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A B S T R A C T

Sorjonen et al. (2024) critique a recently published finding that cognitive tilts are heritable, which was advanced 
as a line of evidence supporting their substantive (rather than artefactual) nature. These researchers claim: i) that 
the heritability of tilts is simply a function of the heritabilities of the specific cognitive dimensions used in their 
estimation, and ii) that spuriously heritable tilts can be recovered using difference scores between psychometric, 
anthropometric, and even random number variables. Here, multiple studies employing three behavior genetic 
datasets are used to test these claims. Even when cognitive tilts are residualized for their association with their 
constituent abilities, they still exhibit small, but non-zero heritabilities. Shared environmentality (C) accounts for 
the largest proportion of variance among these residuals. Tilts generated using random numbers are, by contrast, 
in all cases associated with AE models, exhibiting near 100 % E variance, corresponding to error. In the Swedish 
Twin Registry, the tilt residual is positively correlated with a measure of life history speed (Mini-K score), 
suggesting that tilts capture cognitive differentiation-integration effort conditioned developmentally by C vari
ance. Distinct latent factors among psychometric and anthropometric variables in the Georgia Twin Study are 
also found. These indicate the presence of distinct developmental modules, meaning that tilts estimated using 
manifest variables associated with different modules lack theoretical credibility, as also evidenced by weak cross 
loadings.

1. Introduction

Debate surrounds the validity of cognitive ability tilts, which are 
within-subjects differences between two distinct abilities (e.g., verbal – 
spatial) or broad ability domains (e.g., academic - technical). Tilts are 
typically independent of general cognitive ability (GCA) and are said to 
capture tradeoffs favoring the cultivation of one ability, or cognitive 
domain, at the expense of another, by means of specific patterns of in
vestment, such as time devoted to learning.

On the one hand it has been found that these tilts add incremental 
predictive validity to measurement models of certain criteria over and 
above general cognitive ability (GCA) (for reviews, see Coyle, 2018; 
Coyle & Greiff, 2021; see also Coyle, 2019, 2020, 2021, 2022a, 2022b). 
On the other it has been argued that tilts are spurious owing to their 

correlations with the abilities or domains out of which they are con
structed. This creates a theoretical objection to the idea that a tilt cap
tures a specific tradeoff pattern between its two constituent abilities or 
domains, and that this is in turn the source of their apparent incremental 
validity in studies such as those produced by Coyle and co-workers. 
Instead, it may merely be the case that their seeming validity is 
entirely due to their being basically arbitrary pairings of non-GCA re
siduals, which exhibit variable levels across people for genetic and 
developmental reasons (unrelated to environmentally calibrated trade
offs occurring in ontogenetic time, as the tilt model posits)—in which 
case, the constituent abilities are the true source of incremental validity 
in these sorts of studies (Sorjonen et al., 2022; Sorjonen et al., 2023).

Recently, tilts were investigated using behavior-genetic models in 
three large samples, two of which were sourced from US datasets (the 
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Georgia Twin Study [GTS] and MIDlife in the United States II [MIDUS 
II]), and the third from a Swedish dataset (the Swedish Twin Registry 
Study of Twin Adults: Genes and Environment [STR STAGE]) (for full 
descriptions of these see Coyle et al., 2023). Tilts were estimated using 
broad cognitive abilities in each case. These included Reasoning, 
Numeric, Verbal, and Spatial primary mental abilities in the case of the 
GTS (yielding six tilts in total), Executive functioning and Episodic memory 
in the case of MIDUS II, and Fluid reasoning and a Chronometric group 
factor, capturing processing speed and accuracy, in the case of STR 
STAGE. AE (additive genetic, non-shared environmental, and error 
variance) models were found to fit the data in all but one instance (the 
Verbal-Reasoning tilt in the GTS, where a model incorporating a shared 
environmentality [C] component yielded the best fit). Estimates of tilt 
additive heritability were in line with those found in meta-analyses of 
general trait heritability (weighted mean h2 = 0.401, 95 % CI = 0.375, 
0.426, vs. 0.490 in Polderman et al., 2015). Moreover, a statistically 
significant Wilson-like effect (rising h2) was found when the tilt herita
bilities were compared based on the mean ages of their respective 
samples. Finally, a portion of the non-shared environmentality was 
speculated to reflect the action of “active” gene-by-environment corre
lations resulting from e.g., niche picking.

In a thoughtful response to Coyle et al. (2023), Sorjonen et al. (2024)
argued that these heritability estimates are also spurious, as they likely 
merely reflect the heritability of the specific ability domains from which 
the tilts are constructed. They attempted to demonstrate this via the 
estimation of large numbers of tilts involving both cognitive and non- 
cognitive (anthropometric) variables sourced from the GTS, where 
correlations were found between the mean heritability of the constituent 
dimensions and the heritabilities of their associated tilts. This was 
reinforced with a simulation showing essentially the same pattern. 
Sorjonen et al. (2024) argue that the presence of apparently heritable 
tilts between counterintuitive domains (such as nose length and spatial 
ability), or among those estimated using a pseudo-variable composed of 
random numbers paired with phenotypes, further undercuts the case put 
forward in Coyle et al. (2023). They write that “[a]ccording to the logic 
of [Coyle et al.’s, 2023] argument … this would suggest that the human 
genome codes for, for example, differences between height and nose 
length (H2 = 0.75), between head circumference and verbal ability (H2 

= 0.60), and between spatial ability and a random number allocated to 
the person several decades after birth (H2 = 0.22). We find it very un
likely that the human genome would code for such tilts. Instead, we 
propose … that heritability of these, as well as other, tilts are spurious 
consequences of heritability of the constituent variables” (p. 3).

