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Abstract

The multiple imputation two-stage (MI2S) approach holds promise for evaluating the
model fit of structural equation models for ordinal variables with multiply imputed
data. However, previous studies only examined the performance of MI2S-based
residual-based test statistics. This study extends previous research by examining the
performance of two alternative test statistics: the mean-adjusted test statistic (TM)
and the mean- and variance-adjusted test statistic (TMV). Our results showed that the
MI2S-based TMV generally outperformed other test statistics examined in a wide
range of conditions. The MI2S-based root mean square error of approximation also
exhibited good performance. This article demonstrates the MI2S approach with an
empirical data set and provides Mplus and R code for its implementation.
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In structural equation modeling (SEM), a primary challenge is the handling of incom-

plete data of ordinal variables, a situation frequently encountered in educational and

psychological sciences. Two widely used modern methods for handling missing data

are full information maximum likelihood (FIML) and multiple imputation (Enders,

2023; Schafer & Graham, 2002). For researchers dealing with ordinal data, multiple

imputation may be a preferable choice over FIML, partly because the distributional

assumptions required by multiple imputation are considerably less restrictive (Little

& Rubin, 2020; Rubin, 1987). In addition, multiple imputation facilitates the incor-

poration of auxiliary variables, thus making the missing at random (MAR) assump-

tion more plausible (Collins et al., 2001). Furthermore, multiple imputation can

provide commonly reported model fit statistics, such as chi-square test statistics and

root mean square error of approximation (RMSEA; Browne & Cudeck, 1993).

However, very limited research has been done on evaluating the model fit in SEM

that utilizes multiple imputation to handle incomplete data of ordinal variables.

Existing studies have predominantly focused on the standard multiple imputation

approach (e.g., Asparouhov & Muthén, 2022; Liu & Sriutaisuk, 2020; Shi et al.,

2020, 2023; Teman, 2012). In our paper, we focus on the multiple imputation two-

stage (MI2S) approach proposed by Chung and Cai (2019; see also Lee & Cai,

2012), which has shown promise for its efficiency.

Before we introduce the MI2S approach, it is helpful to review the three phases of

the standard multiple imputation approach in SEM (Enders, 2022; Rubin, 1987). The

first phase is the imputation phase, where missing data are imputed m times, leading

to m imputed data sets. The second phase is the analysis phase, where the hypothe-

sized model is fitted to each of these m imputed data sets, resulting in m distinct sets

of results, including parameter estimates, standard errors, and model fit statistics.

Finally, the third phase is the pooling phase, where the m sets of results are combined

into a single set of imputation-based results. Although the standard multiple imputa-

tion approach generally performs well under MAR (Asparouhov & Muthén, 2010b,

2022; Shi et al., 2020; Teman, 2012), it is computationally intensive due to the

repeated model fitting. Moreover, it is not straightforward to derive a single set of fit

statistics, such as the chi-square test statistic, from these m imputations (see Liu &

Sriutaisuk, 2020; Shi et al., 2020).

The MI2S approach simplifies the process of multiple imputation in SEM by

eliminating the need for repeated model fitting. Specifically, it requires fitting the

hypothesized model only once to the average polychoric correlations and thresholds,

along with a corrected asymptotic covariance matrix that accounts for the uncertainty

from missing data. This approach is considerably more efficient than the standard

multiple imputation approach, especially when dealing with numerous imputed data

sets or many hypothesized models or both. Moreover, a single package of fit statis-

tics is readily available for model evaluation. This includes the residual-based test

statistics (Browne, 1984; Yuan & Bentler, 1998) recommended by Chung and Cai

(2019). However, a recent study found that these test statistics may not perform well

in many practical scenarios, such as when m� 100 imputed data sets (Liu et al.,
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2021). Consequently, the obtained results may not be accurate, highlighting the need

for alternative test statistics.

To address this issue, our paper assesses the performance of two scaled test statis-

tics from the MI2S approach: the mean-adjusted test statistic (Satorra & Bentler,

1994) and the mean- and variance-adjusted test statistic (Asparouhov & Muthén,

2010a), both of which will be discussed in detail below. In addition, this study

explores the feasibility of employing the MI2S-based RMSEA to evaluate model fit.

The remaining sections are organized as follows. We begin with a brief review of

SEM with ordinal data, focusing on model estimation and model fit statistics. Then,

we describe the MI2S approach for ordinal data and discuss the potential of scaled

test statistics within the MI2S framework. This is followed by a simulation study to

assess the performance of MI2S-based fit statistics. Finally, we present an empirical

example and a discussion of our findings.

SEM With Ordinal Data

Observed ordinal data can be viewed as a result of categorizing a theorized underly-

ing continuous response variable by thresholds, and the correlation between a pair of

theorized normally distributed continuous latent variables is measured by the poly-

choric correlation. Once the polychoric correlations, thresholds, and their asymptotic

covariance matrix (which contains the information about the asymptotic distribution

of parameter estimates) are estimated from the data (Olsson, 1979), the hypothesized

model is fitted to these summary statistics. In this so-called limited information

method (Forero & Maydeu-Olivares, 2009; Wirth & Edwards, 2007), model para-

meters are estimated by minimizing the least squares fit function,

FLS = r � r̂ð Þ
0
W�1 r� r̂ð Þ, where r is a vector of nonredundant elements of the sam-

ple polychoric correlation matrix and thresholds, r̂ is the corresponding vector of

nonredundant elements of the model-implied polychoric correlation matrix and

thresholds, and W is a weight matrix, of which the specific form needs to be deter-

mined by the researcher. There are three common choices available for the matrix

W, leading to three different least squares estimators. In weighted least squares

(WLS), W is specified as the entire asymptotic covariance matrix. In diagonally

weighted least squares (DWLS), W is specified as a diagonal matrix whose diagonal

elements are taken from the diagonal of the asymptotic covariance matrix. In

unweighted least squares (ULS), W is specified as an identity matrix.

After parameter estimation, one way to test whether the hypothesized model fits

the data is to use the conventional chi-square test statistic, calculated as the product

of sample size (N) and the minimum of the fit function, T = NFLS . The T statistic is

referenced to a chi-square distribution with degrees of freedom equal to the difference

between the number of nonredundant sample polychoric correlations and thresholds

and the number of estimated parameters in the model. Among the three estimators,

only WLS provides T that asymptotically follows a chi-square distribution with the

model degrees of freedom. However, the sample size required to accurately estimate
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the asymptotic covariance matrix is exceedingly large. As such, WLS often leads to

convergence failures, biased parameter estimates, and inflated test statistics unless

the sample size is sufficiently large relative to the model size (e.g., N = 500 for a

model with a total of five items; Flora & Curran, 2004; Yang-Wallentin et al., 2010).

Therefore, WLS is rarely recommended in current practice.

To reduce the computational burden of WLS, DWLS/ULS avoids the inversion of

the entire asymptotic covariance matrix. As a result, the chance of encountering con-

vergence failure or improper solution, particularly when the sample size is small

(Flora & Curran, 2004). However, the conventional test statistic T from DWLS/USL

does not follow a chi-square distribution because the weight matrix is intentionally

misspecified (i.e., W is not the entire asymptotic covariance matrix), although the

parameter estimates remain asymptotically unbiased (Savalei, 2014).

The scaled test statistics have been developed to rescale the conventional test sta-

tistic to better approximate a chi-square distribution with the model degrees of free-

dom. These statistics are arguably the most popular in the context of SEM with

categorical variables. A certain variant of these statistics has been implemented as

the default in major SEM software packages, such as lavaan (Rosseel, 2012) and

Mplus (Muthén & Muthén, 1998–2017).

