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Many lifestyle and psychosocial factors are associated with a longer lifespan; central among these is social
connectedness, or the feeling of belongingness, identification, and bond as part of meaningful human
relationships. Decades of research have established that social connectedness is related not only to better
mental health (e.g., less loneliness and depression) but also to improved physical health (e.g., decreased
inflammatorymarkers, reduced cortisol activity). Recent methodological advances allow for the investigation
of a novel marker of biological health by deriving a predicted “age of the brain” from a structural
neuroimaging scan. Discrepancies between a person’s algorithm-predicted brain-age and chronological age
(i.e., the brain-age gap) have been found to predict mortality and psychopathology risk with accuracy rivaling
other known measures of aging. This preregistered investigation uses the Midlife in the United States
(MIDUS) study to examine connections between the quality of social connections, the brain-age gap, and
markers of mortality risk to understand the longevity-promoting associations of social connectedness from
a novel biological vantage point. While social connectedness was associated with markers of mortality risk
(number of chronic conditions and ability to perform activities of daily living), our models did not find
significant links between social connectedness and the brain-age gap, or the brain-age gap and mortality risk.
Supplemental and sensitivity analyses suggest alternate approaches to investigating these associations and
overcoming limitations. While plentiful evidence underscores that being socially connected is good for the
mind, future research should continue to consider whether it impacts neural markers of aging and longevity.
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One of the oldest human pursuits is the search for longevity; for
centuries, alchemists, healers, philosophers, medics, scientists, and
more have worked to lengthen our lifespan and stave off mortality.
Extensive research documents the many factors that powerfully
predict a decreased mortality risk. These span the more researched
and physiological factors, such as diet and exercise (Chrysohoou &
Stefanadis, 2013; Fontana & Partridge, 2015; Gremeaux et al., 2012),

to the less-understood interpersonal factors. Social connectedness
is one such factor that captures the sense of belongingness,
identification, and bond we as humans feel with each other. Social
connectedness is an essential ingredient to meaningful human
relationships and staving off the potential detrimental consequences
of loneliness, including a shorter lifespan (Bel et al., 2009; Haslam
et al., 2015).
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Social Connectedness and Mortality Risk

Social connection not only makes us and others feel good, but
may also extend our lives (Holt-Lunstad, 2017; House et al., 1988;
Rico-Uribe et al., 2018). Multiple epidemiological and longitudinal
studies have underscored that both the quality and quantity of
social connection are strongly associated with decreased mortality
risk (Berkman & Syme, 1979; Seeman et al., 1987; Tatangelo
et al., 2017; Yang et al., 2016). Seminal work by Berkman and Syme
(1979) established that men and women who lacked social contacts
were more than twice as likely to die earlier compared to their
socially connected counterparts. Importantly, these results held after
accounting for the influence of a variety of health determinants
such as physical health, socioeconomic status, health practices (e.g.,
smoking, alcohol consumption), and use of preventative care services
(Berkman & Syme, 1979). Follow-up investigations established
that the mortality risk for the less-socially connected only increased
with age (Seeman et al., 1987).
Since these early findings, well-replicated work across countries

and cultures has established a life expectancy advantage for more
socially connected people while controlling for other longevity-
boosting explanations (e.g., physical activity) (Giles et al., 2005;
Glass et al., 1999). A meta-analysis surveying 148 studies and
308,849 participants found a 50% increased likelihood of survival
across time for participants with stronger social connections (Holt-
Lunstad et al., 2010). When considering multidimensional assess-
ments of social connections, the effect size estimate was even
stronger, corresponding to a 91% increased likelihood of survival.
This aggregate effect size of social relationships on longevity is much
larger in magnitude than other well-known predictors of decreased
mortality including alcohol abstinence, increased physical activity,
and leaner body mass index (BMI; Holt-Lunstad et al., 2010; House
et al., 1988). Findings from the 85-year Harvard Study on Adult
Development found that the single most important factor influencing
well-being throughout the lifespan was the quality of interpersonal
relationships (Waldinger & Schulz, 2023).
Further emphasizing the health-promoting benefit of social

connection is a sizable literature establishing that coupled individuals
have longer, and healthier, lives compared to single counterparts
(Robles et al., 2014; Tatangelo et al., 2017). A recent meta-analysis
examining 33 studies of longitudinal cohorts with samples both large
and multinational found consistently poorer health among widowed,
unmarried, and single individuals regardless of age (Tatangelo et al.,
2017). The surveyed studies included sample sizes ranging from
765 participants to 29.8 million health records, and populations from
countries across North America, South America, Europe, Asia, and
Africa. It is clear from these studies of diverse and well-characterized
cohorts that social connectedness has powerful implications for
prolonging our lives. This strong association begs the question, how
exactly might social connectedness contribute to increased risk for
mortality?

Biomarkers of Health and Relations to
Social Connectedness

Biomarkers of health provide a pathway through which social
connectedness may be associated with one’s lifespan. A decreased
risk of mortality relies on satisfactory physical health and the body’s
ability to fight off illness (Danner et al., 2001; Murphy & Topel,

2006). Thus, various biomarkers of health directly relate to mortality
risk through modulation of central physiological, genetic, and
neuroendocrine systems such as blood pressure, immune system
functioning, cortisol stress response, and others (Cruces et al., 2014;
Gaffey et al., 2016; Piferi &Lawler, 2006). Both social connectedness
and, conversely, a lack of meaningful social connection (i.e.,
loneliness) are associated with these same assays of physical health.
Increased social connectedness may promote a longer and healthier
life through the modulation of biological pathways including cortisol
production, immune system gene expression, and the cardiovascular
system (Steptoe et al., 2009).

Studies have linked social connectedness to several biomarkers
of physical health including lower heart rate, higher heart rate
variability, lower blood pressure, lower markers of inflammation,
shorter telomere lengths, enhanced oxytocin levels, and reduced
cortisol reactivity (Carroll et al., 2013; Colonnello et al., 2017; Kemp
et al., 2017; Steptoe et al., 2009). For example, an examination of
over 14,000 people across three nationally representative, longitu-
dinal, population-based samples found a dose–response relationship
between social connectedness and improved physiological functioning
across the lifespan (i.e., from adolescence to young adulthood
and late adulthood) for multiple biomarkers including systolic blood
pressure and inflammation (Yang et al., 2016). The lack of social
connectedness was as much of a risk factor to inflammation
(measured by a well-known biomarker, C-reactive protein [CRP])
as was physical inactivity, underscoring the health-altering effects
of social connectedness (Yang et al., 2016). These studies converge
to highlight the link between social connectedness and physio-
logical, genetic, and neurochemical measures of physical health.

