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Abstract
Study Objectives:  Emerging evidence supports a multidimensional perspective of sleep in the context of health. The sleep health model, and 
composite sleep health score, are increasingly used in research. However, specific cutoff values that differentiate “good” from “poor” sleep, 
have not been empirically derived and its relationship to cardiometabolic health is less-well understood. We empirically derived cutoff values 
for sleep health dimensions and examined the relationship between sleep health and cardiometabolic morbidity.

Methods:  Participants from two independent Biomarker Studies in the MIDUS II (N = 432, 39.8% male, age = 56.92 ± 11.45) and MIDUS Refresher 
(N = 268, 43.7% male, age = 51.68 ± 12.70) cohorts completed a 1-week study where sleep was assessed with daily diaries and wrist actigraphy. 
Self-reported physician diagnoses, medication use, and blood values were used to calculate total cardiometabolic morbidity. Receiver operating 
characteristic (ROC) curves were generated in the MIDUS II cohort for each sleep health dimension to determine cutoff values. Using derived cutoff 
values, logistic regression was used to examine the relationship between sleep health scores and cardiometabolic morbidity in the MIDUS Refresher 
cohort, controlling for traditional risk factors.

Results:  Empirically derived sleep health cutoff values aligned reasonably well to cutoff values previously published in the sleep health 
literature and remained robust across physical and mental health outcomes. Better sleep health was significantly associated with a lower 
odds of cardiometabolic morbidity (OR [95% CI] = 0.901 [0.814–0.997], p = .044).

Conclusions:  These results contribute to the ongoing development of the sleep health model and add to the emerging research supporting a 
multidimensional perspective of sleep and health.

Key words:   sleep health; hypertension; diabetes; heart disease; alertness; sleep quality; sleep efficiency; sleep duration; sleeping timing; 
sleep regularity

Statement of Significance
Despite the increasing use of the sleep health model in research, cutoff values that differentiate “good” from “poor” sleep have not been em-
pirically derived and its relationship to cardiometabolic health is less-well understood. We empirically derived cutoff values for each sleep 
health dimension and examined whether sleep health related to cardiometabolic morbidity. Empirically derived sleep health cutoff values 
reasonably aligned to cutoff values previously published in the sleep health literature and were robust across mental and physical health 
outcomes. Poor sleep health was significantly associated with a greater prevalence of cardiometabolic morbidity. These results contribute 
to the development of the sleep health model and add supportive evidence for a multidimensional perspective of sleep.
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Introduction

Evidence is emerging to support the simultaneous consideration 
of multiple sleep parameters in the context of physical and 
mental health outcomes. For example, individuals with both 
insomnia and objectively assessed short sleep duration have 
greater disease risk than individuals suffering from insomnia 
or short sleep duration alone [1]. In another study, individuals 
with sleep apnea symptoms and short sleep duration or a high 
number of daytime naps had increased cardiovascular risk, op-
erationalized using a variant of the Framingham risk score [2]. 
A  multidimensional approach to analyzing the relationship 
between sleep and health may provide complimentary infor-
mation to that gleaned from consideration of individual dimen-
sions of sleep, alone.

The sleep health model has been described as a multidimen-
sional sleep/wake profile that promotes physical and mental 
well-being [3]. Consideration of sleep as a multidimensional 
construct also makes intuitive sense, as individual dimensions 
of sleep do not occur in isolation. Based on this model, a single 
sleep health score is derived from measures of daytime alertness 
and sleep duration, timing, regularity, efficiency, and quality. 
These six sleep dimensions have been shown to load onto a 
single sleep health factor and demonstrate good construct val-
idity [4]. Sleep health scores outperformed a single measure of 
sleep duration in predicting poor self-reported health in ROC 
analysis and are associated with physical and mental health 
risk in a linear, graded fashion [5, 6]. Sleep health scores also 
appear to be sensitive to factors, such as sex, race, education, 
and stress [5–7].

Despite its increasing use in research, the optimal cutoff 
values used to differentiate “good” and “poor” across each sleep 
health dimension remain to be determined. For example, “good” 
sleep duration has been defined as 6–8 h [3], 7–8 h [7], and 7–9 h 
[6] across different studies, whereas “good” sleep efficiency has 
been defined as a sleep latency of <30 min [6], <30 min of wake 
time at night (including latency and wake after sleep onset) [3–5], 
or a sleep efficiency of ≥85% [7] in independent reports. Whereas 
all published cutoff values are well-wrought and justified using 
a mixture of published findings and data from meta-analyses 
and large representative cohort studies, no study, to our know-
ledge, has attempted to empirically derive cutoff values for each 
sleep health dimension.