Sorjonen et al. (2024) raise some sound points. Nevertheless, one 
study that seemingly contradicts their broader criticism of the tilt 
paradigm is that of Kato and Scherbaum (2023). In this study of the 
criterion validity of tilts, it is noted that “[a]bility tilt related with job 
performance in the expected direction for 27 of the 36 tilt-job combi
nations examined, with a mean effect size of .04 when the tilt matched 
job requirements. The mean incremental validities for ability tilt were 
.007 over g and .003 over g and specific abilities, and, on average, tilt 
explained 7.1% of the total variance in job performance” (p. 1). Their 
findings therefore suggest that tilts add incremental validity to pre
dictions of job performance, even when controlled for both GCA and its 
specific constituent abilities. Sorjonen et al. (2024) highlight a need to 
further develop the theoretical sophistication and specificity of pre
dictions of the tilt research program, and the work of Kato and Scher
baum (2023) suggests that there may be a tilt residual that has substance 
net of its component abilities. In the remainder of this article, this pos
sibility will be key to satisfactorily rebutting the criticisms that Sorjonen 
et al. (2024) offer.

1.1. Life history theory: a new approach to tilts

The literature on tilts tends to focus on their proximate causes. In
vestment theory (Cattell, 1987, pp. 138–146) is frequently used as a 

causal framework for understanding the origins of these ability differ
ences. Abilities, independently of GCA, are treated as effectively being in 
competition with one another, with the cultivation of one ability 
necessarily coming at the expense of another (so, e.g., time spent 
specializing in ability A is necessarily time not spent specializing in 
ability B). A more fundamental and distal (evolutionary), but comple
mentary, framework within which tilts and related phenomena may be 
understood is life history (LH) theory (LHT). LHT describes the adaptive 
logic conditioning relationships among seemingly discrete physical, 
behavioral, and psychological aspects of phenotypes. Specifically, LHT 
posits that phenotypic traits covary along a continuum (though it is 
generally thought that there is more than one continuum of LH varia
tion; see Ellis et al., 2009) of LH speed, with one end of the continuum 
called “slow” (or K-selected) and the other end called “fast” (or r- 
selected1). “Slow” life history traits, collectively called strategies, are 
adapted to the pursuit of fitness over a long time horizon, whereas “fast” 
life history traits/strategies are adapted to the pursuit of fitness over a 
short time horizon.

While originally developed to explain trait covariation across spe
cies, LH models have also been successfully applied to understanding the 
adaptive logic underlying correlations among seemingly distinct sources 
of individual differences in humans, and also other species (Ellis et al., 
2009; Woodley of Menie et al., 2021). In humans, personality and other 
behavioral traits have been found to cohere into latent variables, such as 
the general factor of personality (GFP), the positive manifold among 
different personality traits such as extraversion, neuroticism, and 
agreeableness, which has been interpreted as capturing overall social 
effectiveness (Musek, 2017). The GFP in turn positively (phenotypically 
and genetically) correlates with measures of mental and physical health, 
and such health measures are correlated though a Covitality factor. Both 
the GFP and Covitality factor positively correlate with a cluster of 
behavioral traits paradigmatically associated with LH, such as low time 
preferences; low mating effort; and long-term sexual-romantic, familial, 
and communitarian attachments and investments. These behaviors all 
positively correlate through a psychometric “K factor.” A higher order 
“Super-K" factor emerges from the intercorrelations of the GFP, Covi
tality, and K factor, which is taken to be the most general factor of 
human LH (Figueredo et al., 2004; Figueredo et al., 2006; Figueredo & 
Rushton, 2009).

As with species-differences LHT, individual-differences LHT posits a 
“fast-slow” continuum capturing variation between people (or organ
isms within different species), with fast and slow poles corresponding to 
lower vs. higher levels of Super-K (all humans are highly K selected 
relative to other primates and mammals more broadly). Such models 
posit both genetically and environmentally conditioned individual dif
ferences in LH speed (Del Giudice, 2020; Ellis et al., 2009; Woodley of 
Menie et al., 2021).

Despite the considerable nomological breadth of the psychometric 
Super-K factor, measures of general cognitive ability (GCA) have been 
found to be at best only weakly, and also inconsistently, associated with 
psychometric measures of LH speed (Figueredo et al., 2014; Loehlin 
et al., 2015; Woodley, 2011; Woodley of Menie & Madison, 2015). This 
suggests that there might be distinct developmental modules that have 

1 The terms r and K selection originate from outdated forms of LH theory that 
“focused on population density-dependent causes for life history evolution … 
whereas subsequent life history theory focused more on the role of age- 
dependent schedules of morbidity and mortality, attributable to factors such 
as environmental harshness and unpredictability” (Figueredo et al., 2017, p. 
42). Contemporary models of LH evolution posit roles for density-dependent 
selection, but other selective factors tend to be emphasized. Although the r-K 
terminology is not quite current, “K-selected” and “slow” and “r-selected” and 
“fast” are still used interchangeably to refer to specific LH-related traits and 
trait clusters, and to organisms and species exhibiting such traits and trait 
clusters.
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evolved in response to discrete selective pressures. Traits that are sen
sitive to the presence of deleterious mutations (for example) may have 
evolved to signal phenotypic condition in a way that would be expected 
to cut across LH variation owing to the globally negative effects of such 
mutations on condition, in contrast to LH adaptations that are more 
narrowly adapted to particular environmental contexts (therefore, high- 
and low-condition phenotypes should be found in both fast- and slow-LH 
individuals). GCA may be one such trait highly sensitive to genetic 
quality, which is subsumed under a broader “system integrity” factor 
that would occur at the same level of psychometric aggregation as 
Super-K (Woodley of Menie et al., 2021).