The deleterious impact of stress may be at the heart of the link
between social connectedness and physical health biomarkers.
The experience of loneliness, or not having social connections, is
unpleasant and stressful (Yang et al., 2014), predicting higher rates
of mood disorders and suicide (Erzen & Çikrikci, 2018; Stravynski
& Boyer, 2001). It is clear that chronic activation of the body’s stress
response can lead to downstream consequences across multiple
physiological systems (McEwen, 1998; McEwen & Stellar, 1993;
Seeman et al., 2002). The stress of loneliness and a lack of social
support increases risk for disease and mortality through chronic
activation of immune, neuroendocrine, and metabolic systems
(Cacioppo & Hawkley, 2003; Kemp et al., 2017; Penwell &
Larkin, 2010). The concept of allostatic load operationalizes
the “wear-and-tear” across the body’s components of the stress
response, including the hypothalamic–pituitary–adrenal axis, the
sympathetic nervous system, cardiovascular system, metabolic
pathways, and other physiological systems (Seeman et al., 1997).
Multiple studies have connected a lack of meaningful social
relationships to increased wear-and-tear in the body’s physio-
logical systems, finding that more lonely people have higher
allostatic load and that positive social experiences are associated
with lower allostatic load (Beckie, 2012; Juster et al., 2010; Quadt
et al., 2020; Seeman et al., 2002). This stress-induced wear-and-tear
across multiple physiological pathways exerts a toll on the body
and the brain, predicting later mortality risk, physical decline, and
cognitive decline (Seeman et al., 1997).

Critically, increased allostatic load and stress have been strongly
linked with changes in neurobiological structure and function
(de Kloet et al., 2005; Lupien et al., 2018). Increased stress impacts
the brain both primarily, as the brain is the central coordinator
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of the stress response (McEwen, 2017), and secondarily via the
consequences of chronic activation of the stress response system.
The physical structure and function of neurons in areas such as the
hippocampus, amygdala, and prefrontal cortex adapt in response to
acute and chronic challenges in the environment via a variety of
neurobiological mechanisms such as changes in glucocorticoid
receptor responsivity, regulation of excitatory amino acids (e.g.,
glutamate), and resistance to insulin and other metabolic hormones
(McEwen, 2017). The resulting consequences are adaptations that
can be viewed via neuroimaging such as altered structure in the
hippocampus, amygdala, and prefrontal cortex (Lupien et al., 2018).
While this link between stress and changes in brain structure is clear
(Booth et al., 2015; McEwen, 2017), the role of social connectedness
in buffering against the biological embedding of stress in the brain,
and subsequent cascades to decreased mortality risk, is unknown.
Research has found that social connections may protect against

some of the many downstream and deleterious physical consequences
of stress (Cassel, 1976; Cobb, 1976; Cohen & Wills, 1985; Uchino,
2006), suggesting that the presence of quality social connections could
have a stress-buffering role on brain-based biomarkers of health, too.
For instance, women with metastatic breast cancer reporting high
quality social support had lower cortisol levels than women who
reported low quality social support (Turner-Cobb et al., 2000). In
another study, pregnant women who reported low social support
had higher cortisol levels in response to psychological distress than
their counterparts with high social support (Giesbrecht et al., 2013).
This stress-buffering effect of social connectedness has also been

observed through experimental manipulation. For example, Cohen
et al. (2015) exposed participants to a virus and measured perceived
social support and interpersonal stress in the 2 weeks following virus
exposure. Individuals experiencing more interpersonal stress and
low social support had the highest likelihood of infection. Put
another way, high levels of social support buffered against any
association between stress and infection (Cohen et al., 2015).
Taken together, evidence suggests that a lack of social connections
may leave individuals more vulnerable to stressors in their lives
while supportive connections buffer against some of the deleterious
biological and physiological consequences of the stress response.
The role that social connections may play in changes to brain
structure and subsequent mortality risk has been unexplored and
presents an additional vantage point for understanding the longevity-
promoting side effects of interpersonal relationships.

The Brain as a Common Pathway

While there appears to be a link between social connectedness,
physical health, and decreased mortality risk, there are critical gaps
in our understanding of how social connectedness relates to healthy
aging in the brain. The importance of filling this gap cannot be
understated, given that the brain both coordinates, and is impacted by,
the stress response (e.g., through modulation of the hypothalamic–
pituitary–adrenal axis and regulating cortisol circulation).The brain’s
modulation of neurochemical and electrical signals drives cognitions,
emotions, and behaviors and is directly related to mental health
symptoms (e.g., depression, dementia, psychosis, mania) as well as
other central nervous system disorders (e.g., Parkinson’s disease,
multiple sclerosis).
An exploration of the association between social connections,

aging in the brain, and longevity unlocks an important, and unexplored,

vantage point into understanding how our social behavior can
promote brain health and subsequently prolong our lives. While the
brain’s essential role in regulating hormones and governing the
stress system, as well as vulnerability to the impacts of stress, make
it a prime target for exploring the associations between social
connectedness, physical health, and mortality risk, methodological
limitations have hampered such an investigation. Until recently,
there did not exist a way to measure aging in the brain from a
neuroimaging scan.

An emerging conceptualization of aging called brain age
provides an exciting opportunity to increase our understanding of
the associations between social connectedness, physical health, and
mortality risk. In the past few years, machine learning algorithms to
calculate the “age of the brain” have been developed and publicly
shared (see Cole et al., 2018; Kaufmann et al., 2019); this critical
advancement overcomes methodological obstacles that have thus
far prevented research from exploring these questions. These
algorithms are trained on large data sets to predict individuals’ brain
ages based on multiple aspects of neuroimaging scans (e.g., over
1,000 features of the brain comprised of thickness, area, and volume
measurements from the cerebral cortex, cerebellum, and subcortex).
The resulting parameters can be used in other, independent data sets
to estimate a new participant’s brain age (Cole et al., 2018).

The study of brain age is in its infancy; nonetheless, nascent
literature suggests that brain age is a potent predictor of mental
health and lifespan. These studies have focused on the brain-age
gap, or an index of the discrepancies between an individual’s brain
age and their chronological age. For instance, Cole et al. (2018)
found that each additional year discrepancy between brain age and
chronological age predicted a 6.1% relative increase in the risk of
death for individuals between 72 and 80 years of age. The brain-age
gap not only significantly predicted mortality risk but also
outperformed epigenetic measures of aging (i.e., DNA-methyla-
tion) in predicting mortality risk in this same sample.

The brain-age gap has been related to other maladaptive outcomes
in addition to mortality risk. Recent work found that the discrepancy
between chronological age and brain age predicted several brain-
based disorders including dementia, schizophrenia, and multiple
sclerosis (Kaufmann et al., 2019). Brain-age gaps were not only
more prevalent among many of these common disorders but also
predicted level of impairment (Kaufmann et al., 2019). Larger brain-
age gaps were associated with lower levels of psychological, social,
and occupational functioning among individuals with schizophrenia,
higher degree of disability among individuals with multiple sclerosis,
and lower cognitive functioning among individuals with mild
cognitive impairment or dementia (Kaufmann et al., 2019). This
novel and predictive measure is an intriguing biomarker that may
clarify the associations between social connectedness and healthy
aging in the brain. The derivation of brain-age estimates relies on
a multitude of neuroimaging parameters that have been found to
be impacted by chronic stress, such as cortical thickness (Averill
et al., 2017; Monninger et al., 2020), and therefore implicate the
brain-age gap as a critical exploration underpinning the stress-
buffering role of interpersonal relations on biological health and
decreased mortality risk.