One commonly used scaled test statistic is Satorra and Bentler’s (1994) mean-

adjusted test statistic which is calculated as

TM = cT , ð1Þ

where T = NFLS is the conventional test statistic given a certain least squares estima-

tor, c = df

tr UGð Þ is a scaling factor, df is the model degrees of freedom, G is the asympto-

tic covariance matrix, U = W�1 �W�1D̂ D̂
0

W�1D̂
� ��1

D̂
0

W�1 is the residual weight

matrix, W is the weight matrix used in the estimation, and D̂ is the matrix of model

derivatives. As discussed in Satorra and Bentler (1994), the mean of the asymptotic

distribution of T is consistently estimated by tr UGð Þ. By employing this mean in the

scaling factor, T is rescaled to TM such that the expected value of TM matches the

theoretical mean of the target chi-square distribution, which is equal to df. In other

words, this rescaling ensures that the mean of TM is the same as the mean of the chi-

square distribution it aims to approximate. However, TM does not adjust the distribu-

tion of T to match higher moments, such as variance, skewness, and kurtosis.

Another commonly used scaled test statistic is Asparouhov and Muthén’s (2010a)

mean- and variance-adjusted test statistic which is calculated as

TMV = aT + b, ð2Þ

where a =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
df

tr (UG)2ð Þ

r
and b = df � atr UGð Þ are scaling and shifting factors,

respectively, U and G are the same as in Equation (1). tr UGð Þ and 2tr (UG)2
� �

consistently estimate the mean and the variance of the asymptotic distribution of T ,

respectively (Satorra & Bentler, 1994). a and b are chosen so that the expected value
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of TMV is df and its variance is 2df (Asparouhov & Muthén, 2010a). This combina-

tion of rescaling and shifting ensures that TMV closely reflects both the theoretical

mean (df) and the theoretical variance (2df) of the target chi-square distribution.

Scaled test statistics can be obtained from both DWLS and ULS. Simulation stud-

ies found that the relative performance between the DWLS- and ULS-based scaled

test statistics (e.g., DWLS-based TMV versus ULS-based TMV ) was largely similar.

However, ULS-based test statistics could perform slightly better under challenging

conditions, such as when sample sizes were small (N� 200) or with severely asym-

metric thresholds (Forero et al., 2009; C.-H. Li, 2016; Savalei & Rhemtulla, 2013;

Shi et al., 2018; Yang-Wallentin et al., 2010). When comparing TM and TMV , previ-

ous studies found that TMV generally produced Type I error rates close to the nominal

level, particularly with symmetric thresholds and larger sample sizes, whereas TM

consistently yielded higher Type I error rates than TMV (Asparouhov & Muthén,

2010a; DiStefano & Morgan, 2014). However, the difference between TM and TMV

can be substantial when the model contains a large number of items. For example,

one study showed that, when fitting a model with 60 items, TMV was extremely con-

servative, whereas TM was somewhat inflated. Nonetheless, with moderate or large

sample sizes (N = 500 or 1,000) and high factor loadings (.80), the ULS-based TM

performed adequately (Shi et al., 2018). Given these findings, we focus on ULS-

based TM and TMV in our study.1

In addition to the scaled test statistics, another way to evaluate the global model fit

following DWLS/ULS is to employ Browne’s (1984) residual-based test statistic:

TB = N r� r̂ð Þ
0
UG r� r̂ð Þ, ð3Þ

where r� r̂ is the model residuals, UG = G�1 � G�1D̂ D̂
0

G�1D̂
� ��1

D̂
0

G�1 is the resi-

dual weight matrix, G is the asymptotic covariance matrix, and D̂ is the matrix of

model derivatives. TB is based on the distribution of residuals, which has an asymp-

totic chi-square distribution even when DWLS/ULS is used. Unfortunately, TB tends

to be inflated in finite-sample sizes, primarily because its calculation involves the

inversion of the entire asymptotic covariance matrix, which can be inaccurate when

the sample size is not sufficiently large. To avoid the inflated value of TB, Yuan and

Bentler (1998) proposed a corrected version of the residual-based test statistic2:

TYB = TB=½1 + NTB= N � 1ð Þ2�: ð4Þ

This correction shrinks TB as N decreases. Previous simulations showed that the per-

formance of TYB was generally good, but it could be lower than the nominal value

with small sample sizes (Yuan & Bentler, 1998). Therefore, TYB is often preferred

over TB, unless a very large sample size is available, where TB and TYB are equiva-

lent. In our study, we include both TB and TYB because both have been examined in

previous studies using the MI2S approach (e.g., Chung & Cai, 2019).

All the chi-square test statistics (i.e., TM , TMV , TB, and TYB) reviewed above test

the hypothesis that the population and model-implied population moment structure
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are exactly equal. In practice, a chi-square test statistic is always significant for mod-

els with large sample sizes. As such, additional measures of fit are often provided

(Jackson et al., 2009). In this study, we also include the RMSEA because it is not

only widely reported (e.g., 73% of empirical studies; Zyphur et al., 2023) but also has

a variant version specifically designed for SEM with ordinal variables (Lai, 2020).

Xia and Yang (2019) demonstrated that employing the traditional RMSEA, devel-

oped for continuous data, in a least-squares estimation with ordinal variables tended

to result in a lower RMSEA value, suggesting a better fit between the model and data

than there actually was.

The RMSEA quantifies the amount of discrepancy between the population and the

hypothesized model as the average amount of discrepancy per constrained parameter.

The RMSEA is defined as follows:

RMSEA =

ffiffiffiffiffi
F

df

s
, ð5Þ

where F is the fit function and df is the model degrees of freedom. A bias-corrected

sample estimate for F under ULS is F̂BC = …̂
0

…̂ � 1
2n

tr QGð Þ, where …̂ is a vector of resi-

duals, G is the asymptotic covariance matrix, and Q is a matrix of model second deri-

vatives. More technical details can be found in Lai (2020).

In summary, DWLS/ULS is frequently employed when conducting SEM with

ordinal data. However, the conventional chi-square test statistic does not follow a

chi-square distribution under DWLS/ULS. As a result, the scaled test statistics and

the residual-based test statistics are preferred. In addition, approximate fit indices

such as the RMSEA are also recommended to determine to what extent the hypothe-

sized model fits the data. Yet, the presence of missing data, particularly in the con-

text of ordinal data, adds additional complexity to this process. Next, we discuss how

these fit statistics are derived within the MI2S approach.

Two-Stage Multiple Imputation

Chung and Cai (2019) proposed the MI2S approach as an innovative inferential pro-

cedure for SEM with ordinal variables based on multiple imputation. This approach

differs from the standard multiple imputation procedure in the sense that it does not

require the pooling of m sets of fit statistics, such as m chi-square test statistics, from

repeated fitting of the hypothesized model.

The MI2S approach consists of two stages. In the first stage, m imputed data sets

are created from a single data set with missing data. Then, m sets of r (a vector of the

nonredundant elements of the sample polychoric correlation matrix and thresholds)

and G (the asymptotic covariance matrix) are calculated from m imputed data sets.

These m sets of r and G are then combined using Rubin’s (1987) rules. Specifically,

a vector of pooled polychoric correlations and thresholds is calculated as follows:
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�r =
1

m

Xm

i = 1
ri: ð6Þ

As can be seen, �r is just the average of the m vectors of r. Next, the total asymp-

totic covariance matrix, which contains the estimates of the asymptotic covariance

matrix that have been corrected for the additional uncertainty due to missing data, is

calculated as follows:

~G = GW + GB +
GB

m
, ð7Þ

where GW = 1
m

Pm
i = 1 Gi is the within-imputation asymptotic covariance matrix, which

is simply the average over m sets of the asymptotic covariance matrix, and

GB = 1
m�1

Pm
i = 1 ri � �rð Þ ri � �rð Þ

0
is the between-imputation asymptotic covariance

matrix, which represents the additional variability due to the missing data.

In the second stage, �r and ~G, which are consistent estimates of r and G, serve as

the input for the least squares fit function. That is, the hypothesized model is fitted to

the pooled polychoric correlations and thresholds using DWLS/ULS. As the hypothe-

sized model is fitted only once, a single set of results is readily available. This set

includes the MI2S versions of TM , TMV , TB, and TYB, denoted as ~TM , ~TMV , ~TB, and
~TYB, respectively. The calculations of the MI2S-based test statistics mirror that of

their complete data counterparts given in Equations 1 to 4. Similarly, approximate fit

indices can be obtained in a similar fashion.