Although psychometric measures of LH speed, such as the GFP and K 
factor, are inconsistently and weakly associated with GCA, it has 
nevertheless been found that the positive manifold of GCA is weaker 
among those who on average exhibit slower LH speed. Woodley (2011)
predicted the existence of this dimension of variation—weaker vs. 
stronger GCA manifold strength as a function of slower vs. faster LH 
speed. It has been demonstrated in both student and population- 
representative samples sourced from the US (Woodley et al., 2013). 
Weaker correlations among measures of cognitive ability are theorized 
to result from biased allocations of effort (investments of time, cortical 
real estate, and bioenergetic resources, such as calories) into the culti
vation of specialized abilities (“differentiation effort”). Specialization is 
adaptive in environments that are stable enough to feature niches that 
can be exploited over a long time horizon, hence slow LH strategists 
cultivate specialized ability profiles to adapt to such niches in the stable 
environments that selectively favor such strategists. Stronger correla
tions among measures of cognitive ability, by contrast, are thought to 
result from fairly even allocations of effort (“integration effort”) to 
different ability domains—such even allocation is adaptively logical in 
unstable and harsh environments where only short-term pursuit of 
fitness is generally feasible (i.e. environments that favor fast LH strate
gies), and where the specific niches available for exploitation are not 
predictable, requiring fit organisms to be generalists. Consequently, the 
dynamic governing these LH-related investment patterns is termed 
cognitive differentiation-integration effort or CD-IE (Woodley, 2011).

1.2. Hypotheses

CD-IE is highly relevant to the etiology of tilts as it provides a distal 
framework within which they can be better understood. It enhances via 
consilience (the integration of proximate and distal theories), rather than 
replaces, Cattell’s (1987) investment model by providing an adapta
tionist account of the emergence of the investment process it describes 
(see Hertler et al., 2018, pp. 293–306 for discussion of this integration in 
relation to Cattell’s work). Based on the CD-IE model, tilts constitute 
true tradeoffs between abilities or ability domains as their development 
involves the devotion of finite bioenergetic resources to the cultivation 
of one ability or domain, at the expense of another. Moreover, CD-IE 
explicitly predicts that the overall cognitive profile of those with 
slower LH will exhibit a more uneven structure reflecting tilts among 
different abilities and therefore cognitive specialization (see Woodley, 
2011, Fig. 3, p. 234). The overall ability to cultivate tilts should be a 
function of LH speed, even though the precise direction of the tilt (i.e., 
the degree to which the development of one arbitrary ability is being 
traded against another) will be conditioned by the immediate develop
mental requirements of the individual (as reflected in “active processes” 
such as niche picking; Coyle et al., 2023), and may vary substantially 
from individual to individual. This application of CD-IE to tilts leads to 
the following hypothesis: 

Hypothesis 1. (H1): When residualizing tilts for correlations with their 
component abilities (in addition to GCA and age as was done in Coyle 
et al., 2023), a more fundamental investment dimension will emerge.

The existence of this investment dimension may make sense of Kato 
and Scherbaum’s (2023) finding that even when their constituent 

abilities are controlled, tilts still add incremental validity to models 
predicting job performance. Critically, this contrasts with a prediction 
based on Sorjonen et al.’s (2024) model, specifically that such tilt re
siduals should be wholly spurious. To differentiate between the two key 
predictions, behavior-genetic models can be used, leading to the 
following two sub-hypotheses: 

Hypothesis 1a. (H1a): Tilt residuals should be weakly heritable but 
also associated with substantial shared environmentality (C), with the 
ACE model best fitting the data.

H1a emerges from the fact that a person’s level of cognitive differ
entiation effort should be strongly conditioned by factors associated 
with the shared environment: “active” effects such as familial and social 
pressures encouraging the picking of certain “cognitive niches” require 
stable environments to play out, and extant LHT research indicates that 
shared environmental effects related to stability of the home environ
ment significantly predict the development of LH traits independently of 
genetic effects (Figueredo et al., 2020). This, it must be stressed, con
trasts with our previous paper (Coyle et al., 2023), which did not pro
ceed on the basis of LHT, and that anticipated that niche-picking should 
be driven by non-shared environmental factors. 

Hypothesis 1b. (H1b): AE models will fit tilts reflecting the differences 
between random number variables. These should be associated exclu
sively with E variance, as this captures measurement error.

Such pseudo-tilts should behave in line with predictions from Sor
jonen et al. (2024), as these are spurious by design. This test allows for 
both the CD-IE and the “spurious origin” hypotheses to be directly 
competed with one another.

An obvious and major hypothesis stemming from the CD-IE model of 
tilts is as follows: 

Hypothesis 2. (H2): Tilt residuals will, if they do indeed significantly 
capture CD-IE, correlate positively with a psychometric measure of LH 
speed.

