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A B S T R A C T   

Background: Chronic psychological stress has widespread implications, including heightened mortality risk, 
mental and physical health conditions, and socioeconomic consequences. Stratified precision psychiatry shows 
promise in mitigating these effects by leveraging clinical heterogeneity to personalize interventions. However, 
little attention has been given to patient self-report. 
Methods: We addressed this by combining stress-related self-report measures with peripheral biomarkers in a 
latent profile analysis and survival model. The latent profile models were estimated in a representative U.S. 
cohort (n = 1255; mean age = 57 years; 57% female) and cross-validated in Tokyo, Japan (n = 377; mean age =
55 years; 56% female). 
Results: We identified three distinct groups: “Good Mental Health”, “Poor Mental Health”, and “High Inflam-
mation”. Compared to the “Good Mental Health” group, the “High Inflammation” and “Poor Mental Health” 
groups had an increased risk of mortality, but did not differ in mortality risk from each other. 
Conclusions: This study emphasizes the role of patient self-report in stratified psychiatry.   

1. Introduction 

Chronic psychological distress adversely impacts social, occupa-
tional, physical, and mental functioning and has serious implications for 
the global economy (Counts et al., 2023) Indeed, it is well documented 
that chronic stress-related inflammatory processes have pernicious ef-
fects on aging, disease progression, and mortality (Epel et al., 2018). 
Prior research has primarily focused on isolated associations between 
biomarkers of chronic stress, morbidities, and mortality (Steptoe et al., 
2013; Baune et al., 2011; Marsik et al., 2008; Kiecolt-Glaser et al., 2003; 
Hodes et al., 2016). While critical for advancing the field, isolated ap-
proaches are less sensitive in detecting distinct patterns across multiple 
biopsychosocial markers important for clinical decision making (Fer-
nandes et al., 2017). Identifying person-level patterns of multiple psy-
chological constructs and inflammatory biomarkers could help to exact 
diagnosis, prognosis, and treatments of chronic stress-related health 
conditions and reduce their negative socioeconomic consequences. 

Implementing person-level approaches is consistent with the tenets 
of precision psychiatry, which seeks to refine diagnosis, prognosis, and 
treatment at the individual level through multimodal methods that 
simultaneously factor in biological, psychological, and environmental 

variables (Fernandes et al., 2017). This also coincides with efforts to 
move from a stepped-care approach, where interventions progress from 
less to more intensive, to a matched-care or stratified-care approach 
based on phenotypic biomarkers (Arns et al., 2023). To date, precision 
psychiatry has largely focused on identifying latent biosignatures to 
explain variation in mental health, with patient self-report regarded as 
secondary to putative biological underpinnings (Gómez-Carrillo et al., 
2023). However, this may be an incomplete account because mental 
health is mediated by narrative meaning-making processes related to 
self-understanding, interpersonal dynamics, and broader sociocultural 
epistemologies (Gómez-Carrillo et al., 2023). To move beyond current 
limitations of the bio-centric model of precision psychiatry, some in-
vestigators have emphasized the development of models that give par-
allel consideration to self-report, phenomenological, and sociocultural 
aspects of illness experience (Gómez-Carrillo et al., 2023; Kirmayer and 
Gold, 2011; Borsboom et al., 2018; Ioannidis, 2019). 

One particularly appealing approach in precision psychiatry is to 
utilize data-driven combinatorial methods, such as latent class and 
latent profile analyses, that partition large samples into latent subgroups 
of participants who share similar patterns of disease across observed 
indicator variables (Scrucca et al., 2016). By way of maximum 
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likelihood estimation, each participant is estimated a probability of 
membership to each group and is assigned membership to the group 
with the highest probability (Scrucca et al., 2016). In the psychological 
stress and disease literature, depression (Goodwin, 2006), anxiety (Stein 
and Sareen, 2015), poor sleep (Zeitzer and Gillette, 2013), interleukin-6 
(IL-6) (Marsland et al., 2017), C-reactive Protein (CRP) (Pitharouli et al., 
2021), dehydroepiandrosterone (DHEA) (Kamin and Kertes, 2017), and 
cortisol (Adam et al., 2017) have emerged as potent indicators of chronic 
stress robustly associated with mental and physical functioning. Exam-
ples of physical health conditions associated with these indicators, 
which are also linked to higher risk of mortality, include diabetes 
(Castro-Costa et al., 2019), heart disease (Halaris, 2013), stroke (Rallidis 
et al., 2006), and cancer occurrence (Meaney et al., 2017). Therefore, 
using these as indicator variables in a latent profile analysis may be 
especially telling in identifying heterogeneous clinical presentations 
that vary with regard to health conditions, prognostic factors, and risk of 
mortality. 

In this study, our first hypothesis-generating aim was to use a latent 
variable mixture modeling approach (i.e., latent profile analysis; LPA) to 
derive distinct person-centered phenotypes of chronic stress-related self- 
report measures and peripheral biomarkers. We used data from a large 
representative population cohort of adults in the United States to esti-
mate the models. The profiles were cross-validated with a representative 
sample from Tokyo, Japan. The second prospective aim was to examine 
whether risk of mortality differed among the three distinct groups 
derived from the United States sample only, as survival data was not 
collected in the Tokyo, Japan sample. Due to strong associations be-
tween mental health, physical health, and all-cause mortality (Epel 
et al., 2018), we expected to find a difference in survival curves between 
the three distinct person-centered phenotypes identified in our first aim 
(“Good Mental Health”, “Poor Mental Health”, and “High Inflamma-
tion”). Namely, we expected to find differences between the “Good 
Mental Health” and “High Inflammation” profiles as well as the “Good 
Mental Health” and the “Poor Mental Health” profiles, but not between 
the “High Inflammation” and the “Poor Mental Health” profiles. 