Understanding how social connectedness is associated to the brain-
age gap and mortality risk may emphasize that social connectedness
affects even more processes than previously known, a timely
investigation following the COVID-19 pandemic and resulting social
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isolation.Whilemuch is known about the associations between social
connection and indices of well-being (e.g., happiness), extension
of this work to a novel biomarker, the brain-age gap (i.e., the
discrepancy between algorithm-predicted age and chronological age)
overcomes limitations of other work by not relying on self-report or
monoinformant measures of well-being (i.e., the brain-age gap can be
thought of as a more “objective”measure). This work is an initial step
toward understanding these associations with more specificity, as
future work could elaborate on social connectedness and biological
aging to explore these effects in other areas of the body, investigating
whether these benefits trigger a coordinated set of biological processes
that occur throughout the body or are localized to the brain.
Seeing as the brain is the organ of behavior, understanding the

association between the quality of social connections, the brain-age
gap, and mortality risk brings us closer to an understanding of
mechanism. Once establishing an initial association between social
connectedness, the brain-age gap, and mortality risk, future work
could localize alterations that could give us insight into processes
that are driving the longevity-promoting associations of social
connectedness. Recent research establishing the ages of multiple
organ systems (cardiovascular, pulmonary, musculoskeletal,
immune, renal, hepatic, metabolic, and brain) in a sample of over
1,000 observations found that ages of these organs systems were
heterogenous and unique, and that aging in one organ system
influenced aging in another (Tian et al., 2023). Authors then
associated organ ages with specific and modifiable risk and
resilience factors that could inform interventions targeted at specific
body systems. Pinpointing individuals at risk for accelerated brain
age (e.g., potentially individuals who are less socially connected)
could identify ways to intervene before disease onset and slow down
the aging of this specific organ.
With respect to the brain-age gap serving as a novel biological

mechanism at the whole-organ level, there are emerging concerns
about the reproducibility, reliability, and magnitude of potential
effects in neuroimaging research (Marek et al., 2022). Evidence
suggests that, compared to other commonly used methods of
neuroimaging (Elliott et al., 2020; Poldrack et al., 2015) brain-age is a
more reliable estimation of biology (Bacas et al., 2023) due in part to
the algorithms’ reliance on a high number of features. Applying this
novel tool to what we already know about social connectedness,
biomarkers, and longevity contributes a potentially more reliable and
reproducible understanding of neurobiology’s role. An investigation
using this timely innovation may fill in key knowledge gaps as we
continue to explore how social connectedness boosts our health
and lifespans.

The Present Study

It is clear from prior work that social connectedness is associated
with physiological markers of healthy aging and predicts decreased
mortality risk. Recent methodological advances allowing researchers
to calculate “the age” of the brain relative to chronological age
provide an opportunity to explore the pathway linking social
connectedness and a longer lifespan. This study explores the
potentially protective role that social connections may have in
decreasing the rate of biological aging of the brain and risk of
mortality.
We test associations between social connectedness and the

brain-age gap in a well-known cohort that has been critical for our

understanding of successful aging—the Midlife in the United States
(MIDUS) study. This data set is an ongoing, almost 30-year-long
investigation with rich measures of psychological factors, lifestyle
variables, mortality, and neuroimaging data. The well-phenotyped
individuals that are part of the MIDUS study data set have been a
key platform for many ground-breaking discoveries related to aging,
including linking social connection and support to biomarkers of
health (Creaven et al., 2020; Donoho et al., 2013).

Here, we test several hypotheses exploring associations between
social connectedness, brain age, and mortality risk in the MIDUS
data set. First, we aimed to expand findings linking the quality
of social connectedness with a longer lifespan by examining the
association between positive relations with others and mortality risk;
we hypothesized thatmore positive relationswith otherswould predict
a decrease in markers of mortality risk. Second, we investigated the
connection between the quality of social connections and the brain-
age gap, predicting that more positive relations with others would be
associatedwith a younger brain age relative to chronological age. Last,
we planned to test an indirect effects model, considering whether the
gap between chronological age and brain age statistically accounted
for part of the association between positive relations with others and
mortality risk. This investigation explores whether a younger brain
age relative to chronological age can be added to the list of benefits
associated with quality interpersonal relationships.

Method

Data for these analyses are drawn from a subset of the MIDUS
Longitudinal Study of Health andWell-being, a 30-year investigation
of over 10,000 adults (ages 35–85) across multiple waves. Detailed
information onMIDUS study design, sampling, recruitment, retention,
and other study details for MIDUS have been described elsewhere
(https://www.midus.wisc.edu/). Data and documentation for MIDUS
are freely available through the Inter-University Consortium for
Political and Social Research website (https://www.icpsr.umich
.edu/web/ICPSR/series/203). Self-report and demographic data were
downloaded from the MIDUS Colectica website (https://midus
.colectica.org). Neuroimaging data were accessed through a data
sharing agreement via the MIDUS website. All cleaning and coding
scripts are available at our study GitHub along with instructions on
how to access the publicly available data from MIDUS.

MIDUS Study Sample (Core and Refresher Cohorts)

This study combines MIDUS participants from the Core wave of
study recruitment (Core/M1 n= 7,108) and a second data recruitment
effort to “refresh” the sample due to attrition (MIDUS Refresher
[MR] n = 3,577). Our sample consists of participants who have
complete data (i.e., magnetic resonance imaging [MRI] scans, social
connectedness measure, and other variables) for a final sample of 197
participants. See below for a more detailed description on study
recruitment and a visualization of sample flow (Figure 1); for further
details, please visit the MIDUS website.

Participants from the Core sample were recruited between 1994
and 1997 through (a) random-digit-dialing, (b) being a sibling of
someone recruited through random-digit dialing, or (c) a national
twin registry. Participants from the CoreWave 1 (M1) were recruited
for a second wave of data collection (Core Wave 2/M2, n = 4,963)
between 2004 and 2006. Of this Wave 2 subsample a further
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subgroup of individuals who were able to travel to the laboratory
at the University of Wisconsin–Madison completed neuroimaging
scans (n = 74). From this imaging subsample, 70 participants
completed the social connectedness measure. Participants from
the Refresher sample were recruited between 2012 and 2015 (n =
3,577), of which a subsample completed neuroimaging scans at a
follow-up visit that took place between 2012 to 2016 (n = 127).
From this second imaging subsample, all participants completed
the social connectedness measure for an overall neuroimaging
subsample of 197. All participants were right-handed and were
screened to ensure MRI compatibility.