A final hypothesis is advanced given the predicted existence, in light 
of LHT, of largely separate developmental modules: 

Hypothesis 3. (H3): Distinct latent variables will exist among the 
psychometric and anthropometric traits included in the GTS data, 
indicating the presence of discrete developmental modules.

Confirmation of H3 militates against the logic of constructing tilts 
using manifest variables sourced from different developmental modules 
(as Sorjonen et al., 2024 likely do), as these domains may not be in 
competition with one another for “common” sets of resources, and 
tradeoffs among the components of such modules may also be regulated 
by different sets of genetic and environmental factors.

Here these new hypotheses will be tested, not only to examine Sor
jonen et al.’s (2024) criticisms in more detail, but to further the tilt 
research program.

2. Methods

2.1. Statistical analyses

GCA factor scores were computed using a unit-weighted estimation 
procedure for each set of cognitive indicators collected from the STR, 
MIDUS II, and GTS (as described in Coyle et al., 2023). Cognitive tilts 
were computed by subtracting the z-scores estimated for each cognitive 
ability for each pair of cognitive abilities. The resulting values were 
subsequently re-standardized. A General Linear Model (GLM) was then 
used to estimate the residuals (R1) of a model using z-GCA and z-age as 
predictors of the z-tilt. z-age was controlled as the heritability of tilts has 
been shown to exhibit a Wilson-like effect, specifically they increase 
significantly between samples as mean sample age increases (Coyle 
et al., 2023). This control reduces confounding due to potential within- 
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sample age dependent effects on the behavior genetic variance compo
nents. In a subsequent step, a GLM was conducted to estimate the 
models’ residuals (R2) after including the standardized cognitive in
dicators (used to estimate GCA and the corresponding tilt) as predictors 
of the residuals (R1) computed in the previous stage. In the case of GTS, 
each of the six tilts were residualized for all four of the ability measures, 
yielding what could be termed “tilt super-residuals.”

As with Coyle et al. (2023), the current study employed the twinlm 
function, associated with the mets package (Holst & Scheike, 2013) in R 
v. 4.3.1, to estimate ACE, ADE, and AE behavior-genetic models. Model 
comparisons were executed using AIC and BIC values estimated for each 
model. The function akaike.weights, found in the qpcR package (Ritz & 
Spiess, 2008), was used to estimate Δ AIC, Δ BIC, AIC weights, and BIC 
weights for each model. Although in the literature model selection is 
often based on positively signed AIC and BIC values, wherein lower 
values indicate a better model fit, it is not uncommon for certain models 
to feature negatively signed AIC and BIC values. For example, the 
addition of a constant can reverse the sign of the model fit parameters 
(Burnham & Anderson, 2004). Model selection based on negatively 
signed AIC and BIC values follows the heuristic wherein smaller values, 
hence more negative estimates, feature a better statistical fit. Variance 
component analyses were also employed to determine the proportion of 
phenotypic variance attributable to additive genetic, common environ
mental, and non-shared environmental factors in addition to error. 
Following Sorjonen et al. (2024), random number variables were 
generated for each subject and the resultant difference scores between 
pairs of these. These “pseudo-tilts” were then analyzed using the 
aforementioned behavior-genetic models.

A measurement model was estimated for the following GTS vari
ables: reasoning, numerical, verbal, spatial, weight, height, head 
breadth, head circumference, head length, face length, and nose length, 
in order to identify latent variables among them. Horn’s (1965) parallel 
analysis was used to determine the recommended number of underlying 
factors. Based on the suggested number of latent dimensions a Principal 
Axis Factor Analysis was computed. An inter-factor correlation was 
generated providing information on the association between these latent 
dimensions. These analyses were conducted using the packages paran 
(Dinno, 2009) and psych (Revelle, 2015). A reviewer suggested that 
these analyses should have been conducted using confirmatory as 
opposed to exploratory factor analysis, however for the purposes of the 
present study we note that confirmatory factor analysis is recommended 
when the factorial structure has been properly identified in previous 
studies and the goal of the study is to determine the model fit of the 
aforementioned latent structure (Orçan, 2018). In contrast, the use of 
exploratory factor analysis is appropriate when factor structure remains 
to be determined (Orçan, 2018). After reviewing the relevant literature, 
the present study is the first to examine a latent structure based on seven 
morphometric indicators (head circumference, head breadth, head 
length, face length, nose length, height, and weight), and four cognitive 
indicators (reason, number, verbal, and spatial). As no previous publi
cations have used these variables to examine the factor pattern the 
present study therefore employed an exploratory factor analytic 
approach.

3. Results

3.1. Study 1: testing hypothesis 1

3.1.1. Hypothesis 1a: Heritability and shared environmentality in tilt 
residuals

3.1.1.1. Swedish twin registry. Tilts were computed using the score dif
ference between fluid ability and a chronometric factor. These were resi
dualised for i) associations with GCA (the average of the two factor 
scores for each subject) and age, and ii) associations with the two 

abilities. The sample was composed of 711 monozygotic (MZ) and 665 
dizygotic (DZ) twin pairs. The model comparison indicated that the ACE 
model statistically outperformed the ADE and AE ones. The variance 
component analysis indicated that common environmental factors 
explained most of the standardized residualized tilt variance. These re
sults are further described in Table 1.