Aims of the current study were several-fold. First was to em-
pirically derive cutoff values for each sleep health dimension 
in the sleep health model and to assess the degree to which 
cutoff values are robust across physical and mental health out-
comes. Cutoff values are valuable for future research and clin-
ical application only to the extent that they change little as a 
function of outcome. Using a second, independent sample, our 
second goal was to examine the degree to which sleep health, 
constructed using empirically derived cutoff values, associated 
with cardiometabolic morbidity, hypertension and diabetes. 
Cardiovascular diseases and metabolic disorders are among 
the leading causes of morbidity and mortality worldwide and 
carry enormous economic burden [8, 9]. As such, identification 
of risk factors for adverse cardiometabolic outcomes is crucial 
to prevention. Based on emerging evidence supporting a multi-
dimensional sleep perspective and robust univariate associ-
ations between cardiometabolic outcomes and sleep duration 
[10–12], timing [13, 14], efficiency [15–17], and quality [12, 18], we 

hypothesized that good sleep health would be associated with 
a lower prevalence of cardiometabolic conditions, even after 
accounting for traditional cardiometabolic risk factors. Finally, 
we aimed to determine if the sleep health metric outperformed 
other more commonly used epidemiological measures such as 
self-reported sleep duration and latency. If sleep health is found 
to outperform other metrics, this would provide impetus for in-
clusion of sleep health measures in future studies.

Methods

Participants

Data for the current report came from participants in the MIDUS 
II (N = 1255) and MIDUS Refresher (N = 863) Biomarker studies. 
The overarching goal of the MIDUS Study is to explore behavioral 
and psychosocial factors that impact age-related health and 
illness in a representative sample of Americans. The Biomarker 
studies focused on the collection of physiological measures and 
health behaviors. The MIDUS II Biomarker study was conducted 
from 2004 to 2009 and recruited participants from the original 
MIDUS I cohort, recruited in 1994. The MIDUS Refresher study 
(2011–2014) recruited a national probability sample of adults 
with the goal of replenishing the original MIDUS I cohort. The 
MIDUS Refresher Biomarker Study (2012–2016) was conducted 
using the same methods as the MIDUS II Biomarker study so 
that data could be combined to strengthen cross-sectional and 
future longitudinal analyses. Additional details regarding the 
methods and samples have been published elsewhere [19, 20]. 
In both studies, concurrent measurement of sleep using daily 
diary and wrist actigraphy was undertaken at the University 
of Wisconsin—Madison study site only, limiting the size of 
each sample. Only participants having concurrent daily diary 
and actigraphy data were analyzed. After exclusions for other 
missing data, the final analytical sample was 700 (Figure 1). 
Approval from appropriate Institutional Review Boards was 
granted for this study and all participants gave informed con-
sent before participation.

Procedure

After completion of the Biomarker Study visit, participants were 
invited to participate in a 7-day sleep study. Following consent, 
participants were sent home with instructions and study mater-
ials and given a reminder phone call by trained research staff the 
day before the study was to begin. Participants were instructed 
to wear a wrist actigraph and complete a daily sleep diary for 
seven consecutive days. The diaries were prelabelled with the 
dates upon which each participant was supposed to complete 
each diary entry. All studies began on a Tuesday at 0700 h and 
ended at the same time the following Tuesday. Participants then 
mailed the study materials back to the investigators in prepaid 
envelopes.

Daily Sleep Diary and Pittsburgh Sleep Quality Index

Participants completed the Pittsburgh Sleep Quality Index (PSQI) 
[21] on day 1 of the laboratory visit as part of a large question-
naire battery. For the purposes of this study, the two items con-
cerning sleep duration and sleep latency were analyzed. The 
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daily sleep diary comprised a morning and evening section. In 
the morning, participants reported on their previous night’s 
sleep. Questions included, among others, items related to timing 
of sleep, nighttime awakenings, sleep difficulties, and sleep 
quality. In the evening before going to bed, participants reported 
on that day’s activities including daytime alertness. Diary data 
were entered into SPSS using a blind double entry verification 
system and discrepancies were adjudicated using standardized 
procedures.