Ethics Information

The MIDUS project is reviewed and approved by regional
institutional review boards. Consent was provided by all participants.

Design

Main Measures

The Quality of Social Connections

We operationalized the quality of social connection in the
MIDUS data set using the Positive Relations with Others subscale of
the well-validated Psychological Well-Being Scale (Ryff, 1989;
Ryff & Keyes, 1995). The Positive Relations with Others subscale
is comprised of seven questions assessing social connectedness
(e.g., “Maintaining close relationships has been difficult and
frustrating for me,” “People would describe me as a giving person,
willing to share my time with others” [reverse coded]).” Participants
responded on a scale from 1 to 7 (1 = strongly agree, 7 = strongly
disagree); higher values on this measure indicate more positive
relationswith others. Previous investigations of the Positive Relations
with Others subscale in the MIDUS data set have found the variable
to be useful in examining indicators of health; for example, Positive
Relations with Others was one of two Psychological Well-Being
subscales to be associated with decreases in the inflammatory marker
interleukin−6 (Friedman & Ryff, 2012).

The Psychological Well-Being Scale was administered twice
to participants in the Core waves of data collection (Core Wave 1
Project 1 [M1P1] and Core Wave 2 Project 1 [M2P1]) and once
to the Refresher sample (Refresher Project 1 [MRP1]). For this
investigation, we considered reports of Positive Relations with
Others fromM2 for the Core sample. Psychometric properties for this
constructed variable are reported for each wave of data collection in
MIDUS documentation (e.g., M1P1, M2P1, and MRP1). Past work
has found item-level correlation within the Positive Relations
with Others variable for each wave: M1P1 (three-item version) α =
.58; M2P1 (seven-item version) α = .78, and MRP1 (seven-item
version) α = .789. Further details on this variable can be found at
https://midus.wisc.edu.

Neuroimaging

MRI data were collected on a GE SIGNA 3.0 Tesla high-speed
MRI scanner (MR750 GE Healthcare, Waukesha, WI) with an
8-channel head coil. T1-weighted anatomical images were collected
with the following parameters: repetition time = 8.2 ms, echo time =
3.2 ms, flip angle = 12°, field of view = 256 mm, 256 × 256 matrix,
160 axial slices, inversion time = 450 ms, with 1-mm isotropic
voxels. acquisition matrix = 256 × 256, field of view = 240 mm,
124 × 1.1 mm axial slices (Grupe et al., 2018; Urban-Wojcik et al.,
2022). Structural images were processed using FreeSurfer imaging
analysis suite (v 7.1.0; https://surfer.nmr.mgh.harvard.edu/), which
includes motion correction, averaging of multiple volumetric T1-
weighted images, removal of nonbrain tissue, automated Talairach
transformation, segmentation of cortical and subcortical structure, and
other corrections (Urban-Wojcik et al., 2022).

The Brain-Age Gap

Our main variable of interest is the brain-age gap, which is
calculated by subtracting chronological age from the algorithm-
predicted age of the brain (i.e., brain-age gap = algorithm-predicted
age—chronological age). Algorithm-predicted age of the brain (i.e.,
“brain age”) was calculated from raw T1-weighted MRI scans using
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Figure 1
Visualization of MIDUS Study Flow and Recruitment

Note. MIDUS = Midlife in the United States.
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the open-access algorithm pioneered by Kaufmann et al. (2019),
referred to as “XGBoost.”
Various algorithms have been written to calculate brain age,

including XGBoost, brainageR, and DeepBrainNet; recent work
from our group examining the reliability of brain age algorithm
found excellent reliability (r > 0.9) for each algorithm in new
samples (Bacas et al., 2023). Based on this empirical work, we
determined that the XGBoost algorithm by Kaufmann et al. (2019)
was the superior choice for predicting psychopathological correlates
of brain age and is also the algorithm that considers the highest
number of features and is resistant to high motion within scans
(Bacas et al., 2023; Hanson et al., 2023). This algorithm is described
by Kaufmann et al. (2019) in detail and relevant code is available
(https://github.com/tobias-kaufmann/brainage). Current literature
suggests that algorithms that considermore features of a neuroimaging
scan may be more reliable (Jirsaraie et al., 2023). The XGBoost
algorithm uses gradient tree boosting to consider 1,118 features of
the brain comprised of thickness, area, and volume measurements
from a multimodal parcellation of the cerebral cortex, cerebellum,
and subcortex. These features are extracted using Freesurfer software,
which is accessible via https://Brainlife.io (https://surfer.nmr.mgh
.harvard.edu/fswiki/ReleaseNotes), a free, publicly funded, cloud-
computing platform for developing reproducible neuroimaging
processing pipelines and sharing data (Avesani et al., 2019).
The XGBoost algorithm was trained on a massive sample (N =

39,827, female = 18,990 or roughly 48%) consisting of healthy
controls ages 3–89 years old from 42 different data sets. All training
data passed automatic quality control procedures. Kaufmann and
colleagues employed fivefold cross-validation and trained separate
models for male and female brain age to account for potential
variation between the subsamples. The main variable of interest for
these analyses is the subsequently calculated brain-age gap, or the
discrepancy between chronological age and algorithm-predicted
brain age. Chronological age is not used as a feature to train brain
age; rather, it is incorporated into the computation of the brain-age
gap (i.e., algorithm-predicted brain age minus chronological age).
We deployed this XGBoost algorithm by first completing standard

processing approaches in Freesurfer 7.1 (https://surfer.nmr.mgh
.harvard.edu). The technical details of this software suite are
described in prior publications (Dale et al., 1999; Fischl et al., 1999,
2002, 2004). Briefly, this processing includes motion correction and
intensity normalization of T1-weighted images, removal of nonbrain
tissue (Ségonne et al., 2004) automated Talairach transformation,
segmentation of white matter and gray matter volumetric structures,
and derivation of cortical thickness. The XGBoost algorithm takes
processed T1-weighted images as input and then calculates the
algorithm-predicted age for each scan using gradient tree boosting.
We additionally computed brain-age using four alternative algorithms.
These data are available on the study GitHub, and further details
are present in the Supplemental Material.

Mortality Risk

Mortality risk was operationalized through (a) the number of
chronic conditions reported; and (b) ability to perform usual physical,
social, and other role-related activities. M2 and MR participants
self-reported the number of chronic conditions experienced in the
past 12 months by responding “Yes” or “No” to a checklist of
30 items (e.g., asthma, thyroid disease, ulcers, migraines, sleep

problems). The total number of chronic conditions is a summed
score of the items to which participants responded “Yes” (i.e.,
ranges from 0 to 30).