3.1.1.2. MIDUS II. Tilts were computed using the score difference be
tween Episodic memory and Executive functioning. These were resi
dualised for i) associations with GCA (the average of the two factor 
scores for each subject) and age, and ii) associations with the two abil
ities. The sample was composed of 164 monozygotic (MZ) and 228 
dizygotic (DZ) twin pairs. As with the analysis involving STR STAGE, the 
model comparison revealed that the ACE model outperforms the others. 
A variance component analysis with the standardized residualized tilt 
indicated that, as with the STR STAGE tilt residual, common environ
mental factors accounted for most of the model’s variance. Table 2 de
scribes these results in further detail.

3.1.1.3. Georgia twin study. Tilts were computed using the score dif
ference between each pairing involving Reasoning, Numerical, Spatial, 
and Verbal primary mental abilities, yielding six tilts. These were resi
dualised for i) associations with GCA (estimated using exploratory factor 
analysis) and age, and ii) associations with each of the four abilities. The 
sample was composed of 82 monozygotic (MZ) and 108 dizygotic (DZ) 
twin pairs. The six tilt “super-residuals” (R2) estimated from the GLM 
were found to perfectly correlate with one another (Fig. 1).

This indicates the presence of a single prospectively CD-IE-like 
dimension among these tilt super-residuals. On this basis, the 
behavior-genetic analysis was conducted using just one of the tilt super- 
residuals (as they are all identical). Consistent with the previous two 
datasets, a model comparison showed that the ACE model statistically 
outperforms both the ADE and the AE models. As with STR and MIDUS II 
the variance component analysis found that common environmental 
factors explained most of the standardized super-residualized tilt vari
ance in these data. The results are depicted in Table 3.

3.1.2. Hypothesis 1b: random variable tilts
Several model comparisons were conducted using five tilts composed 

of randomly generated values assigned to GTS subjects using the code 
from Sorjonen et al. (2024). The AE model was found to outcompete 
both the ACE and the ADE models (Table 4). A set of variance compo
nent analyses on these standardized random tilts also indicated that E 
(which can only capture error in this model, as the tilts are based on 
differences between randomly generated numbers) explained virtually 
all of the models’ variances. This is detailed in Table 5.

3.2. Study 2: testing hypothesis 2 – tilt residual and Life History Speed 
correlation

Two of the three datasets employed in the present analysis contain 
direct estimates of psychometric LHS; MIDUS II and the STR STAGE. The 
latter dataset (which contains a short-form measure of LH, the Mini-K) is 
the larger of the two, containing 6714 individuals, after including the 
large singleton subsample and excluding one monozygotic twin from 
each pair so as to reduce pseudo-repeated measures. If the tilt residual 
corresponds to a CD-IE tradeoff, then it is possible to estimate a priori the 
sample size necessary to detect it with a given level of power. Assuming 
a weighted r of − 0.036 (this being the sample size weighted CD-IE effect 
size from Woodley et al., 2013), an α of 0.05, and a power of 0.80, the 
power calculation recommended a minimum sample size of 5918 (the 
power analysis was conducted with the statistical software GPower 3.1; 
Faul et al., 2009, the results of this are presented in Fig. 2).

Only the full STR STAGE sample exceeded the a priori power 
requirement, therefore this sample will be used in testing Hypothesis 2.
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The STR STAGE data were winsorized using the winsorize function 
found in the Desctools package (Signorell et al., 2017) in order to control 
for the effects of potential outliers. A General Linear Model, whose 
outputs were adjusted for the Mini-K’s reliability via division by the 
square root of this parameter (rxx = 0.73; Figueredo et al., 2014), yielded 
indications that higher levels of K (slower LH) are positively and 
significantly predictive of a larger tilt-residual above and beyond any 
influence of potential outliers (r = 0.023, p = .0258). A scatterplot of the 
tilt residual as a function of Mini-K is presented in Fig. 3.

3.3. Study 3: testing hypothesis 3 – latent variables in the Georgia Twin 
Study

Horn’s parallel analysis recommended the extraction of four latent 
dimensions in the full GTS dataset. A principal axis factor analysis 
(assuming a four-factor solution) revealed that the first factor positively 
loaded onto reasoning, numerical, verbal, and spatial cognitive abilities, 
explaining 23.7 % of the variance, which clearly identifies this as GCA. 
The second latent dimension positively loaded onto weight, height, and 
head breadth, accounting for 14.6 % of the variance. This seems to 
represent a general growth dimension. The third factor positively loaded 
onto head circumference and head length, explaining 14.2 % of the vari
ance, suggesting the existence of a craniometric proportions dimension.2

The last latent dimension positively loaded onto face length and nose 
length, accounting for 11.2 % of the variance, suggesting the presence of 
a facial proportions dimension. Overall, the model explained 63.7 % of 
the variance. These results are further described in Table 6. The analysis 
also revealed that the GCA dimension featured statistically significant, 

albeit weak, correlations with the various morphometric factors. In turn, 
the various morphometric dimensions featured weak-to-moderate inter- 
factor correlations (values given in Table 7). Due to the magnitude of the 
latter correlations it was not possible to explore alternative factor 

Table 1 
Model comparison and variance component analysis on a standardized residualized tilt based on data collected from the STR STAGE. Bold indicates best fitting model 
and strongest behavior genetic variance component.