Actigraphy

The Actiwatch system (Models 64 and 2; Philips Corporation, 
Andover, MA) was used for both Biomarker studies to measure 
activity, via motion-sensor, throughout the duration of the 
sleep study. Actiwatches were programmed by staff to begin 
collecting data at 0700 h on Tuesday and collected activity data 
in 30-s epochs until study conclusion. Actiware software (ver-
sions 5 or 6)  was used for data analysis. A  standard stepwise 
procedure was used to determine the rest interval. First, the 
rest interval was defined offline based on responses from the 
daily sleep diary. Second, when diary data were not available, 
events markers were used to define the rest interval if event 
markers appeared to be reliable. Third, if data were missing and 
event markers were found to be unreliable, rest intervals were 
imputed using the following rules: (1) for a missing weekday, 
the rest interval was imputed using at least three other adja-
cent weekdays, (2) for a missing weekend, the rest interval was 
imputed using the other weekend day [19, 20]. In the combined 
analytical sample (N = 700), diary data were used in 668 cases 
(95.4%), event markers were used in 40 cases (5.7%) and some 
degree of imputation was used in 32 cases (4.6%). Once the rest 
interval was defined, Actiware software calculated summary 

statistics using a wake activity threshold of 40 and an epoch 
length of 30 s.

Cardiometabolic outcomes

Cardiometabolic outcomes were derived from several meas-
ures including, self-reported physician diagnoses, current medi-
cation use, and blood panel values. Participants self-reported 
physician diagnoses of heart disease, hypertension, stroke, 
and diabetes and current medications during a medical history 
interview. Participants were first asked whether they had any 
of the outcomes of interest. If participants responded “yes,” a 
follow-up question probed whether the outcome was diagnosed 
by a physician. For the purposes of this study, participants were 
only considered to have the diagnosis if it was reported to have 
been diagnosed by a physician. Diagnoses associated with medi-
cation use were coded using ICD9 classifications. Finally, hemo-
globin A1c was measured from a fasting blood sample taken 
in the morning on day 2 of the laboratory visit and analyzed 
using an immunoturbidometric assay [19, 20]. Dichotomous 
outcome variables were created for each outcome (1  =  diag-
nosis present, 0  =  diagnosis absent). This coding scheme was 
adopted because we were interested in quantifying the degree 
to which good sleep health decreased risk for cardiometabolic 
morbidity. If a participant endorsed a physician diagnosis or re-
ported medication use consistent with a diagnosis the diagnosis 
was considered present. In the case of diabetes, if a participant 
also had an HbA1c value greater than 6.5% [22], diabetes was 
considered present, even if a physician diagnosis and medica-
tion use were absent. For omnibus analysis, a dichotomous total 
cardiometabolic morbidity variable was created that quantified 
the number of participants who had any of the outcomes of 
interest. In follow-up analyses, hypertension and diabetes were 
examined individually. The low prevalence of stroke and heart 
disease (Table 1) in the MIDUS Refresher sample precluded indi-
vidual analysis of these outcomes.

Traditional cardiometabolic risk factors

Sociodemographic and behavioral risk factors included age, sex 
(male/female), body mass index (BMI), race, education, smoking 
status, alcohol consumption, and physical activity [23, 24]. 
Height and weight were measured by study staff and BMI cal-
culated as kg/m2. It should be noted that BMI and BMI-squared 
were both used as covariates as reports have suggested that 
high and low BMI carry risk [25]. Race was coded as white and 
nonwhite, and education was defined along five categories: less 
than high school, high school diploma, some college, bachelor’s 
degree, and graduate school/terminal degree. Smoking status 
was determined based upon responses to the question “Have 
you ever smoked regularly,” coded dichotomously. Alcohol 
consumption over the past month was defined across four 
categories: never to <1 day/week, 1–2 days/week, 3–4 days/week, 
and 5+ days/week. Participants were dichotomized (yes/no) on 
physical activity based on their response to a question asking 
whether they engaged in at least 20 min of exercise or physical 
activity three times a week. As depression has been linked with 
increased cardiometabolic risk [26, 27], depression history, oper-
ationalized as a self-reported physician diagnosis of depression 
was used as a covariate. Depression history was used instead of 
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Figure 1.  Participant flow chart.
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self-report measures because it was more strongly associated 
with out outcomes of interest. Finally, total cholesterol from a 
fasting blood sample was considered a biological risk factor.

Sleep health construction

The sleep health model holds that sleep is multidimensional and 
comprises six dimensions: daytime alertness and sleep quality, 
timing, regularity, efficiency, and duration. Dimensions were de-
rived from self-report and actigraphy data. Daytime alertness 
and sleep quality were self-reported on a 5-point Likert-type 
scale in daily sleep diaries. Anchor words for alertness and sleep 
quality were 1 (most alert) to 5 (not at all alert) and 1 (very good) 
to 5 (very poor), respectively. Sleep timing was operationalized 
as the actigraphy-derived sleep midpoint, occurring midway be-
tween sleep onset and offset. The variability in sleep midpoint 
across the week, quantified using standard deviation, repre-
sented sleep regularity for each participant. Finally, standard 
measures of sleep efficiency and duration were quantified using 
actigraphy data.