Previous studies have examined the performance of ~TB and ~TYB. Chung and Cai

(2019) found that, with a relatively small model size (a three-factor model with nine

items) and a sufficient number of imputed data sets (m = 60 for high missing data

rates), Type I error rates of ~TB and ~TYB were close to the nominal level when the sam-

ple sizes were large (N� 1,000), regardless of the number of categories, missing

data rate (up to 40% on a third of the analysis variables), and missing data mechan-

isms (missing completely at random [MCAR] or MAR). With smaller sample sizes

(N� 500), ~TB was often too high, while ~TYB generally performed well (Chung & Cai,

2019). However, with a larger model size (15 items), Liu et al. (2021) found that ~TB

was highly inflated even when the sample size was large (N = 1,000), while the per-

formance of ~TYB did not always improve with an increased sample size. In addition,

both ~TB and ~TYB were clearly more inflated with m = 100 than m = 300 or higher in

many conditions, suggesting that a large number of imputed data sets is required for

residual-based test statistics (Liu et al., 2021).

The likely cause of the suboptimal performance of ~TB and ~TYB in some contexts

can be partially attributed to the known instability of ~G (Enders, 2022). Moreover,

even without multiple imputation, these residual-based test statistics involve the

inversion of G (see Equation 3), which may encounter some numeric challenges simi-

lar to those when utilizing the WLS estimator (Wirth & Edwards, 2007). Particularly,

for small sample sizes, G exhibits considerable sampling variation, and its inversion

could become infeasible (Browne, 1984). In this study, we focus on the performance
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of ~TM and ~TMV . These scaled test statistics could offer a viable alternative as they do

not require the inversion of ~G. When calculating ~TM and ~TMV , the information in ~G is

condensed into one or two values (as shown in Equations 1 and 2). These values are

then used to rescale the MI2S-based conventional test statistic.

In summary, several scaled test statistics and residual-based test statistics can be

used as tests of model fit when the MI2S approach is applied. However, when a large

number of imputed data sets is not feasible, the residual-based statistics may not be

trustworthy. Although the scaled test statistics are widely reported and show promise,

their performance within the MI2S framework has yet to be examined. To fill this

gap, the primary objective of this study is to evaluate the performance of ~TM and
~TMV . In addition, since previous studies have not evaluated the performance of any

MI2S-based approximate fit indices, this study also investigates the performance of

the MI2S-based RMSEA.

Simulation Study

To examine the performance of MI2S-based fit statistics, we conducted a simulation

study using a 2 (number of response categories: C = 2, 5) 3 2 (threshold distribution:

symmetric thresholds, asymmetric thresholds) 3 3 (sample size: N = 250, 500, 1,000)

3 2 (missing data mechanism: MAR1, MAR2) 3 2 (missing data rate: 20%, 40%) 3

4 (number of imputed data sets: m = 20, 50, 100, 300) 3 4 (analysis model: one cor-

rect model and three incorrect models) full factorial design.

For each combination of the first four factors, 1,000 complete data sets were gen-

erated.3 Then, two incomplete data sets with different missing data rates were gener-

ated from each complete data set. For each incomplete data set, we generated a total

of m = 300 imputed data sets. The imputed data sets were then used in four different

sets of analyses that were based on m = 20, 50, 100, and all 300 imputed data sets.

Each set of analyses consisted of four analysis models. Complete data were also

analyzed.

We used Mplus 8.6 for multiple imputation and the lavaan package in R for

data analysis. Computer scripts used for our simulation are available on the

Open Science Framework (OSF) at https://osf.io/64yjv/?view_only=

1edc2972045243f09a0a323c1774c335.

Data Generation

The data-generating model was a three-factor confirmatory factor analysis (CFA)

model with six items per factor (X1–X6, M1–M6, and Y1–Y6). All factor loadings and

error variances were set to .80 and .36, respectively (i.e., the variances of all latent

continuous variables underlying the ordinal observed items were 1). The correlations

between the three factors were set to .40 (medium-high effect size). These values are

comparable with Chung and Cai (2019), except that the number of items was doubled

so that the impact of the number of imputed data sets and other factors can be clearly
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observed. A review of 194 studies using CFA found that the median numbers of

observed items and latent factors were 17 and three, respectively (Jackson et al.,

2009). Thus, the model we used (three factors with 18 items) was common and could

be considered a medium size.

To simulate the data, we first generated the underlying continuous response vari-

ables from a multivariate normal distribution. Then, continuous variables were cate-

gorized by thresholds (described below), resulting in observed ordinal items.

MAR Data Generation. The missing data were generated using two MAR mechan-

isms: MAR1 and MAR2.4 Supplemental Table S1 in the online supplemental materi-

als summarizes key similarities and differences between the two MAR mechanisms.

MAR1. Missing values were imposed on every item in the last factor (Y1–Y6), that

is, 33.3% of items were incomplete. A case with incomplete data had no data on all

six Y items. The missingness in Y1–Y6 was determined by the sum of the first 12 items

(X and M items). Specifically, we sorted the data set in ascending order by the sum

scores and deleted the first 20% or 40% of observations on Y1–Y6, meaning that miss-

ing data were perfectly determined by the sum scores, with low scores corresponding

to missing data. This MAR data generation is similar to several studies investigating

SEM with incomplete ordinal data (e.g., Shi et al., 2020), resulting in a monotone

missing data pattern. This pattern is common in longitudinal studies (e.g., drop-out

scenarios).

MAR2. Similar to MAR1, six items contain missing values, but these six items

were not in the same factor. In MAR2, missing values were imposed on M1–M3 and

Y1–Y3. An auxiliary variable, drawn from a standard normal distribution (M = 0,

SD = 1) and correlated with M1–M3 and Y1–Y3 before categorization at r = .40, was

the cause of missingness. The missingness was determined according to a logistic

regression model with McKelvey and Zavoina’s (1975) pseudo-R2 value of .40, with

parameters b0 = 21.91 and b1 = 1.50 for a 20% missing data rate, and b0 = 20.57

and b1 = 1.50 for a 40% missing data rate. Given these parameters, higher values of

the auxiliary variable were associated with higher probability of having missing data.

Unlike MAR1, the cause of missingness was not perfectly related to the occurrence

of missing data. This resulted in a general missing data pattern where missing values

occurred in a seemingly random manner. This MAR data generation resembles what

has been used in previous simulation studies to examine the performance of test sta-

tistics in SEM with incomplete ordinal data (e.g., Liu & Sriutaisuk, 2020).

Multiple Imputation. We used multiple imputation based on an unrestricted variance-

covariance model implemented in Mplus (Asparouhov & Muthén, 2022). All items

were included in the imputation model. Specifically, for MAR1, the model included

X1–X6, M1–M6, and Y1–Y6. For MAR2, the model additionally included the auxiliary

variable along with X, M and Y items. By including the cause of missingness (X and

M items for MAR1 and the auxiliary variable for MAR2) in the imputation model,

multiple imputation is unbiased under MAR (Enders, 2022). To evaluate the
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convergence of MCMC estimation, we utilized the highest potential scale reduction

(PSR; Gelman et al., 2013). The burn-in iterations ranged from 2,000 to 38,000

across missing data generation conditions (see Supplemental Table S2).