Participants also reported on the extent to which their health
interfered with their ability to complete three basic activities of daily
living (ADLs; e.g., bathing/dressing oneself, walking one block,
climbing one flight of stairs) and seven instrumental activities of
daily living (IADLs; e.g., climbing several flights of stairs, lifting/
carrying groceries) on 4-point scales (1= a lot, 2= some, 3= a little,
4 = not at all). Items were then reverse coded so that higher scores
reflect greater difficulty in performing ADLs and IADLs. The total
scores for ADLs and IADLs were summed to form a single
composite ADLs score.

We also conducted exploratory analyses with participant
mortality records collected by the MIDUS team at the University
of Wisconsin–Madison. These records include month and year of
death and International Classification of Diseases codes for
underlying cause of death and were updated through the Spring
2021 for the MIDUS Core cohort and July 2022 for the MIDUS
Refresher cohort. We considered these analyses exploratory due to
concerns over power (i.e., 11 participants out of 197 in the imaging
subsample had died).

Covariates

Our main analyses contained the following variables as
covariates: chronological age, biological sex, race, and recruitment
group. For analyses with the brain-age gap variable, we added
a variable operationalizing time between assessment and MRI scan.
We also considered sensitivity analyses with other known correlates
of longevity (Vaillant & Mukamal, 2001), including associations
between income, psychopathology, childhood social class, and BMI
and our main outcomes of interest.

Sample Origin

A dichotomous variable representing which wave the participant
was recruited from (M2 vs. MR) was used as a covariate in analyses,
following other investigations of similar constructs in the MIDUS
sample (e.g., Urban-Wojcik et al., 2022).

Chronological Age

Participant age at scan was operationalized with the MIDUS
variable “Respondent age at P5 visit.”

Assessment Lag Time

The amount of time between M2/MR assessment and the
neuroimaging scan was operationalized for each participant by the
discrepancy in age between the two assessments (i.e., age at M2/MR
assessment subtracted from age at MRI visit).

Race

Participants self-reported their race by responding to the question
“which of the following best describes your race?” and selecting one
of the following options: White, Black and/or African American,
Native American or Aleutian Islander, Asian or Pacific Islander,
other, multiracial, or refuse to answer. For the purpose of our
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analyses, we dichotomized responses into the category “person of
color” (i.e., Black and/or African American, Native American or
Aleutian Islander, Asian or Pacific Islander, other, or multiracial
identity) versus “nonperson of color.”

Biological Sex

Data on biological sex were collected via participant self-report
and recorded as a binary indicator (0 = male, 1 = female). Neither
a nonbinary indicator of biological sex nor a self-report measure on
gender identity was available in this data set.

Income

A “total household income” variable was calculated by summing
together (a) respondent’s self-reported personal earning, pension,
and social security income, (b) spouse’s personal earning, pension,
and social security income, and (c) other family member’s personal
earning, pension, and social security income.

Psychopathology

Researchers administered The World Health Organization
Composite International Diagnostic Interview Short Form via
the phone to participants and recorded whether participants met
diagnostic criteria for depression, generalized anxiety disorder,
and panic disorder (Kessler et al., 1998). We created a composite
mental health diagnosis variable by summing together the binary
indicators for each of these three diagnoses (e.g., a score of 3 would
indicate that someone met criteria for all three diagnoses).

Body Mass Index

BMI is an indicator of risk for diseases that can occur with
increased body fat (e.g., cardiovascular disease, diabetes; Rashid
et al., 2003). Measures of height and weight were collected via
self-report in M2 and M2, and BMI scores were computed (BMI =
weight/height2). For a subset of participants, height and weight
measurements were obtained by clinical staff via a standardized
protocol. Where available, and based on guidance from MIDUS
documentation, the staff-obtained measure was used. When not
available, the self-report measure of BMI was used.

Childhood Social Class

Participants in M1 and MR answered via self-report how they
compared to other families in terms of finances growing up.
Participants responded a lot better off, somewhat better off, a little
better off, same as average family, a little worse off, somewhat
worse off, a lot worse off, or I do not know. Participants also
responded via self-report whether their family was onWelfare/Aid
to Dependent Children growing up (0 = no, 1 = Yes). We z-scored
each of these variables and summed them for a composite measure
of childhood social class.

Sampling Plan

Data Inclusion/Exclusion

Participants who (a) completed the Positive Relations with
Others measure of the Psychological Well-Being Scale and (b) a
neuroimaging scan were included in our data analyses (N = 197).
Structural neuroimaging scans were examined for quality by using
the Computational Anatomy Toolbox 12 (CAT12) to generate a
quantitative quality metric (“CAT12 score”) (Gaser &Dahnke, 2016).
This metric considers the following four measures of image quality:
noise-to-contrast ratio, coefficient of joint variation, inhomogeneity-
to-contrast ratio, and root-mean-squared voxel resolution. CAT12
normalizes and combines these measures using a kappa statistic-
based framework, producing a score from 0 to 1 (higher values
indicate better image quality). Additional information is available at
https://www.neuro.uni-jena.de/cat/index.html#QA.

Power Analysis

While work connecting brain-age to different individual differences
is still in its infancy, multiple past studies report medium effect sizes;
for example, accelerated brain age has been associated with excessive
worry (Cohen’s d = 0.53), as well as symptoms of depression
(Cohen’s d= 0.61) (Karim et al., 2021).We computed power analyses
for our partial indirect effects analysis using the R package “pwrss,”
which provides a framework for power analyses within a mediation
framework. For the a path estimation—that is, an approximate effect
size of the association between social connectedness and brain age, we
used an estimation of β = 0.29. Due to the novelty of this exploration
of social connectedness on brain age, there were no effect size
estimates exactly; this estimate was derived from a recent publication
on rumination on brain age, an approximate psychosocial process
(Karim et al., 2021). For the b path, we used an estimation of β= 0.545
(Cole et al., 2018). Three various tests (Sobel, Aroian, and Goodman)
at 80% power and a Type I error rate of 0.05 produced a sample
size of 106, 108, and 104, respectively. With our sample size of 123,
an a path estimate of β = 0.29, and b path estimate of β = 0.545, we
were 85%–92% powered to detect an effect similar to what has been
reported in the literature.

Analysis Plan

Descriptive statistics (means, medians, and standard deviations)
and correlational analysis were conducted to describe the sample
and report associations between brain data (calculated brain age and
imaging scan quality), social connectedness, mortality risk (number
of chronic health conditions and composite ADL score), variables
related to mortality risk (income, psychopathology, childhood social
status, and BMI), and other demographics (age, sex, race, and
sample origin). Regression models considered associations between
(a) the quality of social connections and mortality risk (c path), (b)
the quality of social connections and the brain-age gap (a path), and
(c) the brain-age gap and mortality risk (b path). All regression
equations included chronological age, biological sex, race, and sample
origin (i.e., M1/M2 or MR recruitment group). Regression equations
for the a and b paths that include the brain-age gap also added
a covariate modeling the amount of time between the self-report
assessments and neuroimaging scan (i.e., assessment lag time).
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Supplemental analyses considered the role of other contributors
to main outcomes of interest. We conducted sensitivity analyses
with other known correlates of longevity, considering the following
additional covariates in adjusted main models: income, mental health
diagnoses, childhood social class, and BMI (Vaillant & Mukamal,
2001). Specifically, we ran regression analyses with the additional
independent variables (a) income, (b) mental health diagnosis, (c)
childhood social class, and (d) BMI predicting both brain age (i.e.,
a path) and mortality risk (c path) in separate models (i.e., a different
model for each additional covariate). We also ran exploratory
analyses considering associations between social connectedness and
mortality records.