Analytic strategy

The larger MIDUS II sample was used to derive cutoff values. 
Receiver operating characteristic (ROC) curves were generated 
for each sleep health variable to assess sensitivity, specificity, 
and area under the curve (AUC). For all six sleep health dimen-
sions, average values for the week were calculated from daily 
values to achieve measures of habitual sleep. The primary out-
come measure was total cardiometabolic morbidity and cutoff 
values from this ROC analysis were carried over to future ana-
lyses. However, to assess the degree to which cutoff values 
varied as a function of outcome, supplementary ROC analyses 
using hypertension, diabetes, and self-reported physician diag-
nosis of depression as outcome variables were undertaken. 
Sensitivity was the probability of classifying a participant with 
a cardiometabolic disorder correctly, and specificity represented 
the probability of correctly identifying a participant without a 
cardiometabolic disorder. Area under the curve represented the 
overall accuracy of classifying participants, with higher values 
indicating greater accuracy. The Youden index [28] was calcu-
lated for each sleep health dimension to determine optimal 

Table 1.  Sample characteristics

Variable
MIDUS II 
(n = 432)

MIDUS refresher 
(n = 268) P

Age, M (SD) years 56.92 (11.5) 51.68 (12.7) <.001*
Age, range years 35–85 26–77  
Sex, n, % male 172, 39.8% 117, 43.7% .316†

Race, n, % White = 299, 69.2% 
Black = 119, 27.5% 
Other‡ = 14, 3.2%

White = 175, 65.3% 
Black = 72, 26.9% 
Other‡ = 21, 7.8%

.282†

Education, n, % <HS = 37, 8.6% 
HS graduate= 100, 23.1% 
Some college = 126, 29.2% 
College graduate = 82, 19.0% 
Postgraduate = 87, 20.1%

<HS = 19, 7.1% 
HS graduate = 37, 13.8% 
Some college = 87, 32.1% 
College graduate = 66, 24.4% 
Postgraduate = 59, 21.8%

.025†

BMI, kg/m2 30.64 (7.3) 31.32 (8.3) .252*
Cholesterol, mg/dL 183.6 (39.3) 179.0 (45.0) .153*
Exercise  
20 min/3× per week, n, %yes 

310, 71.8% 159, 59.3% .001†

Depression Dx, n, %yes 72, 16.8% 56, 20.9% .177†

Days consuming alcohol   .400†

  Never–<1 day/week 281, 65.0% 152, 56.7%  
  1–4 days/week 114, 26.4% 89, 33.2%  
  5–7days/week 37, 8.6% 24, 9.0%  
Smoking status, n, %yes 214, 49.5% 102, 38.1% .003†

Cardiometabolic morbidity
  Hypertension, n, %yes 177, 41.0% 113, 42.2% .756†

  Heart disease, n, %yes 47, 10.9% 21, 7.8% .186†

  Diabetes, n, %yes 101, 23.4% 58, 21.6% .594†

  Stroke, n, %yes 26, 6.0% 4, 1.5% .004†

  Total morbidity, n, %yes 227, 52.5% 131, 48.9% .346†

Sleep characteristics
  Daytime alertness 2.03 (0.74) 2.05 (0.73) .777*
  Quality 2.41 (0.78) 2.37 (0.79) .510*
  Timing 192.67 (108.9) 192.00 (73.7) .929*
  Regularity 51.26 (48.7) 52.32 (34.6) .755*
  Efficiency 79.31 (10.6) 79.55 (11.1) .780*
  Duration 369.07 (66.9) 371.1 (67.8) .697*

HS = high school.

ANOVA and chi-square analyses are denoted by * and †, respectively. Chi-square analysis for race was conducted using the dichotomous coding scheme described in 

the text.
‡Includes participants endorsing Native American, Alaskan/Eskimo, Asian, Hawaiian/Pacific Island, or other ethnic backgrounds.
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cutoff values. The Youden index aims to maximize combined 
sensitivity and specificity and has a range of 0 to 1, with greater 
values indicating better fit. For cases where a U-shaped rela-
tionship between predictor and cardiometabolic morbidity was 
expected (e.g. sleep duration and timing), predictor data were 
median-centered and squared to achieve linearity with the 
outcome variable. Nonlinear predictors have been shown to 
violate the binormal assumption of ROC analysis and produce 
sigmoidal ROC curves that tend to be biased toward null asso-
ciations. Transforming the predictor by first median-centering 
and then squaring has been shown to achieve linearity with 
outcome variables, conform with the binormal assumption of 
ROC analysis, produce a typical concave-down ROC curve, and 
significantly reduce bias [29].