2. Methods 

2.1. Data source and participants 

We obtained data from two population-based longitudinal studies 
(Midlife in the United States II [MIDUS II; 2004–2009] and Midlife in 
Japan [MIDJA; 2009–2010]) of age-related individual differences in 
physical and psychosocial health in representative adults from the 
United States (n = 1255; age = 57.32 ± 11.55 years; 57% female) and 
from Tokyo, Japan (n = 377; age = 55.27 ± 14.03 years; 56% female) 
(Dienberg et al., 2010; Kitayama et al., 2010; Ryff et al., 2015). The 
MIDUS series is supported by the National Institute on Aging and 
currently includes three waves of data collection: MIDUS, MIDUS II, and 
MIDUS III (Radler, 2014). Participants were recruited for the initial 
MIDUS study via random digit dialing of telephone numbers. During 
MIDUS II, in addition to completing self-report measures, a subset of 
participants provided biomarker data during a laboratory visit and 
saliva samples during a daily diary study. We used data from MIDUS II 
sources in the present study. To provide researchers with data for 
cross-cultural comparisons, the methods used in MIDJA paralleled those 
of the MIDUS study (Kitayama et al., 2010). Mortality data have been 
collected through 2022 for the MIDUS study. Mortality data have not 
been collected for the MIDJA study. Further details on recruitment and 
data collection methods can be found elsewhere (Radler, 2014). Data are 
publicly available and can be requested from https://www.icpsr.umich. 
edu/web/ICPSR/series/203. 

2.2. Latent profile analysis indicator variables 

2.2.1. Fasting blood draw biomarkers 
Three inflammatory and neuroendocrine biomarkers, IL-6, CRP, and 

DHEA, were obtained from participants in both cohorts. In the United 
States, serum samples were collected from a 12-h fasting blood draw on 
the morning of the second day of a 2-day clinic visit, while in Japan, 
samples were collected from a 1-h fasting blood draw at any time during 
the day of the clinic visit. (Midlife in the United States) Blood specimens 
were collected by clinic staff using a standardized set of study proced-
ures. Samples from both cohorts were stored in a − 60 ◦C to − 80 ◦C 
freezer and were delivered on dry ice to the MIDUS Biocore at the 
University of Wisconsin, where they were stored at − 65 ◦C prior to 
analysis by various laboratories in the United States. 

An enzyme-linked immunosorbent assay (ELISA; Quantikine® High- 
sensitivity ELISA kit #HS600B; R&D Systems, Minneapolis, MN) was 
used to derive IL-6 ligand concentrations in both cohorts (minimum 
detectable level: 0.156 pg/mL, inter-assay CV: 12.31%; intra-assay CV: 
3.25%, assay range: 0.156–10 pg/mL; reference range: 0.45–9.96 pg/ 
mL). Immunonephelometry (Siemens Dade Behring BN II Nephelom-
eter) was used to derive C-reactive protein concentrations in both co-
horts (minimum detectable level: 10− 6 μg/mL; assay range: 0.014–216 
μg/mL; inter-assay CV: 4.72–5.16%; intra-assay CV: 2.2–4.1; sensitivity: 
<3 μg/mL). Radioimmunoassay (Diagnostic Systems Laboratories, 
#DSL8900, Webster, TX) was used to derive DHEA concentrations in the 
United States (assay range: 0.2–2.26 ng/mL; inter-assay CV: 5.47%; 
intra-assay CV: 2.7–3.8%; reference range: 1.9–7.6 ng/mL [21–49 y/o], 
1.0–4.5 ng/mL [≥50 y/o] and Tokyo, Japan (assay range: 0.05–9 ng/ 
mL; inter-assay CV: <7.4%; intra-assay CV: <7.4%; reference range: 
1.33–7.78 [18–40 y/o], 0.63–4.70 [≥41 y/o]. Additional details on the 
laboratory assay procedures are described in the MIDUS documentation. 
(Midlife in the United States). 

2.2.2. Nighttime cortisol 
Due to differences in self-report and biomarker collection proced-

ures, we used 12-h urinary-free cortisol as a measure of HPA axis 
function in the United States sample and the average of three evening 
salivary cortisol samples in the Tokyo, Japan sample. The urine samples 
in the United States group were collected overnight, from 1900h to 
0700 h, on the second day of a 2-day clinic visit. Samples were stored 
between − 60 ◦C and − 80 ◦C and then mailed to the MIDUS Biocore lab 
for analysis. High-Pressure Liquid Chromatography was used to assay 
urinary-free cortisol (minimum detectable level: 0.08 μg/dL; inter-assay 
CV: 6.1%; reference range: 3.5–45 μg/day). Evening saliva samples were 
collected using cotton swab Salivette devices (Sarstedt, Nümbrecht, 
Germany) on three consecutive days immediately following the clinic 
visit. Participants kept a written log of collection times. Samples were 
frozen at − 60 ◦C and then shipped to and stored at the MIDUS Biocore 
lab. A luminescence immunoassay assay procedure (IBL, Hamburg, 
Germany) was used in the Kirschbaum laboratory at the Technical 
University of Dresden, Germany to quantitate salivary cortisol (mini-
mum detectable level: 0.43 nM, inter-assay CV: 15%, intra-assay CV: 
3%, reference range: 3–25 nM). 

2.2.3. Depressive symptoms 
The Center for Epidemiologic Studies—Depression Scale (Radloff, 

1977; Wada et al., 2007; Fushimi et al., 2013; Cosco et al., 2017) (CES-D; 
English and Japanese versions) was used to measure depressive symp-
toms. This is a 20-item measure with four subscales: depressed affect, 
positive affect, somatic complaints, and interpersonal problems. Par-
ticipants used a 4- point Likert-type scale ranging from 0 (rarely or none 
of the time) to 3 (most or all of the time) to indicate how often they felt a 
particular way or behaved a certain way during the past week (e.g., “I 
felt sad” and “I had crying spells”). Items were summed to derive a total 
score that ranges from 0 to 60, with higher scores indicative of greater 
symptomatology. 
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2.2.4. Anxiety symptoms 
The Spielberger Trait Anxiety Inventory (Spielberger, 1983) was 

used to assess symptoms of anxiety. Participants rated 20 descriptive 
items about how they generally feel (e.g., “some unimportant thought 
runs through my mind and bothers me” and “I worry too much over 
something that really doesn’t matter”) on a 4-point Likert-type scale 
ranging from 1 (not at all) to 4 (very well). A total score was computed as 
the sum of all items, with higher scores reflecting worse anxiety. 