Number of Response Categories and Threshold Distribution

The same set of thresholds was used to discretize all underlying continuous variables,

resulting in either binary (C = 2) or polytomous (C = 5) items with symmetric or

(severely) asymmetric thresholds. The thresholds were chosen so that the percentages

of cases in each category of each item before imposing missing data would be 50%

and 50% (symmetric) or 85% and 15% (asymmetric) when C = 2; and 7%, 24%,

38%, 24%, and 7% (symmetric) or 52%, 15%, 13%, 11%, and 9% (asymmetric)

when C = 5 (see Supplemental Table S3 for threshold values). These threshold values

are the same as those used in previous studies (e.g., Rhemtulla et al., 2012). We chose

two and five categories because both are popular (e.g., responses coded as 0 or 1, 5-

point Likert-type scales). Moreover, the effect of discretization is greatest with few

categories, and items with more than five categories can sometimes be treated as con-

tinuous (Rhemtulla et al., 2012). It is noteworthy that MAR1 mitigated the extremity

of the asymmetry, whereas MAR2 exacerbated it. Supplemental Figures S1 and S2

graphically show the distributions of an item with and without missing data by the

number of response categories and threshold distribution under MAR1 and MAR2,

respectively.

Sample Size

Three sample sizes were investigated: N = 250, 500, and 1,000, representing rela-

tively small, medium, and large samples. We did not consider smaller sample sizes

despite their high prevalence because they often yielded high convergence failures

and biased parameter estimates, particularly with binary data and asymmetric thresh-

olds, even with complete data (e.g., Forero & Maydeu-Olivares, 2009; Forero et al.,

2009; Shi et al., 2018). With missing data, one study had to discard results in N =

150 conditions due to severe convergence problems (Jia & Wu, 2019).

Missing Data Rate

Similar to Chung and Cai (2019), we examined two missing data rates: low (20%)

and high (40%).

Number of Imputed Data Sets

Simulation studies on missing data in SEM with ordinal variables often set m between

20 and 100 imputed data sets (e.g., Chung & Cai, 2019; Jia & Wu, 2019; Shi et al.,

2020). We generated m = 300 imputed data sets for each incomplete data set. To gain
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a better understanding of the effect of the number of imputed data sets on test statis-

tics, we examined results based on 20, 50, 100, and all 300 imputed data sets, repre-

senting a small, moderate, large, and extremely large number of imputed data sets.

Analysis Model

We examined one correctly specified model and three incorrectly specified models.

The correct model was the same as the data-generating model; that is, a three-factor

CFA (X, M, and Y) with six items per factor (df = 132). The first incorrect model

(ICM1) had the same number of factors and items, but a full latent mediation model,

where the direct effect was fixed at 0, was specified (df = 133). We chose this model

to examine the power to detect a relatively small model misspecification with the

population RMSEA of 0.065. The second incorrect model (ICM2) was a three-factor

CFA model with 18 items, but X6 was erroneously loaded on the Y factor, rather than

the X factor (df = 132). Finally, the third incorrect model (ICM3) was a two-factor

CFA model, with one factor measured by X1 to X6 and the other by M1–M6 and Y1–

Y6 (df = 134). ICM2 and ICM3 had relatively large and very large model misspecifi-

cations, with the population RMSEA values of 0.095 and 0.134, respectively.

Model Fit Statistic

We obtained ~TM , ~TMV , and ~TB, as well as their complete data counterparts (TM , TMV ,

and TB) from lavaan. ~TYB and TYB were manually computed. We used Lai’s (2020)

RMSEA instead of the traditional RMSEA. The complete data RMSEA and MI2S-

based RMSEA were calculated using a custom R script, provided by Lai (2020). As

Lai’s (2020) RMSEA was developed for ULS, all analysis models were fitted using

the ULS estimator.

Simulation Results

We summarize the results with respect to five outcomes: (a) convergence failures

and improper solutions; (b) relative bias in parameter estimates; (c) Type I error

rates; (d) statistical power; and (e) means and coverage rates for the RMSEA.

Although our focus is on test statistics, we briefly present relative bias in parameter

estimates for the correct model to show that MI2S yields reasonable estimates under

MAR. Additional results, such as the distributions of the test statistics in terms of

means and variances, as well as those results omitted in the main text, can be found

in the online supplemental materials.

Convergence Failures and Improper Solutions

There was no sign of a severe convergence problem. All MCMC chains for multiple

imputation converged, with the highest PSR of 1.05, which was below the widely

Sriutaisuk et al. 11



used cutoff of PSR \ 1.10 (Gelman et al., 2013). However, around 2% of imputed

data sets under MAR1 (i.e., monotone missing data pattern) and less than 1% under

MAR2 (i.e., general missing data pattern) with C = 5, N = 250, symmetric thresholds,

and 40% missing data were not included in our analyses. The reason to eliminate

these imputed data sets was that they contained item(s) with fewer observed response

categories (four rather than five categories) than specified in the data generation

model, resulting in a different model df and different theoretical distributions of the

test statistics compared with other replications in the same condition.

For analyses of imputed data, at least 97% of the replications converged to

admissible solutions across most conditions (see Table 1). However, in conditions

with C = 2, N = 250, and asymmetric thresholds, the rate of proper solutions dropped

to 95% under MAR1 with 40% missing data, 94% under MAR2 with 20% missing

data, and 85% under MAR2 with 40% missing data. Conditions with fewer response

categories, asymmetric thresholds, smaller sample sizes, higher rates of missing data,

and MAR2 mechanism generally posed more challenges for convergence. All impro-

per solutions were attributed to a non-positive definite covariance matrix (e.g., nega-

tive estimated residual variances) and were thus excluded.

Relative Bias in Parameter Estimates

The relative bias for a specific parameter estimate was calculated as RB = û�u
u

, where

û is the parameter estimate from a given replication, and u is the population value.

The absolute value of the mean RB less than 10% was considered acceptable (Flora

& Curran, 2004). For each combination of the number of response categories, thresh-

old distribution, sample size, and missing data rate, we examined the mean RB across

replications for the correctly specified model using m = 300 imputed data sets. Given

the minimal differences in RB between the two MAR mechanisms, the results were

reported collectively. Table 1 shows the highest mean RB for factor loadings, covar-

iances, and thresholds.

First, factor loadings were acceptable across conditions with m = 300, with the

highest mean RB being 24.0%. Second, factor covariances were also acceptable,

showing the highest mean RB of 9.8%. However, threshold values were only partially

acceptable, with the highest mean RB of 236%. The excessively high mean RB val-

ues originated from conditions with C = 5 and asymmetric thresholds. In these condi-

tions, one population threshold value was near zero (i.e., 0.05; see Supplemental

Table S3), meaning that even a slight deviation could result in a substantial relative

bias. Upon excluding this near-zero population threshold value, all threshold values

were acceptable, with the highest mean RB of 25.1%.5

Empirical Type I Error Rates for the Correct Model

We defined the empirical Type I error rate of a test statistic in a certain condition as

the proportion of non-excluded replications in that condition that produced a

12 Educational and Psychological Measurement 00(0)



significant (p \ .05) test statistic when the model was correctly specified. The values

within the range of [.025, .075] were considered acceptable (Bradley, 1978).

~TM and ~TB. Figures 1 and 2 show the Type I error rates of ~TM and ~TB under MAR1

and MAR2, respectively. As illustrated in the figures, the Type I error rates for ~TM

and ~TB, along with their complete data counterparts, were inflated across all condi-

tions, regardless of the number of response categories, threshold distribution, sample

size, missing data mechanism, missing data rate, and number of imputed data sets.

For ~TB, there was a pronounced trend of inflated Type I error rates when m was insuf-

ficient, particularly with a high proportion of missing data, resulting in Type I error

rates that considerably exceeded the nominal level of .05. This inflation was reduced

as m increased, showing marked improvement when m reached 300. Similarly, the

impact of N was noticeable, with larger sample sizes resulting in lower rejection rates

Table 1. Highest Mean Relative Biases at m = 300.