In the MIDUS Refresher sample, sleep health scores were cal-
culated using cutoff values derived from the MIDUS II sample. All 
sleep health dimensions were first centered using the respective 
cutoff value, producing a new variable that could be interpreted 
as “distance” from the cutoff value. Next, all sleep health dimen-
sions were transformed to z-scores to achieve a uniform scale 
across the dimensions. Z-scores were coded such that greater 
values indicated better sleep health. Finally, all six of the indi-
vidual sleep health dimensions z-scores were summed, creating 
a total sleep health score.

Correlation analysis and analysis of variance (ANOVA) were 
used to test the relationship between sleep health scores and 
cardiometabolic risk factors. Interrelationships between the 
continuous measures of the sleep health dimensions were 
tested using Spearman’s correlation. Logistic regression was 
used to examine the relationship between sleep health and 
cardiometabolic diagnoses. First, an unadjusted model was 
tested with sleep health predicting cardiometabolic diagnoses. 
Next, age, sex, race, education, smoking status, alcohol con-
sumption, BMI, BMI [2], cholesterol, depression history, and 
physical activity were added as covariates to determine the ex-
tent to which sleep health predicted cardiometabolic diagnoses, 
controlling for traditional risk factors.

To determine whether sleep health outperformed other 
more commonly used sleep metrics several analyses were 
undertaken. First, logistic regression was used to examine the 
relationship between each individual sleep health dimension 
and cardiometabolic diagnoses, controlling for traditional risk 
factors. Second, logistic regression was used to determine if 
measures of sleep duration or latency (in 10 min bins) from the 
PSQI were associated with cardiometabolic morbidity. Finally, 
area under the curve from ROC analyses using cardiometabolic 
morbidity as the outcome and sleep health, PSQI sleep duration, 
or PSQI sleep latency as predictors were compared using the 
method outlined by DeLong et al. [30]. Analyses were carried out 
using SPSS version 25 (IBM Analytics, New York, NY).

Results

Participants

Participant characteristics for both samples are shown in Table 
1. Overall, samples were comparable, with the exception of age, 
education, exercise, and number of smoking participants. The 
MIDUS Refresher sample was significantly younger, tended to 
be more highly educated, exercise less, and had fewer smokers. 
There was no significant difference between the groups in 
cardiometabolic disease prevalence or sleep health dimensions.

Sleep Health Dimension Cutoff Values

Table 2 displays the ROC results and cutoff scores for each sleep 
health dimension derived from the MIDUS II sample. Table 2 
also shows the percentage of participants falling above/below 
each cutoff value in the MIDUS Refresher sample. “Good” self-
reported daytime alertness and sleep quality were indicated by 
scores of less than 2.2 and 2.8, respectively, on a 5-point Likert-
type scale where smaller numbers indicated increasingly posi-
tive impressions. A  time window between 2:24 and 3:30 am 

Table 2.  Sleep health cutoff values

Component Source

Cutoff value 
(derived from  
MIDUS II)

MIDUS  
refresher sample

Area (SE) Sensitivity SpecificityGood (% n) Poor (% n)

Daytime alertness Daily sleep diary question 1 
“How alert were you today” 
1 (most alert) to 5 (not at all alert)

<2.2 = good 
≥2.2 = poor

61.9 38.1 0.55 (0.03) 0.42 0.67

Quality Daily sleep diary question 20 
“Overall quality of your sleep  

last night” 
1 (very good) to 5 (very poor)