2.2.5. Subjective sleep quality 
Subjective sleep quality was measured using a single-item subscale 

from the 19-item Pittsburgh Sleep Quality Index (Buysse et al., 1989): 
“During the past month, how would you rate your sleep quality overall?” 
Participants rated this item on a 4-point Likert-type scale ranging from 1 
(very good) to 4 (very bad), with higher ratings reflecting worse sleep 
quality. 

2.3. Survival analysis outcome 

2.3.1. Mortality 
The University of Wisconsin Survey Center obtained mortality in-

formation through December 2022 from the National Death Index and 
longitudinal sample maintenance. We calculated survival time by sub-
tracting the biomarker MIDUS II laboratory visit month and year from 
the month and year of death. Of the 1255 MIDUS II participants in this 
study, 267 (21.27%) were recorded as deceased. 

2.4. Statistical analysis 

2.4.1. Latent profile analysis 
We performed a latent profile analysis (LPA; tidyLPA R package 

(Rosenberg et al., 2018) based on the mclust package (Scrucca et al., 
2016) to examine our hypothesis-generating aim of identifying distinct 
person-centered phenotypes of chronic stress-related biomarkers and 
self-report measures. We performed the analysis in the United States 
sample and cross-validated the profiles with the Tokyo, Japan sample. 
The LPA is a latent variable mixture modeling approach that identifies 
distinct subgroups of participants who share similar levels of continuous 
indicator variables (Scrucca et al., 2016). We entered IL-6, CRP, DHEA, 
nighttime cortisol, depressive symptoms, anxiety symptoms, and sub-
jective sleep quality into the LPA. An analytic hierarchy methodology 
based on Akaike’s Information Criterion (AIC), Approximate Weight of 
Evidence (AWE), Bayesian Information Criterion (BIC), Classification 
Likelihood Criterion (CLC), and Kullback Information Criterion (KIC) 
was used to determine the best-fitting model (Akogul and Erisoglu, 
2017). Single imputation was performed under the general location 
model and, to aid the interpretation of results, all indicator variables 
were standardized prior to running the LPA. 

Class assignment for each participant was determined by posterior 
probabilities of the most likely class membership (i.e., participants were 
assigned to the class that they had the highest probability of belonging 
to). We reported minimum and maximum average latent class proba-
bilities and entropy values as measures of classification certainty. Higher 
minimum and maximum average latent class probabilities are indicative 
of greater model classification certainty. Entropy values range from 0 to 
1, with 0 indicating complete classification uncertainty and 1 indicating 
complete certainty. Simulation studies suggest that an entropy value of 
0.4 reflects low classification certainty, an entropy value of 0.6 reflects 
medium classification certainty, and an entropy value of 0.8 reflects 
high classification certainty (Clark and Muthén, 2009). We also used the 
get_estimates() function from the tidyLPA R package to examine whether 
the mean of each standardized indicator variable for each profile was 
significantly different from zero (p < 0.05). 

2.5. Survival analysis 

In the United States cohort, we used a Cox proportional hazards 
model to test whether survival time differed among the three latent 
profile groups. The survival R package was used to estimate the Cox 
regression, while the adjustedCurves R package was used to derive 
covariate-adjusted curves with confidence intervals and to calculate 
differences in survival curves. We expected to find a difference in sur-
vival curves between the “Good Mental Health” and “High Inflamma-
tion” profiles as well as the “Good Mental Health” and the “Poor Mental 
Health” profiles but not between the “High Inflammation” and the “Poor 
Mental Health” profiles. Age- and gender-adjusted survival curves and 
point-wise confidence intervals for each group were derived using G- 
Computation (AKA Direct Standardization or Corrected Group Prognosis 
Method) (Denz et al., 2023). All possible pairwise comparisons were 
estimated using the adjusted_curve_test() function from the adjustedCurves 
package, which used bootstrapped adjusted curves to test whether the 
integral of the difference between each pair of latent profile survival 
curves from years 0–15 was equal to 0 (Denz et al., 2023; Pepe and 
Fleming, 1989). To aid interpretation of results, age was grand-mean 
centered and gender was coded − 0.5 (male) and 0.5 (female). The 
proportional hazards assumption was adequately met per examination 
of the Schoenfeld residuals plot. Refer to the Supplementary Material for 
the R code related to all study analyses. 

3. Results 

3.1. Latent profile analysis 

Table 1 indicates that the best-fitting model in both cohorts was a 3- 
profile class-varying diagonal solution, where variances are allowed to 
freely vary across profiles and covariances are fixed to 0. In the United 
States cohort, the minimum and maximum average latent class proba-
bilities were 0.90 and 0.95, respectively. In the Tokyo, Japan cohort, the 
minimum and maximum average latent class probabilities were 0.87 
and 0.97, respectively, indicating high classification certainty. The en-
tropy value in the United States LPA model was 0.82 and the entropy 
value in the Tokyo, Japan model was 0.89, both indicating high classi-
fication certainty. As shown in Figs. 1 and 2, the 3-profile class-varying 
diagonal solutions were similar in the United States and Tokyo, Japan 
cohorts, with both cohorts showing evidence of three distinct profiles 
marked by similar patterns of IL-6, CRP, DHEA, nighttime cortisol, 
depressive symptoms, anxiety symptoms, and subjective sleep quality. 
Table 2 shows descriptive characteristics of each of the 3 profiles by 
cohort. Supplementary Fig. 1 displays prevalence rates of 20 physical 
health conditions in the United States cohort, while Supplementary 
Fig. 2 presents the rates in the Tokyo, Japan cohort. 