#Rep Highest mean relative bias

C TD N Miss MAR1 MAR2 Loading Covariance Threshold Thresholda

2 sym 250 20 994 1000 –.007 .029 — —
40 980 990 –.011 .053 — —

500 20 1000 1000 –.004 .012 — —
40 999 1000 .007 .033 — —

1000 20 1000 1000 –.003 .006 — —
40 1000 1000 .005 .008 — —

asym 250 20 972 936 –.017 –.035 .016 .016
40 954 852 –.040 .098 .038 .038

500 20 1000 1000 .008 .013 –.010 –.010
40 999 979 .009 .046 –.019 –.019

1000 20 1000 1000 .014 .010 –.008 –.008
40 1000 998 .019 .027 –.015 –.015

5 sym 250 20 1000 1000 –.006 .009 –.020 –.020
40 977 996 –.008 –.017 –.038 –.038

500 20 1000 1000 –.003 .006 .013 .013
40 1000 1000 –.006 .006 –.021 –.021

1000 20 1000 1000 –.002 –.005 .009 .009
40 1000 1000 –.004 .003 –.014 –.014

asym 250 20 1000 1000 –.008 .013 .170 –.018
40 999 1000 –.014 –.041 –.360 –.051

500 20 1000 1000 .007 .010 .133 –.017
40 1000 1000 .013 –.023 –.323 –.045

1000 20 1000 1000 .006 .005 .100 –.011
40 1000 1000 .013 –.008 .143 –.023

Note. Relative biases between 2.100 and .100 are bolded. Relative bias is not available when the

population threshold equals zero (conditions with C = 2 and symmetric thresholds). C = number of

response categories; TD = threshold distribution; sym = symmetric; asym = asymmetric; N = sample size;

Miss = missing data rate; #Rep = number of useable replications (up to 1,000).
aHighest relative bias among thresholds, excluding the near-zero (i.e., 0.05) population threshold value.
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for ~TB, approaching the expected nominal level. In contrast, ~TM exhibited a more sta-

ble pattern across m and other factors, yielding lower and more consistent rejection

rates. Nevertheless, both ~TM and ~TB showed inflated Type I error rates.

~TMV and ~TYB. Figures 3 and 4 show the Type I error rates of ~TMV and ~TYB under

MAR1 and MAR2, respectively. Overall, out of 192 Type I error rates for ~TMV pre-

sented in the two figures, 90% were within the acceptable range. As shown in Figure

3, the Type I error rates for ~TMV were well-calibrated to those obtained from com-

plete data, staying reasonably close to the nominal level, across all conditions under

the MAR1 mechanism, with only one exception (C = 5, N = 500, symmetric

Figure 1. Empirical Type I Error Rates of ~TM and ~TB Under MAR1.
Note. The results from corresponding complete data analyses are displayed at m = 0. The acceptable

range for the Type I error rate [.025, .075] is between the long-dashed lines. C = number of response

categories; TD = threshold distribution; sym = symmetric; asym = asymmetric; N = sample size; Miss =

missing data rate; m = number of imputed data sets.
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thresholds, 40% missing data, and m = 20) that yielded a slightly deflated Type I

error rate. Similarly, as depicted in Figure 4, the Type I error rates for ~TMV under

MAR2 closely matched those from complete data and were near the nominal level

when the missing data rate was 20%. However, some conditions with 40% missing

data under MAR2 exhibited inflated Type I error rates, particularly most conditions

with N = 250, as well as those with C = 2 and symmetric thresholds at N = 500. In

addition, the C = 2 conditions with N = 1,000 and asymmetric thresholds also yielded

inflated Type I error rates with 40% missing data under MAR2. These results gener-

ally suggested that ~TMV performed well in a wide range of conditions, but could be

suboptimal even when the number of imputed data sets appeared sufficient,

Figure 2. Empirical Type I Error Rates of ~TM and ~TB Under MAR2.
Note. The results from corresponding complete data analyses are displayed at m = 0. The acceptable

range for the Type I error rate [.025, .075] is between the long-dashed lines. C = number of response

categories; TD = threshold distribution; sym = symmetric; asym = asymmetric; N = sample size; Miss =

missing data rate; m = number of imputed data sets.
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especially at high missing data rates in certain combinations of sample size, threshold

distribution, and missing data mechanism.

Regarding ~TYB, only 12.5% of its Type I error rates fell within the acceptable

range, with the majority (67%) yielding deflated Type I error rates. The rejection

rates of ~TYB varied across and significantly influenced by the number of imputed data

sets; they tended to become more conservative as m increased, especially in condi-

tions with larger sample sizes, higher rates of missing data, and under the MAR2

mechanism. Moreover, due to the small sample adjustment, when N = 250, ~TYB con-

sistently led to Type I error deflation, except in some conditions with C = 2 and

Figure 3. Empirical Type I Error Rates of ~TMV and ~TYB Under MAR1.
Note. The results from corresponding complete data analyses are displayed at m = 0. The y-axis is

truncated to provide better visualization of the differences between the test statistics. As a result, highly

inflated test statistics are omitted, such as many of those in the C = 2 and asymmetric threshold

conditions. The acceptable range for the Type I error rate [.025, .075] is between the long-dashed lines.

C = number of response categories; TD = threshold distribution; sym = symmetric; asym = asymmetric;

N = sample size; Miss = missing data rate; m = number of imputed data sets.

16 Educational and Psychological Measurement 00(0)



asymmetric thresholds. Notably, its complete data counterpart, TYB, also tended to

perform poorly in most conditions, especially with smaller sample sizes. When the

data were binary and asymmetric, the Type I error rates of TYB were substantially

inflated. Our results generally showed that ~TYB, as well as its complete data counter-

part, did not perform well in terms of Type I error control in most of the conditions

examined.

In summary, our results revealed distinct patterns in the control of Type I error

rates by the MI2S-based test statistics. ~TMV yielded decent performance, maintaining

acceptable error rates in most conditions. Conversely, ~TM demonstrated a tendency

Figure 4. Empirical Type I Error Rates of ~TMV and ~TYB Under MAR2.
Note. The results from corresponding complete data analyses are displayed at m = 0. The y-axis is

truncated to provide better visualization of the differences between the test statistics. As a result, highly

inflated test statistics are omitted, such as many of those in the C = 2 and asymmetric threshold

conditions. The acceptable range for the Type I error rate [.025, .075] is between the long-dashed lines.

C = number of response categories; TD = threshold distribution; sym = symmetric; asym = asymmetric;

N = sample size; Miss = missing data rate; m = number of imputed data sets.
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to slightly inflate Type I error rates across all conditions. ~TB and ~TYB revealed more

pronounced limitations: ~TB was prone to severe error rate inflation while ~TYB often

resulted in overly conservative Type I error rates, especially in cases of smaller sam-

ple sizes. Furthermore, the performance of ~TB and ~TYB varied across m, suggesting

that a large number of m is required.

Statistical Power of ~TMV and ~TYB for the Incorrect Models

The statistical power of a test statistic in a condition was defined as the proportion of

non-excluded replications in that condition that produced a significant test statistic

(p \ .05) when fitting a misspecified model. Since the Type I error rates of ~TM and
~TB were inflated, resulting in artificially high power across all conditions, we chose

to focus only on the power of ~TMV and ~TYB. For the same reason, we omitted the

power of a certain test statistic when its corresponding Type I error rate in the m =

300 condition or in the complete data analysis was found to be inflated. For exam-

ple, the Type I error rates of TYB from complete data analyses were highly inflated

when C = 2 and thresholds were asymmetric. Consequently, we should not use

either TYB or ~TYB in these conditions. Although TMV from complete data analyses

yielded acceptable Type I error rates across all conditions, ~TMV showed inflated

Type I error rates in some conditions under MAR2. As such, the power of the ~TMV

in those conditions was omitted to avoid misinterpretation that might arise from the

artificially high power due to inflated Type I error rates.