<2.8 = good 
≥2.8 = poor

70.5 29.5 0.54 (0.03) 0.35 0.74

Timing Average actigraphy derived sleep 
midpoint

2:24 am – 3:30 am = good 
<2:24 am = poor 
>3:30 am = poor

42.5 57.5 0.57 (0.03) 0.66 0.50

Regularity Standard deviation of actigraphy 
derived sleep midpoint

<1 h 5 min = good 
≥1 h 5 min = poor

76.5 23.5 0.52 (0.03) 0.24 0.84

Efficiency Average actigraphy  
calculated sleep efficiency

>83.0 = good 
≤83.0% = poor

45.5 54.5 0.64 (0.03) 0.69 0.56

Duration Average actigraphy  
calculated sleep duration

5 h 20 min to 7 h  
6 min = good 

<5 h 20 min = poor 
>7 h 6 min = poor

60.4 39.6 0.55 (0.03) 0.48 0.67
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emerged as an indicator of “good” sleep timing and a sleep regu-
larity score of approximately 1 h (or less) indicated “good” sleep 
regularity. A score of greater than 83% differentiated “good” from 
“poor” sleepers on the sleep efficiency dimension and sleep dur-
ations between 5 h 20 min and 7 h 6 min per night was con-
sidered “good.” Whereas an increasing positive total sleep health 
score indicates better sleep health, and an increasing negative 
score, poor sleep health, the average sleep health score was 0.20 
(3.37) with a range of 5.52 to −14.82. Approximately 60% of the 
sample obtained sleep health scores above zero, indicating a net 
balance of “good” sleep health.

Supplementary analyses using hypertension, diabetes, 
and depression as outcome variables, in general, showed the 
cutoff values to be relatively robust to variations in outcome 
(Supplementary Table 1). The cutoff value for sleep quality 
and sleep efficiency varied little across outcomes, between 2.6 
and 2.8 and 78%–83% for quality and efficiency, respectively. 
Across outcomes, sleep regularity ranged from approximately 
40 to 65 min, while time window reflecting “good” sleep timing 
was consistently between 2:30 and 3:30, with the exception of 
diabetes, where the window was wider. The cutoff values for 
daytime alertness ranged from 1.8 to 3.1 and the duration con-
stituting “good” sleep duration varied the most from its widest 
at 4 h 23 min–7 h 58 min for diabetes to 5 h 20 min–7 h 6 min at 
its narrowest for total cardiometabolic morbidity.

Strong correlations emerged between the self-reported sleep 
health dimensions of alertness and sleep satisfaction (r = .66, p 
< .001). All other interdimension relationships were smaller in 
magnitude (r-range: .31 to −.001; Supplementary Table 2). Sleep 
health was significantly related to age (r = .16, p = .008), as age 
increased, sleep health scores increased (i.e. better sleep health). 
Importantly, sleep health cutoff scores were similar when com-
pared across “younger” (n = 209; <56 years) and “older” (n = 223; 
≥56 years) subgroups using a median split (Supplementary Table 
3). Sleep health scores were significantly higher (i.e. better sleep 
health) in white participants, F(1, 266) = 26.05, p < .001, η2 = .089, 
nonsmokers, F(1, 266)  =  7.10, p  =  .008, η2  =  .026, consumers of 
alcohol at least 1 day a week, F(2, 265) = 4.73, p = .01, η2 = .034, 
those without a diagnosis of depression, F(1, 266) = 5.99, p = .015, 
η2  =  .022, and those with higher education, F(4, 263)  =  3.46, p 
=. 009, η2 = .050. Sleep health did not significantly vary as a func-
tion of sex (p =  .46), exercise frequency (p =  .23), BMI (r = −.08, 
p = .20), or cholesterol (r = .03, p = .67).

Sleep health and cardiometabolic morbidity

In unadjusted analyses, better sleep health was significantly 
associated with lower odds of total cardiometabolic morbidity 
or hypertension alone (Table 3). In analyses adjusted for sex, 
age, education, race, BMI, smoking status, cholesterol, depres-
sion, alcohol consumption, and physical activity, better sleep 
health remained significantly associated with lower odds of 
cardiometabolic morbidity, OR [95% CI]  =  0.901 [0.814–0.997], 
p  =  .043 and hypertension, OR [95% CI]  =  0.903 [0.817–0.997], 
p  =  .044. No significant association between sleep health and 
diabetes emerged.

Analyses concerned with determining if sleep health out-
performed other commonly used sleep measures were, on 
the whole, inconclusive. In general, individual sleep health di-
mensions did not relate to cardiometabolic morbidity, with 
the exceptions of sleep duration and sleep regularity which 

related to cardiometabolic morbidity (p  =  .041) and hyperten-
sion (p = .010; Figure 2), respectively. The PSQI measure of sleep 
duration and latency were not significantly associated with any 
cardiometabolic outcome (all p ≥ .20; Figure 2). Comparison of 
ROC-derived AUC values from models using sleep health, PSQI 
sleep duration, and PSQI sleep latency as predictors also failed 
to reveal any significant differences (all p ≥ .20).