3.1.1. Good Mental Health 
The “Good Mental Health” profiles (United States: n = 618; 49% of 

the cohort) in the United States was primarily driven by low levels of 
anxiety (mean = − 0.65, se = 0.06, p < 0.001), low levels of depression 
(mean = − 0.62, se = 0.04, p < 0.001), and the absence of poor sleep 
quality (mean = − 0.36, se = 0.05, p < 0.001); secondarily by low levels 
of IL-6 (mean = − 0.28, se = 0.06, p < 0.001) and low CRP (mean =
− 0.23, se = 0.06, p < 0.001); and lastly by somewhat lower levels of 
DHEA (mean = − 0.20, se = 0.08, p = 0.010) relative to cortisol (mean =
− 0.04, se = 0.05, p = 0.401; Fig. 1; Supplementary Table S1). Similarly, 
in Tokyo, Japan (Tokyo: n = 260; 68% of the cohort), the “Good Mental 
Health” group was driven primarily by low levels of depression (mean =
− 0.39, se = 0.08, p < 0.001), low anxiety (mean = − 0.38, se = 0.09, p <
0.001), and good sleep quality (mean = − 0.26, se = 0.07, p = 0.001); 
secondarily by low levels of IL-6 (mean = − 0.22, se = 0.06, p < 0.001) 
and low CRP (mean = − 0.20, se = 0.03, p < 0.001); and lastly by 
somewhat higher levels of DHEA (mean = − 0.05, se = 0.09, p = 0.555) 
relative to PM cortisol (mean = − 0.17, se = 0.04, p < 0.001; Fig. 2; 
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Supplementary Table S1). 

3.1.2. Poor Mental Health 
The “Poor Mental Health” profile in the United States sample (United 

States: n = 407; 32% of the cohort) was driven primarily by relatively 
higher levels of anxiety (mean = 0.75, se = 0.18, p < 0.001), high 
depression (mean = 0.66, se = 0.19, p = 0.001), and poor sleep quality 
(mean = 0.35, se = 0.10, p = 0.001); secondarily by low levels of IL-6 
(mean = 0.66, se = 0.19, p = 0.001) and CRP (mean = − 0.28, se =
0.08, p = 0.001); and lastly by high levels of DHEA (mean = 0.27, se =

0.13, p = 0.038) relative to PM Cortisol (mean = − 0.16, se = 0.05, p =
0.002; Fig. 1; Supplementary Table S1). similarly, in Tokyo, Japan, the 
“Poor Mental Health” profile (Tokyo: n = 70; 18% of the cohort) was 
driven primarily by high levels of depression (mean = 1.36, se = 0.41, p 
= 0.001), high anxiety (mean = 1.35, se = 0.38, p = < 0.001), and poor 
sleep quality (mean = 0.79, se = 0.28, p = 0.005); secondarily by high 
DHEA (mean = 0.50, se = 0.19, p = 0.010) relative to PM Cortisol (mean 
= − 0.09, se = 0.09, p = 0.279), and lastly by low IL-6 (mean = − 0.28, se 
= 0.10, p = 0.006) and CRP (mean = − 0.18, se = 0.05, p = 0.001; Fig. 2; 
Supplementary Table S1). 

Table 1 
Fit statistics for latent profile modeling solutions in the United States and Tokyo, Japan cohorts.  

Cohort Model Classes AIC AWE BIC CLC KIC 

United States 1 1 24951.75 25163.52 25023.64 24925.75 24968.75 
(n = 1255) 1 2 23780.21 24114.38 23893.18 23737.97 23805.21  

1 3 23275.24 23731.60 23429.29 23216.97 23308.24  
2 1 24951.75 25163.52 25023.64 24925.75 24968.75  
2 2 21393.10 21834.22 21542.01 21336.80 21425.10  
2 3 20352.98 21023.21 20578.91 20266.62 20399.98  
3 1 23228.03 23760.48 23407.75 23160.03 23266.03  
3 2 22874.73 23529.50 23095.53 22790.55 22920.73  
3 3 22052.71 22829.58 22314.59 21952.60 22106.71 

Tokyo, Japan 1 1 7609.47 7787.95 7664.71 7583.47 7626.47 
(n = 377) 1 2 7318.27 7600.06 7405.07 7276.08 7343.27  

1 3 7160.35 7545.31 7278.71 7102.11 7193.35  
2 1 7609.47 7787.95 7664.71 7583.47 7626.47  
2 2 5795.84 6167.81 5910.26 5739.71 5827.84  
2 3 5440.02 6005.46 5613.62 5353.77 5487.02  
3 1 7064.72 7513.90 7202.81 6996.72 7102.72  
3 2 6819.70 7372.01 6989.35 6735.68 6865.70  
3 3 6795.32 7450.87 6996.54 6695.21 6849.32 

AIC = Aikake Information Criterion is derived from − 2 log-likelihood, penalized by number of parameters; AWE = Approximate Weight of Evidence integrates model 
fit and classification accuracy information; Bayesian Information Criterion uses − 2 log-likelihood, adjusted for the number of parameters and sample size; CLC =
Classification Likelihood Criterion is derived from − 2 log-likelihood, adjusted with entropy penalty.; Kullback Information Criterion id derived from − 2 log-likelihood, 
penalized by triple the number of parameters minus one. The best fitting models are highlighted in bold font. 

Fig. 1. Model-derived latent subgroups in the United States cohort. The 3 United States profiles estimated by the latent profile modeling procedure are shown. IL-6 =
Interleukin-6, CRP––C-reactive Protein; DHEA = Dehydroepiandrosterone; PM Cortisol = 12-h Urinary-Free Cortisol; Depression = Center for Epidemiologic 
Studies—Depression Scale; Anxiety = Spielberger Trait Anxiety Inventory; Poor Sleep = Pittsburgh Sleep Quality Index Subject Sleep Quality Subscale; y-axis does 
not start at 0. 
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3.2. High Inflammation 