Variable Model AIC Δ AIC AIC w BIC Δ BIC BIC w

z Residualized Tilt STR ACE ¡9572.080 0.000 1.000 ¡9556.400 0.000 1.000
ADE − 8107.449 1464.632 0.000 − 8091.768 1464.632 0.000
AE − 8109.449 1462.632 0.000 − 8098.995 1457.405 0.000

Variable Variance Components Estimate 2.50 % 97.50 %

z Residualized Tilt STR

A 0.016 0.010 0.021
C 0.971 0.966 0.976
E 0.013 0.012 0.015

Table 2 
Model comparison and variance component analysis on a standardized residualized tilt based on data collected from MIDUS II. Bold indicates best fitting model and 
strongest behavior genetic variance component.

Variable Model AIC Δ AIC AIC w BIC Δ BIC BIC w

z Residualized Tilt MIDUS II ACE 1742.173 0.000 1.000 1754.192 0.000 1.000
ADE 1849.374 107.201 0.000 1861.393 107.201 0.000
AE 1847.374 105.201 0.000 1855.386 101.195 0.000

Variable Variance Components Estimate 2.50 % 97.50 %

z Residualized Tilt MIDUS II

A 0.144 0.063 0.225
C 0.747 0.673 0.821
E 0.108 0.082 0.135

Fig. 1. Bivariate correlation constellation illustrating identical effect sizes 
among each standardized super-residualized tilt.

Table 3 
Model comparison and variance component analysis on the standardized tilt super-residual based on data collected from GTS. Bold indicates best fitting model and 
strongest behavior genetic variance component.

Variable Model AIC Δ AIC AIC w BIC Δ BIC BIC w

z Tilt Super Residual GTS ACE 535.823 0.000 1.000 545.548 0.000 1.000
ADE 734.625 198.802 0.000 744.350 198.802 0.000
AE 732.625 196.802 0.000 739.108 193.560 0.000

Variable Variance Components Estimate 2.50 % 97.50 %

z Tilt Super Residual GTS

A 0.007 − 0.016 0.030
C 0.966 0.947 0.986
E 0.027 0.017 0.037

2 As this sample was composed of both black and white participants, it is 
possible that variation in craniometric index might be causing head circum
ference and length to load onto a different factor to head breadth.
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structures such as either a hierarchical organization, featuring a higher 
order factor, or alternative transformations, such as Schmid-Leiman.

A correlated factors model, based on Table 6 and Table 7, is illus
trated in Fig. 4.

4. Discussion

The results of the three studies are broadly consistent with the hy
potheses stated in the introduction. Consistent with H1a, in all cases ACE 
models best fit the tilt residuals, with C variance being the dominant 
variance component, accounting for between 74.7 and 97.1 % of the 
variance across models. H1b was also confirmed. The tilts constructed 
from the random number variables (assigned to GTS participants) were 

associated with AE models in all cases, with E variance accounting for 
between 93.7 and 100 % of the variance across five runs. Confirmation 
of H1a and H1b corroborate H1, as they indicate that even when tilts are 
residualized for their associations with their (and other) constituent 
variables, they are still substantive, being associated with C variance. 
This is consistent with the expectation that irrespective of how CD-IE is 
being allocated, the degree to which such effort is allocated should be 
strongly conditioned by factors associated with the shared environment, 
which would include “active” effects involving the identification of, and 
specialization with respect to, cognitive niches, driven by, among other 
things, perceptions of the stability of family, school, and neighborhood, 
as in the absence of perceived (and real) stability, mechanisms of 
specialization cannot function. Notably, the estimation of tilt super- 
residuals in the case of GTS (where each tilt could be residualized 
simultaneously for all four primary mental abilities, thus controlling for 
potential correlations between the tilt and seemingly uninvolved abili
ties) yielded clear indications of the existence of a single underlying 
super-residual (Fig. 1), which, as with the residuals estimated in the case 
of STR STAGE and MIDUS II, exhibited the highest affinity for ACE 
models. Another intriguing finding is the apparent persistence of C 
variance into late life. The mean ages of STR STAGE and MIDUS II 
participants were 40.7 and 60 years respectively. C variance for many 
traits tends toward zero among those in early adulthood (Horn & 
Loehlin, 2020), which makes these findings especially intriguing, as they 
very clearly violate this trend.

The tilt residuals also remain weakly heritable (statistically signifi
cantly so in the case of the two larger samples), with additive effects (A) 
accounting for between 0.7 and 14.4 % of the variance across samples. 

Table 4 
Model comparison involving standardized pseudo-tilts composed using randomly generated numbers. Bold indicates best fitting model.

Variable Model AIC Δ AIC AIC w BIC Δ BIC BIC w

z RandomTilt 1 ACE 1077.698 5.225 0.064 1087.424 5.225 0.064
ADE 1077.715 5.242 0.063 1087.441 5.242 0.063
AE 1075.715 0.000 0.873 1082.199 0.000 0.873

Variable Model AIC Δ AIC AIC w BIC Δ BIC BIC w
z RandomTilt 2 ACE 1076.940 1.615 0.246 1086.665 4.856 0.076

ADE 1077.325 2.000 0.203 1087.050 5.242 0.063
AE 1075.325 0.000 0.551 1081.809 0.000 0.861

Variable Model AIC Δ AIC AIC w BIC Δ BIC BIC w
z RandomTilt 3 ACE 1077.582 1.886 0.222 1087.307 5.128 0.067

ADE 1077.695 2.000 0.209 1087.421 5.242 0.063
AE 1075.695 0.000 0.569 1082.179 0.000 0.870

Variable Model AIC Δ AIC AIC w BIC Δ BIC BIC w
z RandomTilt 4 ACE 1077.716 2.000 0.212 1087.441 5.242 0.064

ADE 1077.716 2.000 0.212 1087.441 5.242 0.064
AE 1075.716 0.000 0.576 1082.200 0.000 0.873

Variable Model AIC Δ AIC AIC w BIC Δ BIC BIC w
z RandomTilt 5 ACE 1077.696 1.979 0.214 1087.421 5.221 0.064

ADE 1077.716 2.000 0.211 1087.441 5.242 0.063
AE 1075.716 0.000 0.575 1082.200 0.000 0.872

Table 5 
Behavior-genetic variance component analyses using five pseudo-tilts composed 
using random variables. Bold indicates the strongest behavior genetic variance 
component.

