of 1.0 (i.e. including the infinitesimal effects of all measured
and imputed SNPs), polygenic risk scores for physical and behavioral health
outcomes were calculated using PRSice 2.0 (Euesden, Lewis, & O'Reilly,
2014) based on genome wide association summary statistic weights from
current GWASs for each phenotype (Duncan et al., 2018; Arnold et al.,
2018; Linnér et al., 2019; Okbay et al., 2016; Otowa et al., 2016; Schunkert
et al., 2011; Teslovich et al., 2010; van den Berg et al., 2016; Wray et al.,
2018).

2.2.2. Selection and validation of polygenic risk scores

For the purposes of the present study, we began by identifying 15
polygenic risk scores for potential analysis with CVC, basing our se-
lection on previous literature reporting associations between biological
and psychological variables and cardiac vagal control. The 15 pheno-
types naturally grouped into three broad categories: physical health
(HDL, LDL, total cholesterol, and triglycerides), mental health (anxiety
disorder symptoms, depression symptoms, major depressive disorder,
obsessive-compulsive disorder, and post-traumatic stress disorder), and
behavioral control (adventurousness, automobile speeding propensity,
history of regular smoking, number of sexual partners, frequency of
drinking alcoholic beverages, and a general index of risky behavior that
reflects the previous four behaviors). We first estimated zero-order
correlations to evaluate potential collinearity within each of these
natural groupings of polygenic scores (see Figure S1 in the
Supplemental Materials). We then validated the initially selected
polygenic scores with relevant health and behavioral data (when
available) from the MIDUS study (consult the Supplemental Materials
for full information regarding the validation procedure). Since the
quality of polygenic scores is impacted by the sample size of the dis-
covery GWAS, we report the sample size for each of the discovery
GWAS:s in Appendix A. In this manuscript, no discovery GWAS that was
used to calculate a PRS had a sample size below 95,000.

For 9 of the 15 PRSs (HDL, LDL, total cholesterol, triglycerides,
depression symptoms, anxiety symptoms, adventurousness, drinking
frequency, ever smoked) there were corresponding phenotypic data
available for PRS validation. The predictive validity of these 9 poly-
genic scores varied considerably such that not all polygenic scores were
significantly predictive of their respective phenotypes. The squared
semi-partial correlations between depressive symptoms, HDL, LDL,
total cholesterol, triglycerides and whether or not a participant had
ever regularly smoked with their respective polygenic scores were all in
the predicted direction and statistically significant (ps < .05; consult
Supplemental Materials Table 2 for full results). Moreover, these asso-
ciations statistically account for chronological age, biological sex as
determined by genotype, and the first five genetic principal compo-
nents. However, squared semi-partial correlations between anxiety
symptoms, adventurousness, and alcoholic drinking propensity with
their respective polygenic scores were approximately zero. The zero-
order correlation between drinks per week and its polygenic score was
just beyond traditional levels of statistical significance for rejecting the
null hypothesis of no association (p = .097).

Based on evidence for predictive validity, polygenic scores for de-
pressive symptoms, HDL, LDL, total cholesterol, triglycerides, and
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whether or not the participant ever smoked were included in further
analyses with CVC. The polygenic score for risky health behaviors could
not be directly validated in the MIDUS dataset because the measure of
risky health behaviors was calculated in the discovery GWAS as a
combination of smoking, drinking, speeding, and number of lifetime
sexual partners. Data on automobile speeding and lifetime number of
sexual partners were not collected in MIDUS. Nevertheless, the PRS for
smoking was validated in the current study, and the PRSs for smoking,
speeding, number of sexual partners, and risky health behaviors were
derived from GWASs that were based on overlapping samples from si-
milar source populations’ .

Therefore, despite not having the phenotype data to test predictive
validity, we included the risky health behavior PRS, as well as the PRS
for speeding and lifetime number of sexual partners as potential pre-
dictors of CVC in the present study. However, we excluded polygenic
scores from further analyses that were not at least marginally associated
(ps > .10) with their respective phenotypes in both univariate and
multivariate validation checks (see Table S2 in the Supplemental
Material). Thus, our final group of polygenic scores consisted of a set of
10: HDL, LDL, total cholesterol, triglycerides, depression symptoms,
ever smoked, drinking frequency, speeding propensity, number of
sexual partners, and a risky health behaviors index—encompassing the
previous 4 behaviors).