The “High Inflammation” profile in the United States (United States: 
n = 230; 18% of the cohort) was driven primarily by high levels of IL-6 
(mean = 1.27, se = 0.17, p =< 0.001) and CRP (mean = 1.11, se = 0.16, 
p = < 0.001); secondarily by low levels of DHEA (mean = 0.04, se =
0.13, p = 0.755) relative to PM cortisol (mean = 0.39, se = 0.19, p =
0.039); and lastly by somewhat higher levels of depression (mean =
0.41, se = 0.17, p = 0.018), anxiety (mean = 0.33, se = 0.16, p = 0.040), 
and sleep quality (mean = 0.30, se = 0.12, p = 0.015; Fig. 1; Supple-
mentary Table S1). Similarly, in Tokyo, Japan, the “High Inflammation” 
profile (Tokyo: n = 52; 14% of the cohort) was driven primarily by high 
levels of IL-6 (mean = 1.45, se = 0.31, p = < 0.001) and CRP (mean =
1.22, se = 0.41, p = 0.003); secondarily by low levels of DHEA (mean =
− 0.43, se = 0.10, p = < 0.001) relative to PM cortisol (mean = 0.94, se 
= 0.30, p = 0.002), and lastly by average levels of depression (mean =
− 0.02, se = 0.10, p = 0.807) and anxiety (mean = 0.01, se = 0.10, p =
0.897) and somewhat higher levels of sleep quality (mean = 0.15, se =
0.18, p = 0.422; Fig. 2; Supplementary Table S1). 

3.3. Survival analysis 

Results from the Cox proportional hazards model are shown in Fig. 3. 
After correcting for multiple comparisons using the Bonferroni adjust-
ment (individual α = 0.017 for 3 tests), the area between the curves 
(ABC) of the “Good Mental Health” profile and the “High Inflammation” 
profile was significant (ABC = 0.734, se = 0.19, p < 0.001) as was the 
ABC of the “Good Mental Health” profile and the “Poor Mental Health” 
profile (ABC = 0.488, se = 0.129, p < 0.001). However, the ABC of the 
“Poor Mental Health” profile and the “High Inflammation” profile was 
not significant (ABC = 0.246, se = 0.201, p = 0.206). Holding age and 
gender constant, there was a 115% increase in the risk of mortality in the 
“High Inflammation” profile compared to the “Good Mental Health” 
profile [(2.153–1) x 100 = 115.3]. That is, the expected hazard was 
2.153 times higher in the “High Inflammation” profile compared to the 

“Good Mental Health” profile. Relative to the “Good Mental Health” 
profile, there was a 74% increase in the risk of mortality in the “Poor 
Mental Health” profile [(1.738–1) x 100 = 73.8], holding age and 
gender constant. That is, the expected hazard was 1.738 times higher in 
the “High Inflammation” profile compared to the “Good Mental Health” 
profile. 

4. Discussion 

The hypothesis-generating aim of this study was to use a data-driven 
approach to partition a large epidemiologic sample of representative 
adults from the United States into distinct subgroups of participants who 
shared similar patterns across 7 stress-related indicator variables: (a) 
depression, (b) anxiety, (c) poor sleep, (d) IL-6, (e) CRP, (f) DHEA, and 
(g) cortisol. Our results revealed 3 distinct groups in the United States 
sample that were cross-validated in a large representative sample of 
adults from Tokyo, Japan: (a) “Good Mental Health”, (b) “Poor Mental 
Health”, and (c) “High Inflammation”. Our second prospective aim was 
to examine whether the risk of mortality differed among the three 
groups. In support of our second hypothesis, relative to the “Good 
Mental Health” group, both the “High Inflammation” and “Poor Mental 
Health” groups had an increased risk of mortality, with the “High 
Inflammation” versus “Good Mental Health” difference being greater 
than the “Poor Mental Health” versus “Good Mental Health” difference. 
The difference in risk of mortality between the “High Inflammation” and 
“Poor Mental Health” groups was not statistically significant. 

The most prevalent group in both cohorts was the “Good Mental 
Health” group (US = 49%; Tokyo = 68%), followed by the “Poor Mental 
Health” group (US = 32%; Tokyo = 18%), and the “High Inflammation” 
group (US = 18%; Tokyo = 14%). Not surprisingly in both cohorts, low 
levels of mental health indicator variables (i.e., anxiety, depression, and 
poor sleep) were the most distinguishing features of the “Good Mental 
Health” group, while high levels of mental health indicator variables 
were the most distinguishing features of the “Poor Mental Health” 
group. High levels of inflammatory biomarkers (i.e., IL-6 and CRP) were 

Fig. 2. Model-derived latent subgroups in the Tokyo, Japan cohort. The 3 Tokyo, Japan profiles estimated by the latent profile modeling procedure are shown. IL-6 
= Interleukin-6, CRP––C-reactive Protein; DHEA = Dehydroepiandrosterone; PM Cortisol = average of three evening salivary cortisol samples; Depression = Center 
for Epidemiologic Studies—Depression Scale; Anxiety = Spielberger Trait Anxiety Inventory; Poor Sleep = Pittsburgh Sleep Quality Index Subject Sleep Quality 
Subscale; y-axis does not start at 0. 
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the most distinguishing features of the “High Inflammation” group in 
both cohorts. DHEA, an anti-glucocorticoid hormone with immuno- 
regulatory and neuroprotective properties (Kamin and Kertes, 2017), 
was highest in the “Poor Mental Health” group and lowest in the “High 
Inflammation” group. Its inverse relationship to cortisol, IL-6, and CRP 
across groups was consistent with the anabolic/catabolic pattern found 
in existing literature (Wolkowitz et al., 1997; Straub et al., 1998); 

specifically, high levels of DHEA in the “Poor Mental Health” group were 
associated with low levels of cortisol, IL-6, and CRP, while low levels of 
DHEA in the “High Inflammation Group” were associated with high 
levels of cortisol, IL-6, and CRP. 

Apropos our survival findings that demonstrate a greater risk of 
mortality with increasing mental and physical health conditions, the 
three profiles could be considered along a continuum from “Good 

Table 2 
Descriptive statistics for characteristic variables in latent profile subgroups in the United States and Tokyo, Japan.   