Variable Variance Component Estimate 2.50 % 97.50 %

z Random Tilt 1 A 0.003 − 0.185 0.191
E 0.997 0.809 1.185

z Random Tilt 2 A 0.063 − 0.133 0.258
E 0.937 0.742 1.133

z Random Tilt 3 A 0.015 − 0.185 0.214
E 0.985 0.786 1.185

z Random Tilt 4 A 0.000 0.000 0.000
E 1.000 1.000 1.000

z Random Tilt 5 A 0.000 0.000 0.000
E 1.000 1.000 1.000

Fig. 2. A priori power analysis estimating minimum sample size based on weighted r = − 0.036, α = 0.05, and power = 0.80.
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Some non-zero additivity would also be predicted on the basis that 
cognitive plasticity might itself be to some extent heritable. This finding 
is consistent with theory and data presented in Woodley of Menie et al. 
(2015), in which the modest heritability of LH plasticity (estimated with 
respect to continuous parameter estimates of covariance among Super-K 
and its constituent LH subfactors) was demonstrated using Falconer’s- 
based heritability estimates. The finding of non-zero heritability for 
these tilt “super-residuals” further challenges the “spurious origin” 

hypothesis, as they should have exactly zero heritability were this the 
case (precisely because spurious sources of heritability have been 
thoroughly controlled), in addition to being entirely associated with E 
variance, specifically capturing error.

Consistent with H2 it was found that the tilt residual was positively 
correlated with Mini-K scores in the STR STAGE. The association is small 
by the standards of psychological science, however (r = 0.023 vs. r ≈
0.20; Gignac & Szodorai, 2016), indicating that H2 is only weakly 
confirmed. Despite this, the presence of a positive and significant asso
ciation between these two variables, using a large sample of singletons, 
DZ and MZ twins, provides at least some evidence supporting the 
identification of these tilt residuals with CD-IE, as the effect size is 
similar in magnitude to the sample size weighted CD-IE effect size re
ported in Woodley et al. (2013) (0.023 vs. -0.036). The association is 
consonant with the expectation that those exhibiting slower LH speeds 
should also have a greater general tendency to allocate effort to the 
cultivation of narrower abilities, irrespective of domain, which may in 
turn entail tradeoffs between abilities competing for common bio
energetic resources, yielding tilts. Future research should of course 
attempt to replicate this finding.

Consistent with H3 it was found that the GTS data could be reduced 
to four latent variables. One of these corresponds clearly to GCA, the 

Fig. 3. Scatterplot of winsorized and standardized STR STAGE tilt residual vs. Mini-K scores.

Table 6 
Principal axis factor analysis based on cognitive and morphometric indicators collected from the Georgia Twin Study. ML = Maximum Likelihood factor. Bold indicates 
which latent variables preferentially load onto which manifest variables

Indicator ML1 ML2 ML3 ML4 h2 u2 Communalities

Reasoning 0.925 − 0.026 − 0.021 − 0.075 0.835 0.165 1.020
Numerical 0.784 0.020 0.041 0.045 0.643 0.357 1.010
Verbal 0.771 − 0.002 − 0.088 0.079 0.601 0.399 1.050
Spatial 0.670 0.026 0.136 − 0.076 0.488 0.512 1.110
Weight − 0.041 0.819 0.014 − 0.027 0.653 0.347 1.010
Height 0.055 0.604 0.029 0.232 0.557 0.443 1.310
Head breadth 0.057 0.580 0.216 − 0.153 0.472 0.528 1.450
Head circumference − 0.018 0.089 0.951 0.006 0.995 0.005 1.020
Head length 0.203 0.045 0.554 0.342 0.652 0.348 1.990
Face length − 0.086 − 0.026 0.208 0.760 0.683 0.317 1.180
Nose length 0.094 0.232 − 0.275 0.578 0.428 0.572 1.860

Table 7 
Inter-factor correlation matrix estimated with a principal axis factor analysis 
based on cognitive and morphometric indicators collected from the Georgia 
Twin Study. Correlations below the diagonal, significances above. ML =
Maximum Likelihood factor. CIs in parentheses.