2.2.3. Cardiac vagal control

Cardiac vagal control was assessed during an 11-minute resting
baseline period via high-frequency heart rate variability (HF-HRV).
High-frequency heart rate variability was calculated by the natural log
transform of the summed spectral power of the inter-beat interval series
between .15 and .5 Hz. Although .15-.4 Hz has recently become the
recommended frequency range for HF-HRV (Laborde, Mosley, &
Thayer, 2017), the MIDUS biomarker project began and HRV was cal-
culated before this range was widely adopted among researchers. All
psychophysiology data and polygenic scores are available on the
MIDUS Colectica portal, along with extensive documentation regarding
how each measure was calculated (http://midus.colectica.org/).

3. Results

As expected, the distributions of CVC (as indicated by high-fre-
quency heart rate variability) and polygenic scores approximated nor-
mality. Therefore, zero-order Pearson product-moment correlations
between CVC and the 10 selected polygenic scores were estimated
(Hallquist & Wiley, 2018; Muthén, Muthén, Muthén, & Muthén, 2017).
The magnitude of zero-order correlations was generally small (range r
= —.091 to .048). Nonetheless, CVC showed notable correlations with
polygenic liability for elevated triglycerides (r = —.082, SE = .03,p =
.007; Fig. 1, panel A) and polygenic liability for the risky health be-
havior index (r = —.091, SE = .03, p = .002; Fig. 1, panel B). Fur-
thermore, CVC was associated with polygenic liability for two specific
risky health behaviors, even after adjusting the false discovery-rate
among these four measures using the Benjamini-Hochberg method

(Benjamini & Hochberg, 1995): number of sexual partners (r = —.067,
SE = .03, p = .048), and number of drinks per week (r = —.089, SE =
.03,p = .012).

We followed up these four zero-order associations with a set of
multiple linear regressions to test their robustness in the presence of
potential covariates. In four separate models, we regressed CVC on the

!Data from n = 315,894 participants from the UK Biobank and TAG
Consortium were used to conduct the GWAS for smoking; n = 404,291 andn =
370,711 participants from the UK Biobank were used to conduct the GWASs for
speeding and number of sexual partners, respectively; n = 939,908 participants
from the UK Biobank and 23andMe were used to conduct the GWAS for risky
health behavior).
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Fig. 1. Scatterplots & Marginal Histograms of

Al Zero-Order Associations Between CVC and
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polygenic score for the phenotype (e.g. triglycerides, sexual partners,
drinks per week, or the risky health behavior index), age (mean-cen-
tered), biological sex (coded m = -.5, female = .5), and the first five
genetic principal components. In these models, the polygenic risk scores
for triglycerides (b = —0.072, CI95 % [—0.128, —0.016], p = .015),
drinks per week (b = -0.066, CI95 % [—0.125, —0.012], p = .020),
and the risky health behavior index (b = —0.067, CI95 % [—0.122,
—0.017]1, p = .013), had small but statistically significant associations
with HF-HRV. After accounting for the effects of covariates, the asso-
ciation between CVC and the polygenic score for number of sexual
partners remained negative (b = -0.052, CI95 % [—0.107, 0.000],p =
.060), but the probability of the observed semi-partial association as-
suming the null hypothesis were true just exceeded conventional
standards for statistical significance (i.e. p > .05). The percentage of
variance in CVC explained by individual polygenic risk scores after
removing variance explained by covariates was small (triglycerides:
.5%; drinks per week: .4%; risky health behavior index: .5%). As Mplus
does not report multiple partial or semi-partial correlations for regres-
sion models, they were manually estimated by defining a user-specified
parameter.

We wused R version 3.5.2, MPlus version 8.1, and the
'MplusAutomation' package version 0.7.1 to interface from R to MPlus.
Since the present sample includes siblings and twins, we implemented a
Huber-White sandwich estimator in all models to adjust standard errors
for by-family non-independence. Results of null hypothesis significance
tests remain unchanged and effect sizes are similar when observations
from siblings are excluded from analyses (n = 1186). Furthermore,
since respiratory rate may influence CVC estimates, an additional,
identical set of analyses was run on HF-HRV adjusted for respiratory
rate. The effect size and precision of the estimated regressions reported
in the main text remain unchanged after adjustment for respiration rate.
In efforts to promote open and reproducible science, all analysis scripts
are publicly available via the Open Science Framework (https://osf.io/
hz6qw/).