Characteristic 
United Sates Tokyo, Japan 

Good Mental Health n 
= 618a 

Poor Mental Health n 
= 407a 

High Inflammation n =
230a 

Good Mental Health n 
= 260a 

Poor Mental Health 
n = 70a 

High Inflammation n 
= 52a 

Age 56 (11) 52 (11) 54 (13) 56 (14) 49 (13) 62 (14) 
Gender 

Male 302 (49%) 163 (40%) 77 (33%) 113 (43%) 22 (31%) 33 (63%) 
Female 316 (51%) 244 (60%) 153 (67%) 147 (57%) 48 (69%) 19 (37%) 
Body Mass Index 29 (6) 32 (48) 34 (8) 22.48 (2.80) 22.31 (3.37) 23.46 (3.03) 

Smoker 
Yes 56 (9.1%) 83 (20%) 48 (21%) 44 (17%) 23 (33%) 15 (29%) 
No 562 (91%) 323 (79%) 182 (79%) 197 (76%) 44 (63%) 33 (63%) 
Don’t Know 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
Missing 0 (0%) 1 (0.2%) 0 (0%) 19 (7.3%) 3 (4.3%) 4 (7.7%) 

Ethnicity 
White 526 (94%) 306 (91%) 146 (93%) – – – 
Black 12 (2.1%) 11 (3.3%) 4 (2.5%) – – – 
Native American 7 (1.2%) 4 (1.2%) 3 (1.9%) – – – 
Asian 2 (0.4%) 1 (0.3%) 0 (0%) – – – 
Other 14 (2.5%) 11 (3.3%) 4 (2.5%) – – – 
Don’t Know 1 (0.2%) 1 (0.3%) 0 (0%) – – – 
Refused 0 (0%) 1 (0.3%) 0 (0%) – – – 
Missing 56 72 73 – – – 

Marital Status 
Married 436 (71%) 232 (57%) 121 (53%) 201 (77%) 36 (51%) 37 (71%) 
Separated 11 (1.8%) 11 (2.7%) 9 (3.9%) 3 (1.2%) 1 (1.4%) 0 (0%) 
Divorced 81 (13%) 67 (16%) 38 (17%) 11 (4.2%) 6 (8.6%) 4 (7.7%) 
Widowed 36 (5.8%) 27 (6.6%) 25 (11%) 17 (6.5%) 4 (5.7%) 6 (12%) 
Never Married 42 (6.8%) 62 (15%) 34 (15%) 27 (10%) 23 (33%) 5 (9.6%) 
Living With 
Someone 

12 (1.9%) 8 (2.0%) 3 (1.3%) 0 (0%) 0 (0%) 0 (0%) 

Missing 0 (0%) 0 (0%) 0 (0%) 1 (0.4%) 0 (0%) 0 (0%) 
Education 

High School or 
Less 

123 (20%) 89 (22%) 42 (18%) 130 (50%) 37 (53%) 30 (58%) 

Some College 113 (18%) 73 (18%) 38 (17%) 5 (1.9%) 1 (1.4%) 3 (5.8%) 
College or More 325 (53%) 173 (43%) 75 (33%) 123 (47%) 31 (44%) 18 (35%) 
Don’t Know 1 (0.001%) 0 (0%) 2 (0.009%) 0 (0%) 0 (0%) 0 (0%) 
Missing 56 (9%) 72 (18%) 73 (32%) 2 (0.8%) 1 (1.4%) 1 (1.9%)  

a Mean (SD); n (%). 

Fig. 3. Age- and gender-adjusted survival curves for each latent profile identified in the United States cohort. Participants in the Poor Mental Health and High 
Inflammation profiles were at greater risk of mortality than participants in the Good Mental Health profile. The difference in survival time was not statistically 
significant between the Poor Mental Health and High Inflammation groups. y-axis does not start at 0. 
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Mental Health” to “High Inflammation”, with DHEA at the crux of 
modulating biological responses to experiences of poor mental health. 
As there were no statistical differences in survival time between the 
“Poor Mental Health” and “High Inflammation” groups, their underlying 
physiology may converge over time, leading to nonsignificant differ-
ences in survival. That is, prolonged stress among participants in the 
“Poor Mental Health” group may catalyze a transition from the “Poor 
Mental Health” group to the “High Inflammation” group. 

As shown in Figs. 1 and 2, DHEA/cortisol, DHEA/IL-6, DHEA/CRP 
exhibited an inverted pattern between the “Poor Mental Health” and 
“High Inflammation” groups. In the “Poor Mental Health” group, it is 
plausible that a relatively higher DHEA level, compared to other bio-
markers, may function as an inhibitory factor against the proin-
flammatory environment associated with chronic psychological stress. 
Conversely, the inverse DHEA-biomarker relationships observed in the 
“High Inflammation” group suggest that DHEA may ultimately not be 
effectively mitigating proinflammatory processes. With sustained 
exposure to chronic stress, some individuals in the “Poor Mental Health” 
group may eventually display the inverse, low DHEA relationships 
characteristic of the “High Inflammation” group. This phenomenon 
could offer a partial explanation for the lack of a statistically significant 
difference in survival time and is corroborated by empirically-derived 
models of prolonged stress that have delineated robust mechanistic 
pathways between chronic psychological stress and morbidity and 
mortality (Epel et al., 2018). 

These patterns align with prior research demonstrating the central 
role of DHEA in maintaining homeostasis and improving survival out-
comes. For example, both in vivo and in vitro studies have found that 
DHEA inhibits the production of IL-6 (Straub et al., 1998; Kipper-Gal-
perin et al., 1999), which reduces its stimulatory effects in the liver and 
results in decreased CRP synthesis (Yap et al., 1991). Independent from 
the examination of DHEA, elevated levels of both IL-6 and CRP have 
been associated with increased risk of all-cause, cancer, and cardiovas-
cular mortality (Ni et al., 2020; Singh-Manoux et al., 2017). Similarly, 
DHEA has been shown to dampen the adverse effects of elevated cortisol 
levels on hippocampal long-term potentiation (Kaminska et al., 2000), 
mood (Alhaj et al., 2006), and episodic memory (Alhaj et al., 2006). In 
addition, higher evening cortisol/DHEA ratios, but not either hormone 
alone, have been shown to accurately differentiate between participants 
with and without depression, and have predicted the duration of 
depressive episodes in participants with depression (Young et al., 2002). 
The cortisol/DHEA ratio has also predicted increased risk of cancer 
mortality, mortality due to other medical conditions, and all-cause 
mortality in older adults (Phillips et al., 2010). Taken together with 
the present findings, these data underscore the significance of DHEA in 
maintaining homeostasis and promoting longevity by attenuating the 
adverse effects of chronic stress. 