Incorrect Model 1. Figures 5 and 6 summarize the statistical power of ~TMV and ~TYB

for ICM1 under MAR1 and MAR2, respectively. As shown in the figures, the power

of ~TMV remained relatively stable across m. In contrast, the power of ~TYB tended to

decrease as m increased, especially in conditions with larger sample sizes and a high

missing data rate. Our results showed that ~TYB consistently exhibited lower power

compared with ~TMV . Specifically, with N = 250, ~TMV had power above .20, whereas

the power of ~TYB was virtually nil. With N = 500, the power of ~TMV exceeded .50,

while ~TYB still rarely rejected ICM1, especially with larger m. Finally, with N =

1,000, ~TMV often had essentially 100% power, whereas ~TYB only reached power in

the range of around .20 to .85 when m = 300, which is on par with or even lower than

the power of ~TMV when N = 250. Notably, in conditions where ~TMV yielded inflated

Type I error rates (e.g., MAR2, 40% missing data rate, N = 250, and C = 5; see

Figure 4), the power of ~TYB in these conditions was non-existent when m = 300.

Incorrect Models 2 and 3. The varied pattern across m for ICM2 and ICM3 was the

same as for ICM1. As such, we focused only on m = 300 because, theoretically, this

should produce the most reliable conclusions. The results for N = 1,000 were not

presented, as all MI2S-based test statistics could consistently reject ICM2 and

ICM3 with this large sample size. As shown in Table 2, the power of ~TMV for

both ICM2 and ICM3 was virtually 100% across conditions, except for those

18 Educational and Psychological Measurement 00(0)



with N = 250, C = 2, and asymmetric thresholds. As expected, the power of ~TMV

was higher for conditions with more missing data and for ICM3, where the mis-

specification was more severe.

Comparing ~TMV and ~TYB, the results echoed those of ICM1. Specifically, ~TYB had

lower power compared with ~TMV across all conditions, except in a few conditions,

where both yielded a power of 100%. Focusing on the conditions, where ~TMV yielded

inflated Type I error rates, the power of ~TYB was non-existent, consistent with the

results of ICM1. This suggested that ~TYB might not be a viable alternative to ~TMV ,

even when ~TMV did not perform well.

Figure 5. Empirical Power of ~TMV and ~TYB for Incorrect Model 1 Under MAR1.
Note. Power is omitted when the corresponding Type I error rate of m = 300 or complete data analysis is

inflated. The results from corresponding complete data analyses are displayed at m = 0. C = number of

response categories; TD = threshold distribution; sym = symmetric; asym = asymmetric; N = sample size;

Miss = missing data rate; m = number of imputed data sets.
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In summary, the results showed that the statistical power of MI2S-based test sta-

tistics ~TMV and ~TYB varied across different conditions. ~TMV demonstrated consistent

and relatively high power in detecting misspecified models. In contrast, ~TYB exhibited

noticeably lower power, especially with smaller N and larger m.

MI2S-Based RMSEA for the Incorrect Models

To examine the performance of the MI2S-based RMSEA in each condition, we com-

pared its mean values across replications with the population RMSEA value, as well

as those from complete data analyses. Table 3 shows the mean MI2S-based RMSEA

Figure 6. Empirical Power of ~TMV and ~TYB for Incorrect Model 1 Under MAR2.
Note. Power is omitted when the corresponding Type I error rate of m = 300 or complete data analysis is

inflated. The results from corresponding complete data analyses are displayed at m = 0. C = number of

response categories; TD = threshold distribution; sym = symmetric; asym = asymmetric; N = sample size;

Miss = missing data rate; m = number of imputed data sets.
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at m = 300, alongside its complete data counterpart, for ICM1, ICM2, and ICM3. It is

important to note that the effect of m on the MI2S-based RMSEA was trivial, thus we

only included m = 300 in the table.

For ICM1, the mean MI2S-based RMSEA values ranged from 0.054 to 0.069,

which were reasonably close to the population value of 0.065. These corresponded to

the results obtained from complete data analyses ranging from 0.061 to 0.064, except

in some extreme conditions (e.g., N = 250% and 40% missing data rate). For ICM2,

the mean MI2S-based RMSEA values ranged from 0.090 to 0.097, aligning well with

the population value of 0.095 and the results from complete data analyses ranging

from 0.094 to 0.096. For ICM3, the mean MI2S-based RMSEA values ranged from

0.130 to 0.138, close to the population value of 0.134 and the results from complete

data analyses, ranging from 0.133 to 0.137. The ranges of the mean MI2S-based

RMSEA values for ICM1 (0.054 to 0.069), ICM2 (0.090 to 0.097), and ICM3 (0.130

to 0.138) did not change when including or excluding conditions with m = 20, 50,

and 100 imputed data sets.

In addition, we assessed the empirical coverage of 90% confidence intervals (CIs)

for the MI2S-based RMSEA. Coverage represents the proportion of time that a CI

contains the true parameter value. We chose a 90% CI because it is commonly

reported in the literature. Given that the effect of the number of imputed data sets

was marginal, we present coverage rates only when m = 300. As shown in Table 4,

the coverage rates were generally acceptable, closely approaching the nominal level

of 0.90. However, in a few conditions under MAR1 and ICM1, the coverage rates

appeared concerning, dropping below 0.85, particularly when N� 500, C = 5, and

40% missing data rate. Nevertheless, all coverage rates remained above 0.80.

Overall, these results suggested that the MI2S-based RMSEA generally performed

well for gauging the model-data fit, but it tended to be less optimal with smaller sam-

ple sizes, higher rates of missing values, and in cases of smaller model misfit.

In summary, our simulation results showed that ~TMV outperformed ~TM , ~TB, and
~TYB, and the MI2S-based RMSEA appeared to provide useful information in deter-

mining the fit of SEM with multiply imputed ordinal data.

Empirical Example

In this section, we demonstrate the practical application of the MI2S approach for

ordinal data using a real-world data set. We consider a scenario where our interest lies

in testing the configural invariance of positive affect across three-time points (see Liu

et al., 2017, for details on measurement invariance). The R scripts and Mplus files

used for this demonstration are available from the OSF.

Data Sets

We used publicly available data sets from the MIDUS (Midlife in the United States)

longitudinal study (www.midus.wisc.edu). The first wave began in 1995 (MIDUS 1)

22 Educational and Psychological Measurement 00(0)
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Table 3. Mean MI2S-Based RMSEA for Incorrect Models 1, 2, and 3 at m = 300.

ICM1 ICM2 ICM3

C TD N Miss MAR1 MAR2 MAR1 MAR2 MAR1 MAR2

2 sym 250 0 .061 .061 .094 .095 .134 .134
20 .062 .062 .093 .096 .132 .134
40 .063 .063 .092 .097 .131 .134

500 0 .063 .063 .094 .094 .133 .133
20 .063 .064 .094 .094 .133 .134
40 .063 .064 .093 .095 .132 .134

1000 0 .064 .064 .095 .094 .134 .134
20 .063 .064 .095 .095 .135 .134
40 .063 .064 .094 .095 .134 .134

asym 250 0 .063 .062 .096 .096 .135 .137
20 .065 .061 .095 .096 .133 .136
40 .069 .054 .092 .090 .130 .131

500 0 .061 .062 .095 .095 .134 .135
20 .062 .062 .095 .096 .134 .136
40 .065 .062 .093 .096 .132 .138

1000 0 .064 .063 .094 .095 .134 .134
20 .064 .064 .094 .095 .134 .135
40 .065 .065 .094 .097 .133 .138

5 sym 250 0 .062 .063 .094 .095 .133 .135
20 .061 .064 .095 .095 .134 .135
40 .058 .064 .096 .095 .135 .135

500 0 .063 .064 .095 .095 .134 .134
20 .063 .064 .095 .095 .134 .134
40 .062 .064 .095 .095 .134 .134

1000 0 .064 .064 .095 .095 .134 .134
20 .063 .064 .095 .095 .134 .134
40 .063 .064 .095 .095 .134 .134

asym 250 0 .062 .062 .095 .094 .133 .134
20 .061 .063 .095 .095 .134 .134
40 .058 .065 .097 .096 .136 .134

500 0 .063 .063 .094 .095 .134 .134
20 .063 .063 .095 .095 .134 .134
40 .062 .063 .096 .096 .136 .135

1000 0 .064 .064 .094 .095 .134 .134
20 .064 .064 .095 .095 .135 .134
40 .064 .064 .095 .095 .135 .135

(.065) (.065) (.095) (.095) (.134) (.134)

Note. The population RMSEA for each incorrect model is in parentheses. Relative biases (in absolute

values) above .100 are bolded. C = number of response categories; TD = threshold distribution; sym =

symmetric; asym = asymmetric; N = sample size; Miss = missing data rate; ICM = incorrect model.
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Table 4. Empirical Coverage Rates of the MI2S-Based RMSEA for Incorrect Models 1, 2, and
3 at 90% CIs and m = 300.