Discussion
Emerging evidence supports the use of multidimensional sleep 
measures in the context of health and disease. Sleep health, 
a multidimensional sleep/wake profile from which a multidi-
mensional sleep health score can be derived, has been used 
[3]. However, appropriate cutoff values to differentiate “good” 
and “poor” sleep, have yet to be empirically derived. As such, 
the primary goal of the present study was to empirically de-
rive cutoff values for each of the six dimensions comprising 
the sleep health score. In a second, independent sample, we 
aimed to examine the cross-sectional relationship between 
sleep health and cardiometabolic morbidity using the empir-
ically derived cutoff values. Cutoff values emerged that rea-
sonably aligned to cutoff values already published in the sleep 
health literature. Moreover, these cutoff values were robust to 
changes in outcome, suggesting they represent reliable bound-
aries across which dysregulated sleep confers risk. Better sleep 

Table 3.  Sleep health predicting self-reported physician DXs (MIDUS 
refresher; N= 268)

Outcome OR 95% CI P

Unadjusted models
  Total cardiometabolic morbidity 0.909 0.844–0.980 .014
    Hypertension 0.926 0.860–0.996 .038
    Diabetes 0.919 0.847–0.997 .041
Adjusted model: Sex, age, education, race,  

BMI, smoking status, cholesterol, depression,  
alcohol, and physical activity

    Total cardiometabolic morbidity 0.901 0.814–0.997 .043
    Hypertension 0.903 0.817–0.997 .044
    Diabetes 0.968 0.869–1.078 .548

Figure 2.  Logistic regression results in MIDUS Refresher cohort (N = 268). Scores 

for sleep health and sleep health components were computed using empirically 

derived cutoff values from the MIDUS II cohort. Individual regression models 

were run for each sleep health component. Odds ratios (95% CI) are adjusted for 

sex, age, BMI, BMI2, education, race, smoking status, alcohol consumption, phys-

ical activity, cholesterol, and depression history. aSleep latency in 10 min bins.
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health was significantly associated with reduced odds of re-
porting cardiometabolic morbidity and hypertension, even 
after extensively controlling for traditional sociodemographic 
and biological risk factors. These results bolster published data 
examining the sleep health model and add to an emerging body 
of research considering the association of multidimensional 
sleep profiles with health.

The cutoff values derived in the present study reasonably 
aligned to already published cutoff values. This finding is not 
surprising, given that previously published cutoff scores have 
most often been based on distributions of previously published 
cohort data, meta-analyses, and reviews. Our finding that 2:24–
3:30 am defines “good” sleep timing aligns closely with the ori-
ginally published cutoff of 2–4 am [3–5] and the subsequently 
published cutoffs of 2:27–3:38 am and 2:41–3:54 am for males 
and females [7], respectively. If anything, our results suggest 
that a smaller, 1.5–1 h, time window may be most appropriate 
for defining “good” sleep timing. Despite the small time window, 
sleep timing was the sleep health dimension with the greatest 
percentage of participants falling in the “poor” category. Previous 
studies have used 30 min as a cutoff value to define sleep re-
gularity [7]. In other words, sleep regularity can be considered 
“good” if sleep midpoint varies by less than 30 min, on average, 
across a given number of nights. Our results suggest that 65 min 
is an appropriate cutoff value for differentiating “good” and 
“poor” sleep regularity. Although this window is wider than pre-
viously published values, 65 min is approximately the width of 
the time window we found appropriate to define sleep timing. 
We found that a sleep efficiency of 83% corresponded most 
closely with a previously published study of childhood trauma 
and sleep health, where a value of 85% was used, based on the 
clinical goal of achieving 85% sleep efficiency in those receiving 
treatment for insomnia [7]. Other studies have used sleep la-
tency and wake after sleep onset to operationalize the sleep ef-
ficiency dimension of sleep health. In these studies, less than 
30 min of sleep latency [6] or combined sleep latency and wake 
after sleep onset [3–5] is considered to be consistent with “good” 
sleep continuity.

The cutoff values for sleep duration were notably shorter 
than previous reports. Our results indicated that 5 h 20 min–7 h 
6 min represented “good” sleep duration whereas other studies 
have used values of 7–8 h [7], 6–8 h [3–5], and 7–9 h [6]. However, 
actigraphy was used to measure sleep in the present study, 
while sleep durations were self-reported in prior studies of sleep 
health. Thus, methodological differences may account for these 
somewhat discrepant results. Methods used to quantify sub-
jective reports of alertness and satisfaction vary widely across 
studies, making comparisons difficult. Whereas the current 
study and one other [6] used a 5-point Likert type scale, some 
studies have used a 0–2 Likert type scale [3–5] or a 100-point 
visual analog scale [7]. Still others have used standardized ques-
tionnaires such as the Epworth Sleepiness Scale and its cutoff 
value of 10 to operationalize alertness.