ML1 ML2 ML3 ML4

ML1 1.000 <0.05 <0.05 <0.05
ML2 0.243 (0.165, 

0.318)
1.000 <0.05 <0.05

ML3 0.110 (0.029, 
0.189)

0.494 (0.430, 
0.553)

1.000 <0.05

ML4 0.101 (0.020, 
0.181)

0.340 (0.266, 
0.410)

0.280 (0.204, 
0.353)

1.000
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others can be interpreted as dimensions of general growth (incorporating 
measures of weight, height, and head breadth), craniometric proportions 
(incorporating measures of head circumference and length), and facial 
proportions (incorporating face and nose length). These dimensions 
suggest the existence of distinct developmental modules that can 
accommodate tradeoffs among their constituent subdomains. Tradeoffs 
among subdomains associated with different developmental modules on 
the other hand lack validity. Sorjonen et al. (2024) give the example of 
an apparently heritable tilt between nose length and spatial ability 
(shorter noses go with greater spatial ability) by way of evidencing the 
spuriousness hypothesis, but based on Table 6, it is clear that nose length 
exhibits minimal cross-loading onto the GCA factor, to which spatial 
ability belongs (ML1; λ = 0.094). Similarly, spatial ability does not cross- 
load onto the facial proportions factor to which nose length belongs 
(ML4; λ = − 0.076). These findings indicate that theoretical care must be 
taken when designating tilts, as these would only be expected to be 
meaningful when they involve specific measures that share a common 
latent source (suggesting affinity for a common developmental module).

It should be noted that there are significant (and positive) inter- 
factor correlations among these dimensions, but these do no cohere 
into a distinct superordinate latent variable. Such correlations may 
reflect the action of pleiotropic genetic variants (such as deleterious 
mutations), which cut across these developmental modules, yielding 
“global” variation in condition. Models positing the existence of global 
fitness or system integrity have been proposed as explanations for the 
existence of correlations between factors such as fluctuating asymmetry 
(the variance in positioning of ideally bilaterally symmetric anatomical 
markers), height, health outcomes, and GCA (Deary, 2012; Houle, 2000; 
Miller, 2000). The higher-order positive inter-factor correlations noted 
in GTS might therefore reflect general condition dependence. Alterna
tively, as was noted in the introduction, even though the psychometric 
Super-K factor is nomologically broad (incorporating general factors of 

personality, covitality, and behavioral strategy) it seems to be (mostly) 
independent of GCA, suggesting the existence of developmental modules 
that may be partially or even wholly independent of one another. As
sociations between psychometric and biometric LH indicators seem also 
to be highly inconsistent, with self-reports of developmental milestones 
(such as pubertal timing) seeming to exhibit little association with 
psychometric measures of “high-K" or “slow” LH strategy (Copping 
et al., 2014; cf. Figueredo et al., 2015); but certain exceptions have been 
noted, such as a large-magnitude positive association between semen 
quality and Mini-K score (r > 0.6; Barbaro et al., 2018). Biometric and 
psychometric LH variables might be predicted to exhibit at least some 
degree of independence from one another in humans on the basis that 
slow LH is associated generally with weaker correlations among LH 
components, suggesting that LH is more modular in these cases 
(Figueredo et al., 2013; Woodley of Menie et al., 2015, 2021). The 
different morphometric investment domains identified in the GTS may 
therefore result from this process of modularization selection, with the 
higher-order inter-factor correlations reflecting the influence of another 
kind of genetic effect, specifically relational loci (which regulate the 
strength of the genetic correlations between traits via gene-by-gene and 
gene-by-environment interactions). The signature of these would be in 
the presence of positive inter-factor correlations without the existence of 
a higher-order unitary LH factor (see Woodley of Menie et al., 2021, p. 
226). Future research should focus on the use of parallel analysis to 
explore the factor structure in the broader GTS database, as this includes 
numerous variables covering other domains (such as personality).

Sorjonen et al. (2024) identified potential flaws in the work of Coyle 
et al. (2023). They present a seemingly solid case to the effect that the 
apparent heritabilities of the reported tilts is spurious, reflecting the 
heritabilities of their constituent abilities. But their “spuriousness hy
pothesis” faced empirical anomalies (such as the findings of Kato & 
Scherbaum, 2023) and led to new predictions concerning the nature of 
tilts, and the specific factors that may generate them. By theoretically 
merging tilt research with LH theory a series of new hypotheses have 
now been advanced and confirmed, which in turn have offered new 
insights into the relationship between tilts, behavior-genetic variance 
components, and broader developmental modules. At its core, a tilt is 
simply the result of a tradeoff that takes place between two competing 
investment domains within the context of a broader developmental 
module. The “essence” of cognitive tilts (in particular) appears to be an 
LH dimension (CD-IE) which either enhances or inhibits (depending on 
the individual’s LH speed) the development of specialized abilities. 
Those with slower LH have a greater propensity toward the cultivation 
of narrow abilities, which necessitates tradeoffs among them, given 
finite bioenergetic resources. The CD-IE dimension is heavily condi
tioned by shared environmentality (consistent with models positing 
both active effects and adaptive calibration given perceptions of envi
ronmental stability). These may in fact be among the largest C variances 
ever reported in the behavior-genetic literature in adults. Remarkably, C 
is the dominant variance component among older participants, sug
gesting effects of development that endure throughout the life course. 
The tilt residuals also exhibit small heritabilities (up to 14 %), sug
gesting some degree of biological preparedness for developmental 
plasticity, again consistent with explicit predictions from LH theory 
(Woodley of Menie et al., 2015).

We thank Sorjonen et al. (2024) for their contribution to this debate, 
which has initiated a new and hopefully very productive phase of 
growth in the tilt research program.
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Fig. 4. Principal axis factor analysis demonstrating the presence of four latent 
dimensions corresponding to a general cognitive ability factor and three 
morphometric factors. Note: Head B: Head breadth; Head C: Head circumfer
ence; Head L: Head length; Face L: Face length; Nose L: Nose length. Cross 
loadings are not displayed.
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