Research Questions and Hypotheses

Research Question 1

Are there associations between social connectedness and
mortality risk?
We hypothesized that positive relations with others would be

associated with decreased mortality risk as measured by (a) the
number of chronic conditions reported and (b) ability to perform
ADLs. We tested the association between positive relations
with others and mortality risk in two separate linear models (i.e.,
one for each mortality risk operationalization) that included
covariates listed above. We report standardized and unstandard-
ized beta coefficients for linear regression model as well as 95%
confidence intervals for the coefficient estimates and p values,
considering a two-sided p < .05 as statistically significant (see
Table 1).

c Path

ChronicConditions = β1PosRelationsOthers + β2Age

+ β3BiologicalSex + β4Race

+ β5SampleOrigin; (1)

ADLs = β1PosRelationsOthers + β2Age + β3BiologicalSex

+ β4Race + β5SampleOrigin: (2)

Research Question 2

Are there associations between positive relations with others and
the brain-age gap?
Linear regression was used to test the association between

positive relations with others and the brain-age gap in a model
that includes covariates listed above. We hypothesized that
positive relations with others would predict the difference
between chronological age and brain age (i.e., brain-age gap),
such that higher positive relations with others would be associated
with a narrower brain-age gap driven by a younger brain age
relative to chronological age. We report standardized and
unstandardized beta coefficients for the linear regression model
as well as 95% confidence intervals for the coefficient estimates
and p values, considering a two-sided p < .05 as statistically
significant.

a Path

BrainAgeGap = β1PosRelationsOthers + β2Age

+ β3BiologicalSex + β4Race

+ β5SampleOrigin + β6LagTime: (3)

Research Question 3

Are associations between positive relations with others and
all-cause mortality statistically accounted for by the brain-age gap?

We planned to use linear regression models within an indirect
effects analysis framework to test whether the brain-age gap
statistically accounts for part of the association between positive
relations with others and mortality risk. Our two models (i.e., one
testing chronic conditions as the outcome representing mortality
risk and one testing limitations to ADLs) included the same
covariate set as the previous models. We hypothesized that
participants’ brain-age gap would account for part of the association
between positive relations with others and mortality risk, such that
brain-age gap values (i.e., discrepancy between predicted age
of the brain and chorological age) would explain variance in the
association between positive relations with others andmortality risk.
We planned to achieve this through Monte Carlo simulation of the
confidence intervals of the indirect effect (i.e., a × b, where a is the
coefficient representing positive relations with others predicting
brain-age gap and b is the coefficient representing brain-age gap
predicting mortality risk). This method has been established as
advantageous over other methods of confidence interval construction
for producing more precise estimates and is implemented through
the R package “mediation” (Tingley et al., 2014).

b Path

ChronicConditions = β1BrainAgeGap + β2Age

+ β3BiologicalSex + β4Race

+ β5SampleOrigin + β6LagTime; (4)

ADLs = β1BrainAgeGap + β2Age + β3BiologicalSex

+ β4Race + β5SampleOrigin + β6LagTime: (5)

Data Imputation

Self-report measures were imputed using the full MIDUS sample
to maximize the number of observations for the imaging analyses.
Two hundred one individuals completed imaging across Core
and MR samples. Of these observations, 197 had complete data. We
used the full MIDUS sample and the “mice” package in R to impute
missing variables (van Buuren & Groothuis-Oudshoorn, 2011).
Research Question 1 reports results from full MIDUS (N = 8,692),
while Research Questions 2 and 3 run analyses using the MIDUS
imaging subsample, both raw (N= 197) and imputed (N= 201). Full
details can be found in the Supplemental Material. For all analyses,
analytic output and code, including standardized and unstandardized
beta coefficients for regression models, as well as 95% confidence
intervals for the coefficient estimates and p values, can be found in
the Supplemental Material.
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Results

Descriptive statistics are presented in Table 2 and correlations
between key variables can be found in Table 3.

Research Question 1

Regression analyses found a significant association between
positive relations with others and decreased mortality risk as
measured by the number of chronic conditions reported in the full
MIDUS sample (N= 8,692; β=−0.04, t=−10.68, p< .01). That is,
as expected, increased social connectedness was correlated with a
lower number of chronic health conditions. Similarly, linear models
found that increased levels of social connectedness were associated
with decreased difficulties completing ADLs in the full MIDUS
sample (β = −0.03, t = −18.23, p < .01). Analyses with the imaging
MIDUS subsample (N = 201) did not find significant effects for
social connectedness on chronic health conditions (β = −0.03, t =
−1.21, p = .229). However, social connectedness did significantly

predict decreased difficulty to perform ADLs in this sample (β =
−0.03, t = −2.31, p = .021). This pattern was true for both the
imaging subsample with imputed data (N = 201) and nonimputed
data (N = 197). Exploratory analyses considered the effect of
social connectedness on mortality in the complete MIDUS sample,
finding that increased social connectedness was associated with
a 2.3% decrease in the odds of mortality (odds ratio = 0.98, t =
−5.21, p < .001).

Research Question 2

We next examined the association between social connectedness
and the brain-age gap in two subsamples of the MIDUS data set—
the entire imaging sample (N = 201) with imputed behavioral data
and the imaging sample relying on complete observations only
(N = 197). We did not find support for our hypothesis that social
connectedness would predict the brain-age gap in the imputed
imaging sample (β = −0.02, t = 0.08, p = .801) or the raw imaging
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Table 2
Descriptive Statistics for Key Variables by Recruitment Sample

Characteristic Corea Refreshera Overalla

Age (years) 57 (10) 47 (12) 51 (12)
Sex
Female 50 (68%) 68 (54%) 118 (59%)
Male 24 (32%) 59 (46%) 83 (41%)

Latine/x
Not Spanish/Hispanic 67 (100%) 125 (100%) 192 (100%)

Race
White 45 (64%) 81 (64%) 126 (64%)
Black and/or African American 20 (29%) 38 (30%) 58 (29%)
Native American or Alaska Native Aleutian Islander/Eskimo 3 (4.3%) 2 (1.6%) 5 (2.5%)
Asian 1 (1.4%) 1 (0.8%) 2 (1.0%)
Native Hawaiian or Pacific Islander 0 (0%) 0 (0%) 0 (0%)
Other 1 (1.4%) 5 (3.9%) 6 (3.0%)