ICM1 ICM2 ICM3

C TD N Miss MAR1 MAR2 MAR1 MAR2 MAR1 MAR2

2 sym 250 0 .883 .872 .920 .927 .898 .909
20 .889 .887 .908 .922 .878 .917
40 .893 .912 .886 .934 .858 .904

500 0 .879 .869 .910 .909 .906 .905
20 .879 .872 .908 .913 .905 .899
40 .864 .889 .895 .918 .882 .912

1,000 0 .890 .894 .923 .912 .917 .893
20 .886 .896 .920 .912 .921 .891
40 .879 .897 .924 .917 .908 .902

asym 250 0 .933 .919 .943 .940 .918 .905
20 .938 .924 .929 .953 .897 .904
40 .932 .932 .916 .950 .853 .877

500 0 .879 .900 .925 .912 .900 .902
20 .888 .913 .922 .919 .896 .919
40 .903 .930 .912 .940 .873 .917

1,000 0 .887 .884 .926 .933 .906 .901
20 .882 .904 .927 .935 .904 .898
40 .883 .917 .896 .947 .876 .907

5 sym 250 0 .866 .877 .911 .884 .898 .899
20 .849 .878 .899 .895 .909 .886
40 .824 .879 .901 .893 .908 .898

500 0 .875 .888 .882 .892 .884 .899
20 .861 .890 .898 .890 .895 .897
40 .846 .891 .894 .906 .904 .896

1,000 0 .891 .881 .913 .888 .888 .895
20 .887 .884 .917 .892 .900 .894
40 .875 .879 .908 .883 .886 .890

asym 250 0 .851 .858 .898 .906 .890 .895
20 .826 .872 .879 .912 .885 .901
40 .817 .882 .889 .937 .897 .896

500 0 .862 .877 .894 .903 .888 .896
20 .872 .882 .897 .907 .873 .900
40 .837 .894 .907 .898 .884 .899

1,000 0 .909 .868 .907 .888 .897 .886
20 .892 .862 .894 .893 .888 .892
40 .885 .881 .906 .893 .895 .904

Note. The nominal level of the coverage rate is .900. Values below .850 are bolded. C = number of

response categories; TD = threshold distribution; sym = symmetric; asym = asymmetric; N = sample size;

Miss = missing data rate; ICM = incorrect model.
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and two follow-up waves began in 2004 (MIDUS 2) and 2013 (MIDUS 3). More

details can be found in the MIDUS documentation (www.icpsr.umich.edu/web/

ICPSR/series/203). The data used for this demonstration contained 895 adults who

graduated from college at MIDUS 1 (Mage = 45.7, SD = 12.4). Among them, 601

(67%) and 468 (52%) returned at MIDUS 2 and 3, respectively. Within the first, sec-

ond, and third wave, 1 (0.1%), 13 (2.1%), and 3 (0.6%) participated adults had par-

tial missing data on the positive affect items, respectively. That is, missing values

were mostly due to dropouts. Positive affect was measured by six items. Participants

responded on a 6-point scale from 1 (all of the time) to 5 (none of the time), ‘‘During

the past 30 days, how much of the time did you feel [cheerful/in good spirits/

extremely happy/calm and peaceful/satisfied/full of life]?’’ (Mroczek & Kolarz,

1998).

Multiple Imputation, Analysis, and Results

Similar to our simulation study, we utilized multiple imputation using an unrestricted

variance-covariance model for ordinal data in Mplus 8.6. Given that missing data

were mainly due to loss to follow-up, we incorporated six auxiliary variables to make

the MAR assumption more plausible. The auxiliary variables—age, gender, marital

status, parental status, physical health, and mental health—were measured at MIDUS

1. Song et al. (2021) showed that these variables were predictive of retention and

attrition in the MIDUS longitudinal study. These auxiliary variables, particularly

mental health, were also correlated with positive affect. Based on convergence diag-

nostics (i.e., PSR values and trace plots), we anticipated convergence to occur after

approximately 9,200 iterations. To ensure convergence, we doubled the number of

iterations. Therefore, we specified 18,400 burn-in iterations for multiple imputation

and generated 500 imputed data sets.

For each imputed data set, the polychoric correlations, thresholds, and asymptotic

covariances were estimated. These 500 sets of summary statistics were then com-

bined into a single set using the MI2S approach. This process was automated through

the lavaan.mi package in R (Jorgensen, 2023). Following this, the pooled summary

statistics were utilized as input data for estimating the three-factor longitudinal CFA

model via the lavaan package. Several MI2S-based statistics, including ~TM , ~TMV , and
~TB, were readily obtained. ~TYB was calculated using Equation 4. Finally, the MI2S-

based RMSEA for ordinal data was computed with a custom R script provided by

Lai (2020).

The results showed that, although the chi-square test statistics were significant,

approximate fit indices did not suggest serious misfit, ~TM = 1152.0, ~TMV = 778.3,
~TB = 515.1, ~TYB = 326.7, df = 132, ps \ .001, MI2S-based RMSEA = 0.067, 90% CI

[0.059, 0.073]. Thus, we concluded that the fit of the longitudinal configural invar-

iance model was acceptable, indicating that the same construct was being measured

across time.
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Discussion

Chung and Cai’s (2019) MI2S approach holds promise for evaluating the model fit

of SEMs with multiply imputed ordinal data. Under MI2S, the hypothesized model is

fitted once, and a single set of imputation-based fit statistics is readily available from

SEM software packages. While previous studies evaluated ~TB and ~TYB, this study

additionally examined ~TM and ~TMV across a wide range of conditions.

The present study extends previous research in several ways. First, we found that
~TMV generally exhibited good performance, consistent with the performance of its

complete-data counterpart (e.g., Savalei & Rhemtulla, 2013). ~TMV consistently main-

tained acceptable Type I error control, except for a few conditions with a high miss-

ing data rate under MAR2, where ~TMV could produce slightly inflated Type I error

rates with smaller sample sizes. Although MAR1 and MAR2 differed in several

ways, we speculate that the poorer performance under MAR2 is partly due to the

strength of the association between the cause of missingness and the binary missing

data indicators.

To support this speculation, we conducted an additional simulation where every-

thing remained the same as MAR2 except we set parameters b0 to 22.1 and b1 to 8,

leading to 40% missing data and a pseudo-R2 value of .95 (instead of .40). These

adjustments made the auxiliary variable almost perfectly predicted missingness, thus

making the missing data pattern closely resemble the monotone pattern of MAR1.

This simulation showed that ~TMV yielded non-inflated Type I error rates across con-

ditions, except for a slight inflation when N = 250 and C = 5 with asymmetric thresh-

olds (see Supplemental Figure S3). These results suggested that when the cause of

missingness was more strongly related to the occurrence of missing data, the Type I

error rates tended to be closer to the nominal level.

Apart from the impact of the strength of the association, the poorer performance

in asymmetric threshold conditions under MAR2 could be explained by the fact that

MAR2 made the severe asymmetry even more extreme, whereas MAR1 mitigated it

(see Supplemental Figures S1 and S2). Similar to the findings of Jia and Wu (2019)

with MAR-tail (more extreme) and MAR-head (less extreme), this also explains why

convergence issues were likely to occur in conditions with asymmetric thresholds

under the more challenging MAR2 mechanism.