Several factors must be considered when considering the 
validity of these cutoff values. First, these cutoff values were 
also derived using actigraphy (except subjective alertness and 
quality). As actigraphy and subjective measures of sleep cap-
ture somewhat different bands of variance [31] it is possible 
that different cutoff values will arise as a function of method-
ology. Second, the sample was comprised of midlife adults from 
a limited region of the United States. The degree to which these 

values will generalize across diverse samples in unknown. The 
values reported here represent the first attempt to empirically de-
rive a set of clinically relevant sleep health cutoff values. The 
finding that cutoff values were relatively robust across physical 
and mental health outcomes is encouraging and suggests that 
these values may represent a reliable boundary across which 
dysregulated sleep may confer sleep. Future research will deter-
mine the degree to which these values will remain robust across 
sleep recording methodologies and populations.

The finding that greater sleep health was associated with 
lower odds of reporting cardiometabolic morbidity adds to the 
emerging findings relating poor sleep health to clinically signifi-
cant symptoms of depression [6] and poor self-reported health 
[4, 5]. Our results showing that sleep health was associated with 
cardiometabolic morbidity and hypertension in a second sample, 
independent from that used to derive the cutoff values demon-
strates that the cutoff values generalize across samples and, to 
some extent, across cardiometabolic disorders. The composite 
measure of sleep health appears to represent a much more pre-
cise measure of sleep than individual dimensions, vis-à-vis 
cardiometabolic health, as indicated by the notably smaller confi-
dence intervals for sleep health in Figure 2, compared with those 
surrounding individual dimensions of sleep health. Such increased 
precision provides reason to continue pursuing a multidimensional 
approach to evaluating relationships among sleep and health.

Several limitations deserve mention. First, we were unable 
to demonstrate, conclusively, that sleep health outperformed 
other measures of sleep commonly used in epidemiological 
research. Whereas comparisons of AUC yielded no significant 
differences among sleep health and PSQI measure of sleep dur-
ation and latency, sleep health was the only measure that sig-
nificantly related to cardiometabolic risk, even after controlling 
for sociodemographic and biological risk factors. Given that 
sleep health has been previously shown to outperform single 
dimension measures [5], it may be the case that with further 
development sleep health will outperform traditional meas-
ures. For example, individual sleep health dimensions were 
weighted equally in the present study. It is reasonable to specu-
late that a sleep health score constructed using differentially 
weighted sleep health dimensions might achieve greater preci-
sion. Second, due to the cross-sectional structure of the study 
design, conclusions cannot be drawn regarding the causal role 
of sleep health in the pathophysiology or clinical course of 
cardiometabolic disorders. Experimental sleep restriction and 
deprivation studies have reported changes in physiological func-
tion (e.g. sympathetic activity, glucose metabolism, hormone 
section) and health behaviors (e.g. eating) that are consistent 
with disturbed sleep playing a causal role in the development 
of cardiometabolic disorders [32, 33]. Experimental and longitu-
dinal research is still needed, however, to explore of the role of 
different sleep dimensions in the pathophysiology and progres-
sion of cardiometabolic disease. Third, no significant relation-
ship between sleep health and diabetes was observed in models 
that adjusted for traditional cardiometabolic disease risk fac-
tors. Given previous research linking poor sleep to diabetes [12], 
it is possible that the present study lacked the statistical power 
to detect this relationship, especially since diabetes prevalence 
was low in the MIDUS Refresher sample. Fourth, in contrast 
with some [4, 5], but not all reports [34], individuals reporting 
better sleep health were older than their counterparts with poor 
sleep health. This may be the result of older individuals having 
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fewer sleep constraints than younger individuals. Alternatively, 
it is possible that a survivorship-type bias may be responsible 
for such a discrepant result. If so, this would lead to an under-
estimation of the true relationship between sleep health and 
cardiometabolic morbidity.

To conclude, using two independent samples, the present 
study empirically derived cutoff values for the six individual di-
mensions of sleep that comprise sleep health and showed that 
they are relatively stable across physical and mental health 
outcomes. In a separate sample, good sleep health was cross-
sectionally associated with reduced odds of cardiometabolic 
morbidity and hypertension. These results contribute to the on-
going development of the sleep health model and add to the 
emerging research supporting a multidimensional perspective 
of sleep and health.
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