Education
No school/some grade school 0 (0%) 0 (0%) 0 (0%)
Eighth grade/ junior high school 1 (1.4%) 0 (0%) 1 (0.5%)
Some high school 5 (7.1%) 8 (6.3%) 13 (6.6%)
General Education Development 2 (2.9%) 2 (1.6%) 4 (2.0%)
Graduated from high school 21 (30%) 19 (15%) 40 (20%)
1–2 years college, no degree yet 11 (16%) 20 (16%) 31 (16%)
3+ years college, no degree yet 4 (5.7%) 5 (3.9%) 9 (4.6%)
Grad 2-year/vocational school/associates degree 7 (10%) 17 (13%) 24 (12%)
Grad 4–5 year college/bachelor’s degree 9 (13%) 31 (24%) 40 (20%)
Some graduate school 1 (1.4%) 3 (2.4%) 4 (2.0%)
Master’s degree 9 (13%) 15 (12%) 24 (12%)
Professional degree (e.g., PhD, JD) 0 (0%) 7 (5.5%) 7 (3.6%)

Income
Less than $10,000 4 (6.0%) 11 (8.9%) 15 (7.9%)
$10,000–$19,999 5 (7.5%) 5 (4.0%) 10 (5.2%)
$20,000–$29,999 11 (16%) 5 (4.0%) 16 (8.4%)
$30,000–$39,999 5 (7.5%) 10 (8.1%) 15 (7.9%)
$40,000–$49,999 7 (10%) 6 (4.8%) 13 (6.8%)
$50,000–$59,999 9 (13%) 10 (8.1%) 19 (9.9%)
$60,000–$69,999 5 (7.5%) 13 (10%) 18 (9.4%)
$70,000–$79,999 4 (6.0%) 9 (7.3%) 13 (6.8%)
$80,000–$89,999 4 (6.0%) 10 (8.1%) 14 (7.3%)
$90,000–$99,999 2 (3.0%) 6 (4.8%) 8 (4.2%)
$100,000–$149,999 8 (12%) 28 (23%) 36 (19%)
$150,000 or more 3 (4.5%) 11 (8.9%) 14 (7.3%)

Total N = 74 N = 127 N = 201

aM (SD); n (%); N = N.
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sample (β = 0.01, t = 0.18, p = .859). Supplemental analyses
exploring four other algorithms to calculate brain age and derive the
brain-age gap were consistent with these results.

Research Question 3

Before testing whether the brain-age gap statistically accounts
for part of the association between positive relations with others
and mortality risk, we first ran b path analyses considering whether
the brain-age gap predicted mortality risk. Contrary to predictions,
the brain-age gap did not statistically predict mortality risk as
operationalized by total chronic conditions in either the complete
imaging sample (β =−0.01, t= −0.63, p = .526) or the raw imaging
sample (β = −0.01, t = −0.35, p = .730). Similarly, the brain-age
gap did not predict ability to perform ADLs in the imputed imaging
sample (β = −0.00, t = −0.34, p = .733) or the raw imaging sample
(β = −0.00, t = −0.15, p = .880). Results for all models were
consistent with other algorithmic operationalizations of brain age
and derivation of the brain-age gap (see Supplemental Material).
We therefore did not test for statistical mediation due to not having
a significant a or b path for our hypothesized models.

Supplemental Analyses

We report in the supplement additional analyses using four
other algorithms to calculate brain age and derive the brain-age gap.
These variables were used in exploratory analyses to query Research
Questions 2 and 3. Results were consistent across all models (i.e.,
not significant). We also report (a) c path logistic regressions models
with mortality data, (b) sensitivity analyses with known correlates of
mortality (i.e., income, mental health diagnoses, childhood social
class, and BMI) in a and c path models, and (c) exploratory analyses
with models not including chronological age and data from
participants with the highest-quality scans.

Discussion

This study sought to explore whether the brain-age gap, a novel
marker for brain health, would be related to the known phenomenon
that social connections are good for health. In the large MIDUS
sample, our analyses replicate what decades of research has found:
More social connectedness predicts decreasedmortality risk through
multiple operationalizations. That is, a higher number of self-reported
positive relations with others was related to fewer chronic health
conditions, reduced difficulty in completing ADLs, and in exploratory
analyses, reduced odds of death. We did not find evidence that
the brain age gap, or discrepancy between chronological age and
algorithm-predicted brain age, was related to social connectedness or
mortality risk. We consider how our results correspond to findings
from other research and discuss limitations of our study below to
encourage other researchers to explore this potentially fruitful area.
Our first finding that social connectedness is related to lower

mortality risk echoes a vast body of literature suggesting that social
relationships are beneficial for health and longevity (Rico-Uribe
et al., 2018; Tatangelo et al., 2017; Yang et al., 2016). The pattern
that social relationships are associated with mental and physical
health has been replicated across a variety of disciplines, with social
connections being related to less depression (Badri et al., 2021),
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lower blood pressure (Steptoe et al., 2009), and lower likelihood of
an early death (Holt-Lunstad et al., 2010).
We did not find statistically significant associations between

social connectedness and the brain-age gap, or between the brain-
age gap and mortality risk. Our investigation of the brain-age gap, a
novel biomarker found to be predictive of mortality and cognitive
decline (Anatürk et al., 2021; Cole et al., 2018), joins emerging
work exploring the effects of social relationships on brain health.
Research has only begun to explore links between social connected-
ness and the brain as a biomarker, with preliminary work on social
disconnectedness finding support for this link (de Lange et al., 2021;
Lay-Yee et al., 2023). Recent research has found that social isolation
is related to accelerated brain aging (i.e., a larger brain-age gap) in
a large (N= 855), longitudinal sample (Lay-Yee et al., 2023). Adults
who experienced social isolation had a brain on average 1.73 years
older than adults who were never isolated. This finding underscores
the relevance of exploring social connections in relation to brain
age; yet, discrepancies between study design and analytic approach
may underlie differences. The investigators considered social
isolation, or an “extreme lack of social ties”; in contrast, our work
operationalized social connectedness as positive relations with
others. Social connectedness and social isolation are not necessarily
interchangeable, as social connectedness may have stress-buffering
effects while social isolation may have stress-inducing accelerations
on brain age.
While we did not find support for links between positive social

relations and brain age, distinguishing between the stress-buffering
role of social connections and the stress-inducing role of social
isolation is consistent with recent conceptual models discussing
social safety versus threat as distinct mechanisms on health and
longevity (Slavich, 2020; Slavich et al., 2023). A lack of social
connections, or the experience of loneliness, may function as a risk
factor, while social connections may be a resilience factor. Each of
these experiences may exert different influences on physiological
systems and brain aging. Social Safety Theory and evidence posits
that social threats (e.g., social conflict, isolation, rejection) increase
immune-related inflammation, which when chronically activated,
has deleterious impacts on the brain (Slavich, 2020). A lack of social
relationships may affect brain aging via activation of the chronic
stress response and other mechanisms. However, having positive
social connections may not have an analogous positive impact on
brain health.More direct measures of social threat and social safety, as
well as associations with inflammation and other potential mediators
or moderators, could be fruitful avenues of exploration going forward.
Evidence suggests that there are certain moderators of the link