4. Discussion

The present findings illuminate complex etiological relations that
exist between CVC and physical and behavioral aspects of health by
showing that genetic liability for elevated triglycerides and risky health
behaviors is associated with low CVC. The results reported here do not
preclude the possibility of a causal relationship between CVC and
health-related outcomes and should be interpreted with caution prior to
replication. However, the results of the present study are consistent with
pleiotropy explaining, at least in part, the relationship between CVC
and health-related outcomes, as genetic liability for health-related
outcomes was significantly associated with individual differences in

(A), and Risky Health Behaviors (B). Note:
Panel A displays cardiac vagal control (CVC)
alongside the polygenic score for elevated tri-
glycerides, whereas Panel B displays cardiac
\ vagal control (CVC) alongside the polygenic
score for risky health behaviors, a composite
N PRS reflecting automobile speeding propensity,
| number of sexual partners, frequent drinking,
and history of regular smoking. Each figure is
/ accompanied by a linear trend line with a 95 %
/ confidence interval, as well as marginal dis-
tributions for the variables labeled on the x and

y axes.
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CVC.

The current study is not without limitations. Polygenic scores pro-
vide an imperfect genetic proxy for a phenotype, including only the
additive effects of common SNPs (i.e. point mutations). Therefore, a
limitation to any polygenic risk score analysis is that PRSs do not in-
clude the effects of rare variants, insertions, deletions, nor copy number
variants. Additionally, non-additive genetic effects including dom-
inance and epistasis are not captured by polygenic scores. Finally,
polygenic scores provide a “main effect” estimate of genetic effects,
which is assumed to remain stable across different environments, co-
horts, and socio-demographic strata (i.e. no gene-by-environment in-
teraction). The small effect sizes for polygenic scores documented in the
current study might be expected in light of the above considerations.
Future studies may benefit from testing whether the strength of genetic
effects documented in the current study wax or wane across putatively
moderating environmental conditions.

Although small, the incremental effects of polygenic scores on CVC
were statistically significant, even after accounting for age, biological
sex, and the first five genetic principal components. For comparison, in
the discovery GWAS for risky health behaviors, the percent of variance
explained by SNPs on their respective phenotypes was relatively small
(R? = .04-.13) and less than the percent of variance explained by the
first genetic principal component for risky health behaviors (R* = .16;
Linnér et al., 2019). Given that polygenic scores in the current study
were used to predict a related yet distinct and distal phenotype, and
that the first five genetic principal components were included as cov-
ariates, the small incremental effect of polygenic scores on CVC is
consistent with what might be expected based on extant research. As
discovery GWASs continue to grow in size, the percent of variation
explained by polygenic scores will likely continue to grow.

With respect to research on CVC, the findings reported here
strengthen the position of those who employ CVC as a biomarker for
physical and behavioral health, as low CVC is significantly associated
with genetic liability for poor physical and behavioral health. The
present findings also strengthen a central claim of the Neurovisceral
Integration Model, one leading theoretical framework for the function
of CVC, which argues that CVC is a peripheral indicator of regulated
health and behavior (Thayer & Lane, 2000). In light of an independent
stream of neuroscientific evidence implicating prefrontal control sys-
tems with both CVC and behavioral regulation and bolstered by the
results of the current study, CVC may be considered a biologically-un-
dergirded peripheral correlate of inter-individual differences in beha-
vioral control (Amodio, Master, Yee, & Taylor, 2008; Thayer, ;\hs,
Fredrikson, Sollers lii, & Wager, 2012; Wager et al., 2005).

Beyond adding nuance to the debate concerning the directionality
of the relationships between CVC and health and risky behavior, the
present findings also open avenues for future research. If low CVC
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shares genetic liability with elevated triglycerides and propensity for
risky health behaviors, what are the intermediary phenotypes (a.k.a.
endophenotypes) that mediate the effects of genes on complex pheno-
types? As an example of one potential approach to answering this
question, researchers could investigate gene expression data. For ex-
ample, in light of mutual associations between CVC, the biological
stress response, and poor behavioral control, future work could assess
the extent to which low CVC is related to the expression of genes which
control the body’s stress and immune responses, potentially mediating
genetic effects of poor physical and mental health on CVC (Cole, 2019;
Cooper et al., 2015; Lyons, Lopez, Yang, & Schatzberg, 2000; Schwaiger
et al., 2016; Sorrells & Sapolsky, 2007; Thayer & Sternberg, 2006). By
documenting shared genetic liability between low CVC and physical
and behavioral health, the present findings contribute to a better un-
derstanding of the interplay between CVC and health, guiding future
research to fully explicate how CVC participates in a regulated body
and mind.
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