The second novel contribution of our study is that we found ~TMV generally outper-

formed ~TM , ~TB, and ~TYB. Both ~TM and ~TB showed inflated Type I error rates across all

conditions. The inflation in Type I error rates for ~TB aligns with our expectations and

is consistent with previous findings (Liu et al., 2021). Although ~TM is a novel aspect

of our study, investigations of its complete data equivalent, TM , have indicated that it

can be slightly inflated in certain situations, such as with medium-sized models con-

taining around 15-20 ordinal items (DiStefano & Morgan, 2014; Liu & Sriutaisuk,

2020; Savalei & Rhemtulla, 2013). Unlike other test statistics examined, ~TYB often

produced conservative Type I error rates which translated into a substantial loss of

power to detect misspecifications. However, when data were binary and

26 Educational and Psychological Measurement 00(0)



asymmetrical, ~TYB tended to produce substantially inflated Type I error rates. In light

of these findings, we generally recommend ~TMV over ~TM , ~TB, and ~TYB.

In contrast to our study, Chung and Cai (2019) found that ~TYB generally exhibited

good performance. This inconsistency is likely because of the difference in the simu-

lation design, such as the number of indicators and the missing data generation pro-

cess. We also could not fully investigate very large samples (e.g., N = 5,000) due to

constraints in computing resources. We believed that ~TYB should perform well given

a large enough sample size and number of imputed data sets. To provide some evi-

dence, we conducted an additional small-scale simulation with N = 5,000 and sym-

metric thresholds under the MAR1 mechanism (everything else remained the same

as the main simulation). The findings for the correct model were as expected. That is,

the empirical means and variances of ~TYB were close to the relevant results obtained

from complete data analyses, and the empirical Type I error rates of ~TYB were all

within the acceptable range even with 40% missing data (see Supplemental Figure

S4).

Third, this study provides evidence indicating that the MI2S approach can per-

form well in challenging conditions with high rates of missing data, even without an

extremely large number of imputed data sets. We found that ~TMV produced more sta-

ble solutions compared with ~TYB. Specifically, with up to 20% missing data, ~TMV and
~TYB required at least m = 20 and 100, respectively. With a higher missing data rate

(40%), ~TMV required m = 100 whereas ~TYB did not perform well even with m = 300.

The instability of ~TYB is probably caused by the well-documented instability of the

total asymptotic covariance matrix (Enders, 2022).6 Although ~TMV also relies on the

total asymptotic covariance matrix, the calculation of ~TMV is much simpler and does

not involve inverting the entire asymptotic covariance matrix (see Equation 2).

Fourth, this study extends the literature by showing that the MI2S-based RMSEA

can be used as a good measure of the model–data fit. It generally exhibited good per-

formance, except in some conditions, where the missing data were high, coupled with

a small sample size and a relatively small model misspecification. Our results are

consistent with a recent simulation using the standard multiple imputation approach,

which showed that Lai’s (2020) RMSEA performed reasonably well, especially as

sample size increased (from N = 200 to 1,000) and missingness decreased (from 50%

to 15%; Shi et al., 2023).

How does MI2S perform relative to the standard multiple imputation approach in

terms of model test statistics? To answer this question, we conducted additional anal-

yses at m = 300, comparing ~TMV with the pooled chi-square test statistics from the

standard multiple imputation approach, sometimes referred to as the D2 test statistics

(Liu & Sriutaisuk, 2020; see also Jia, 2023).7 Compared with ~TMV , D2 produced

lower rejection rates, resulting in Type I error rates that were zero or below .025, and

consistently lower power than ~TMV . Moreover, the performance of D2 was consider-

ably influenced by the missing data rate, such that the statistical power was greatly

reduced when 40% of data were missing (see Supplemental Figures S5–S6). Overall,

we found initial evidence favoring ~TMV over D2 in most conditions. Nevertheless, in
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the few challenging conditions where ~TMV yielded inflated Type I error rates, D2

could be a viable alternative. Future research is needed to thoroughly compare ~TMV

with D2 (see Liu et al., 2021 for the comparison of ~TYB and D2).

There are several limitations and directions for future research. First, while we

carefully designed our simulation, there are additional factors that may warrant a

more thorough investigation that we did not investigate to limit the scope of this

study (e.g., the reliability of items, proportion of incomplete items, and model size;

Liu et al., 2021). Second, while our multiple imputation and analyses generally

resulted in converged solutions and unbiased parameter estimates, we only examined

the unrestricted variance-covariance model implemented in Mplus under MAR. The

robustness of MI2S-based fit statistics across different multiple imputation

approaches (e.g., fully conditional specification imputation; Van Buuren, 2007),

missing data mechanisms, and software programs would be an avenue for future

research. Third, studies recently proposed ways to test measurement invariance with

multiply imputed data (e.g., Chen, Wu, Garnier-Villarreal, et al., 2020) and search

for potential sources of misfit (e.g., Chen, Wu, Brandt, et al., 2020; Mansolf et al.,

2020). An interesting avenue of future research is to explore the possibility of using

MI2S for measurement invariance testing and model modification. Finally, recent

studies have shown that Meng and Rubin’s (1992) method for pooling likelihood-

based statistics performs well for continuous normal and nonnormal data (Enders &

Mansolf, 2018; Jia, 2023). Future research might compare the MI2S approach to the

method proposed by Meng and Rubin (1992) in the context of ordinal data. It would

also be beneficial to compare the standard multiple imputation-based approximate fit

indices with the MI2S-based counterparts.

Conclusion

This study provides significant understanding regarding the performance of the MI2S

approach in the context of SEM with ordinal variables and missing data. We found

that ~TMV outperformed previously examined MI2S-based test statistics in most condi-

tions. Importantly, it provided more stable solutions, particularly when working with

a practical model size and a reasonable number of imputed data sets. While ~TMV has

shown considerable promise, it ideally should be used in conjunction with approxi-

mate fit indices for a more comprehensive evaluation of model fit. Our study also

supports the use of the MI2S-based RMSEA as a feasible measure for assessing the

extent of misfit between the hypothesized model and the data.
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Notes

1. Another reason we used ULS was because Lai’s (2020) RMSEA is only appro-
priate under ULS. However, we also examined DWLS in several conditions. We
omitted these results because they were essentially the same as those obtained
with ULS and did not impact our conclusions.

2. A typographical error exists in Chung and Cai’s (2019) Equation 24, where the term (N-1)

is mistakenly not squared.

3. The missing data mechanism was a between-subjects factor where complete data sets for

MAR1 and MAR2 were generated seperately. Our supplementary simulation showed that

treating this factor as either a within-subjects or a between-subjects factor did not impact

the conclusions.

4. We also examined the missing completely at random (MCAR) mechanism in several con-

ditions. We omitted the results because they were essentially the same as MAR and did not

impact our conclusions.

5. To evaluate the practical significance of the biases in thresholds, we examined the ‘‘stan-

dardized’’ bias (Collins et al., 2001). The results showed that the biases in thresholds, as

well as factor loadings and covariances, were not practically significant. The largest stan-

dardized bias was 38.5% (in absolute value), which is less than the cutoff of 40% proposed

by Collins et al. (2001, p. 340).

6. A more stable total asymptotic covariance matrix may be obtained using a simplified esti-

mate of the total asymptotic covariance matrix proposed by K. H. Li, Raghunathan, et al.

(1991). We did not examine this relatively common approach as ~TMV exhibited good per-

formance without using it.
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7. There are variants of the D2 test statistics. The original D2 is the result of pooling TMV

across imputations (Liu & Sriutaisuk, 2020). D2ASN is the result of pooling T across impu-

tations and then applying the scaling-and-shifting transformation to the pooled T (Jia,

2023). Our conclusions from comparing ~TMV with D2 hold for both variants. D2 and D2ASN

can be obtained using the semTools package (Jorgensen et al., 2022) in R.
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