between social connectedness and longevity that may be extended
to aging in the brain, such that individuals who are less-socially
connected and who have particular vulnerabilities are susceptible
to having an older-than-expected brain age. For example, a large
study found only that individuals who were socially isolated and
genetically predisposed to loneliness had accelerated brain age,
compared to individuals who reported being socially isolated but
not lonely (de Lange et al., 2021). Along with risk variables such
as propensity for loneliness, it will be important for future work to
explore resilience variables, such as self-efficacy, that may buffer
against a connection between social isolation and accelerated
brain age.
Despite evidence suggesting that accelerated brain age is related

to increased cognitive impairment and increased mortality risk

(Cole et al., 2018), we did not find evidence that the brain-age gap
was related to impaired functioning in our sample. This may be
due to differences in operationalization of functioning; while self-
reported chronic health conditions and ability to performADLs exist
under the umbrella of aging and longevity, brain age may be more
intimately connected to cognitive functioning. That is, accelerated
brain age may be most connected to mild cognitive impairment,
while various other health systems and abilities contribute to one’s
ability to carry out ADLs. Beyond the operationalizations of aging
as chronic health conditions and ability to perform ADLs, we also
considered the impact of social connectedness on mortality. We
were not able to explore mortality as an outcome related to brain
age due to the low rate of mortality in the imaging subsample
(11 individuals, or 5% of the sample, had died). Future iterations of
this work should consider exploring links between social connected-
ness, brain age, and mortality in larger samples.

Limitations

Several limitations likely contribute to the null results that may
be overcome by future work. First, methodological decisions and
sample limitations may underlie the lack of effects observed.
While the entire MIDUS sample is a representative sample recruited
through random-digit dialing, the imaging sample was restricted by
participants’ ability to travel to the scanning laboratory in
Madison, WI. Notably, a majority of this imaging subsample
identified as White (90%) and non-Hispanic (100%). According to
the U.S. Census Bureau (2021) report, 59% of the U.S. population
identifies as White/European ancestry alone (and not Hispanic or
Latino/a), with the percentage world-wide being even smaller
(U.S. Census Bureau, 2021). This underscores that any results
from a predominantly White sample have informative, but
reduced, generalizability. Further, race-based health inequities
drive discrepancies in longevity and lifespan duration (De Ramos
et al., 2022). Similar investigations in samples of racial and ethnic
diversity are therefore a matter of equity and justice.

Given that the MIDUS imaging sample represents a small
selection of the larger MIDUS sample, the power to detect any effect
was substantially reduced. The true effect size may also be smaller
than that which was used to perform power analyses, as not all brain
age articles find effects (Kang et al., 2023). The MIDUS imaging
subsample was also relatively young with the average age at
neuroimaging scan being 51.5 years (SD = 12.06, range = 26–76
years). It may be the case that this sample is too young for the
effects of social connectedness to have manifested in the brain in
a statistically observable way. Further, to maximize the sample,
several missing self-report datapoints were imputed and all
neuroimaging observations were included. We controlled for scan
quality, but this covariate does not speak to the ways in which poor
scan quality may impact the derivation of the brain age variable.

The utilization of brain age is novel, and as such, there is debate
over how to incorporate this metric and other variables into
statistical models. The brain-age gap is calculated by subtracting
chronological age from the algorithm-predicted brain age. Some
scholars have not included chronological age as a separate
covariate in statistical models; notably, the recent article finding
that a lack of social connections in adulthood was associated
with accelerated aging did not model chronological age as an
independent variable (Lay-Yee et al., 2023). We did include age
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as an independent variable, as ultimately, we are interested in the
ability of the brain-age gap to predict aging-related phenotypes
over and above chronological age. The impact of a brain-age gap is
not constant across age—for example, a 60-year-old with a brain age
that is 20 years older would be expected to have more health-related
impairments than a 30-year-old with a brain age that is 20 years
older, underscoring the importance of including chronological age
as a covariate inmodels exploring the brain-age gap. This discrepancy
in analytic approach contributes to the ongoing conversation about
the most appropriate way to model these relations.
While brain age algorithms are useful and novel tools, algorithmic

error in brain-age predictions is high (Bacas et al., 2023; Hanson
et al., 2023). Basic work looking at reliability of brain age finds large
prediction errors ranging from 4 to 5 years (Dörfel et al., 2023) and
points to the need for a brain-age algorithm with lower out-of-
sample prediction error. Work should be mindful when trying to
consider individual differences on top of this. Lay-Yee et al. (2023)
found a difference of 2 years accelerated age between a group of
individuals who were never socially isolated and individual who
were socially isolated as adults; however, within-group variability
was quite large, especially when considering between-group effects
(standard deviations of 7–8 years); this suggests high variability
in these processes and their prediction. Additionally, brain age
calculations rely on whole-brain inputs. Future studies should
consider deviations in the brain from age-expected levels using
other newly developed tools such as normative modeling via
CentileBrain (Ge et al., 2024). Understanding the effects of social
connectedness in a local part of the brain, instead of global impact,
could contribute to mechanistic perspectives.
Future studies should continue to employ longitudinal modeling

and consider multi-informant measures of these complex constructs.
This research relied on neuroimaging and monoinformant self-
reports on chronic health conditions, ADLs, and positive relations
with others. Work has found that multidimensional assessment of
social connectedness is particularly predictive of longevity (Holt-
Lunstad, 2017). As an example, Lay-Yee et al. (2023) utilized multi-
informant reports (two—three close others reporting on loneliness)
at multiple datapoints throughout childhood and adulthood. Further,
positive relationships with others represent one facet of many
prosocial factors that may influence brain age and longevity (Hui et al.,
2020). Work should consider composite variables of prosociality
including charitability, compassion, and kindness (Hui et al., 2020;
Lee et al., 2021) and gather multi-informant assessments of these
variables.

Conclusions

This work underscores known associations between social
connectedness and longevity and leaves open questions on the
growing literature exploring brain age as a biomarker for aging.
As expected, self-reported positive relationships with others were
associated with several operationalizations of mortality risk,
including chronic health conditions, ability to achieve ADLs, and
mortality. We, however, did not find support for links between
social connectedness and a discrepancy between algorithm-
predicted brain age and chronological age (i.e., the brain-age gap),
nor between the brain-age gap and mortality risk, in a sample of
approximately 200 adults. Given the extensive research documenting
the influence of social connectedness on longevity, future work

should strive to conduct similar investigations in larger samples
alongside improved brain-age algorithms and othermetrics of “neural
aging” (e.g., CentileBrain), incorporating the insights garnered
through this registered report.
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