Despite the potential centrality of DHEA in regulating biological 
responses to chronic stress, some prevention and intervention efforts 
may benefit by focusing on the psychosocial end of the biopsychosocial 
spectrum. Psychosocial interventions for common mental health con-
ditions have been shown to offer greater accessibility (Lenze et al., 
2024), affordability (Vos et al., 2005), and safety (Farah et al., 2016; 
Qaseem et al., 2016) compared to biological interventions. In the pre-
sent study, the “good” and “poor” mental health groups comprised the 
largest number of participants and were driven primarily by mental 
health factors, rather than peripheral biomarkers. This finding suggests 
that these participants may respond more favorably to psychosocial 
interventions than to biological interventions, such as selective seroto-
nin reuptake inhibitors and neuromodulation therapies, that may 
partially exert their effects by regulating stress-related biomarkers (Guo 
et al., 2023; Wang et al., 2019; Hou et al., 2019). However, additional 
research is required to ascertain whether these identified subgroups do 
indeed respond differently to specific intervention types, be they bio-
logical, psychosocial, or a combination of both. Through this research, 
the field has the potential to shift away from a stepped-care approach, 

which can be plagued by inefficiencies and suboptimal outcomes, to-
ward a matched-care or stratified precision medicine approach that is 
based on harnessing the richness of clinical heterogeneity, rather than 
controlling for it (Arns et al., 2023). Our results also support an 
expanded view of stratified psychiatry, whereby psychological in-
dicators of stress are simultaneously considered alongside stress-related 
biomarkers in distinguishing person-level subtypes of mental health and 
inflammation. 

While helpful in justifying a more encompassing biopsychosocial 
approach in the development of precision psychiatry, the present results 
are limited by the exclusion of social determinants of health and 
contextual factors, such as familial, social, financial, and workplace in-
dicators of stress. To the extent that contextual factors are robust pre-
dictors of mental health (Kirmayer and Gold, 2011), future studies 
would benefit from including them in the mixture modeling procedure. 
Their inclusion may lead to the development of interventions that 
address specific sources of distress and domains of functioning in 
distinct populations. Detaching individuals from their social context and 
reducing mental health to biological or psychological factors may lead to 
treatments that only marginally and indirectly address the bio-
psychosocial model of health and wellness. For example, if a toxic 
workplace is the most salient stressor for an individual in the “Poor 
Mental Health” group, the most effective first-line approach, while 
perhaps challenging to implement, may be to target the workplace 
environment as opposed to focusing on individual factors. 

Examining social determinants of health as potential drivers of the 
associations between the subgroups of the present study and survival 
would help to better understand potential cross-cultural differences and 
to develop culturally sensitive personalized treatments. Although our 
cross-cultural findings suggest a shared, underlying phenotypic marker 
of psychobiological health, it is essential to acknowledge that the so-
ciocultural context may play an important role in shaping the develop-
ment of culturally adapted, personalized interventions. Further research 
is necessary as prior studies have yielded inconclusive results regarding 
the extent to which factors such as independence/interdependence and 
perceived social relationships account for variations in depressive 
symptoms and peripheral biomarkers between the United States and 
Japan (Miyamoto et al., 2013; Kaveladze et al., 2022). 

The possibility of reverse causality is important to note in latent 
profile analyses. In the present analysis, elevated levels of inflammation 
in the “High Inflammation” group may have been due to an underlying 
physical illness that caused subsequent chronic psychological stress, 
rather than the inverse. Similarly, the increased risk of mortality in the 
“High Inflammation” group may have been due to pre-existing physical 
health conditions. Although the latent profile results point to a contin-
uum of psychobiological health, a latent transition analysis would be 
required to more accurately assess whether some participants in the 
“Poor Mental Health” group do indeed transition to the “High Inflam-
mation” group. 

Several other limitations are worth mentioning. First, using self- 
report inventories as proxies for clinical diagnoses limits the direct 
applicability of our findings from a general population to clinical set-
tings. Future research should address this to enhance ecological validity 
and practical relevance. Second, our model’s reliance on single-time- 
point data limits the prediction of long-term survival outcomes. Longi-
tudinal data should be included in future research to better understand 
how these traits evolve and influence long-term survival. Third, while it 
is plausible that some individuals with poor mental health transition to a 
state of high inflammation due to chronic stress and insufficient DHEA, 
thereby explaining differences in inflammatory biomarkers, this hy-
pothesis does not adequately explain the observed improvements in 
depression and anxiety. Other underlying mechanisms, perhaps better 
captured by longitudinal assessment procedures, may influence the 
relationship between mental health, inflammation, and psychological 
well-being over time. Fourth, it is notable that the American “High 
Inflammation” group exhibits higher DHEA levels compared to its “Good 
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Mental Health” group, while the Japanese “High Inflammation” group 
shows lower DHEA levels relative to its “Good Mental Health” group. 
Since increasing age is associated with lower DHEA, age differences 
between the American and Japanese cohorts may be contributing to this 
observation. Fifth, future studies would benefit from including medi-
cations as a covariate in the modeling procedure, as various medications 
alter biomarker concentrations. Finally, our study lacks ethnic and racial 
diversity in the United States cohort, which limits the generalizability of 
our results. 

The findings of this study contribute to advancing a stratified or 
matched approach to precision psychiatry, reaffirming the importance 
of patient self-reported experience. Our results enhance our under-
standing of the nuanced interplay between self-reported mental health, 
stress-related biomarkers, and mortality. They also underscore the 
pivotal role of DHEA in modulating responses to chronic psychological 
stress. Moving forward, it will be crucial to investigate the roles that 
social determinants of health play in delineating these subtypes and 
matching patients to specific treatments. 
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Gómez-Carrillo, A., Paquin, V., Dumas, G., Kirmayer, L.J., 2023. Restoring the missing 
person to personalized medicine and precision psychiatry. Front. Neurosci. 17, 
1041433 https://doi.org/10.3389/fnins.2023.1041433. 

Goodwin, G.M., 2006. Depression and associated physical diseases and symptoms. 
Dialogues Clin. Neurosci. 8 (2), 259–265. https://doi.org/10.31887/ 
DCNS.2006.8.2/mgoodwin. 

Guo, B., Zhang, M., Hao, W., Wang, Y., Zhang, T., Liu, C., 2023. Neuroinflammation 
mechanisms of neuromodulation therapies for anxiety and depression. Transl. 
Psychiatry 13 (1), 5. https://doi.org/10.1038/s41398-022-02297-y. 

Halaris, A., 2013. Inflammation, heart disease, and depression. Curr. Psychiatr. Rep. 15 
(10), 400. https://doi.org/10.1007/s11920-013-0400-5. 

Hodes, G.E., Ménard, C., Russo, S.J., 2016. Integrating Interleukin-6 into depression 
diagnosis and treatment. Neurobiol Stress 4, 15–22. https://doi.org/10.1016/j. 
ynstr.2016.03.003. 

Hou, R., Ye, G., Liu, Y., et al., 2019. Effects of SSRIs on peripheral inflammatory 
cytokines in patients with Generalized Anxiety Disorder. Brain Behav. Immun. 81, 
105–110. https://doi.org/10.1016/j.bbi.2019.06.001. 

Ioannidis, J.P.A., 2019. Therapy and prevention for mental health: what if mental 
diseases are mostly not brain disorders? Behav. Brain Sci. 42, e13. https://doi.org/ 
10.1017/S0140525X1800105X. 

Kamin, H.S., Kertes, D.A., 2017. Cortisol and DHEA in development and 
psychopathology. Horm. Behav. 89, 69–85. https://doi.org/10.1016/j. 
yhbeh.2016.11.018. 

Kaminska, M., Harris, J., Gijsbers, K., Dubrovsky, B., 2000. Dehydroepiandrosterone 
sulfate (DHEAS) counteracts decremental effects of corticosterone on dentate gyrus 
LTP. Implications for depression. Brain Res. Bull. 52 (3), 229–234. https://doi.org/ 
10.1016/s0361-9230(00)00251-3. 

Kaveladze, B., Diamond Altman, A., Niederhausen, M., Loftis, J.M., Teo, A.R., 2022. 
Social relationship quality, depression and inflammation: a cross-cultural 
longitudinal study in the United States and Tokyo, Japan. Int. J. Soc. Psychiatr. 68 
(2), 253–263. https://doi.org/10.1177/0020764020981604. 

Kiecolt-Glaser, J.K., Preacher, K.J., MacCallum, R.C., Atkinson, C., Malarkey, W.B., 
Glaser, R., 2003. Chronic stress and age-related increases in the proinflammatory 
cytokine IL-6. Proc. Natl. Acad. Sci. U. S. A. 100 (15), 9090–9095. https://doi.org/ 
10.1073/pnas.1531903100. 

Kipper-Galperin, M., Galilly, R., Danenberg, H.D., Brenner, T., 1999. 
Dehydroepiandrosterone selectively inhibits production of tumor necrosis factor α 
and Interlukin-6 in astrocytes. Int. J. Dev. Neurosci. 17 (8), 765–775. https://doi. 
org/10.1016/S0736-5748(99)00067-2. 

Kirmayer, L.J., Gold, I., 2011. Re-socializing psychiatry. In: Critical Neuroscience. Wiley- 
Blackwell, pp. 305–330. https://doi.org/10.1002/9781444343359.ch15. 

Kitayama, S., Karasawa, M., Curhan, K.B., Ryff, C.D., Markus, H.R., 2010. Independence 
and interdependence predict health and wellbeing: divergent patterns in the United 
States and Japan. Front. Psychol. 1, 163. https://doi.org/10.3389/ 
fpsyg.2010.00163. 

Lenze, E., Torous, J., Arean, P., 2024. Digital and precision clinical trials: innovations for 
testing mental health medications, devices, and psychosocial treatments. 
Neuropsychopharmacology 49 (1), 205–214. https://doi.org/10.1038/s41386-023- 
01664-7. 

Marsik, C., Kazemi-Shirazi, L., Schickbauer, T., et al., 2008. C-reactive protein and all- 
cause mortality in a large hospital-based cohort. Clin. Chem. 54 (2), 343–349. 
https://doi.org/10.1373/clinchem.2007.091959. 

Marsland, A.L., Walsh, C., Lockwood, K., John-Henderson, N.A., 2017. The effects of 
acute psychological stress on circulating and stimulated inflammatory markers: a 
systematic review and meta-analysis. Brain Behav. Immun. 64, 208–219. https://doi. 
org/10.1016/j.bbi.2017.01.011. 

Meaney, C.L., Zingone, A., Brown, D., Yu, Y., Cao, L., Ryan, B.M., 2017. Identification of 
serum inflammatory markers as classifiers of lung cancer mortality for stage I 
adenocarcinoma. Oncotarget 8 (25), 40946–40957. https://doi.org/10.18632/ 
oncotarget.16784. 

Midlife in the United States (MIDUS) Series. Accessed July 26, 2023. https://www.icpsr. 
umich.edu/web/ICPSR/series/203. 

S. Allende and P.J. Bayley                                                                                                                                                                                                                    

https://doi.org/10.1016/j.bbih.2024.100815
https://doi.org/10.1016/j.bbih.2024.100815
http://refhub.elsevier.com/S2666-3546(24)00093-0/sref1
http://refhub.elsevier.com/S2666-3546(24)00093-0/sref1
http://refhub.elsevier.com/S2666-3546(24)00093-0/sref1
https://doi.org/10.3390/e19090452
https://doi.org/10.3390/e19090452
https://doi.org/10.1007/s00213-005-0136-y
https://doi.org/10.1038/s44220-023-00156-3
https://doi.org/10.1007/s11357-010-9165-5
https://doi.org/10.1007/s11357-010-9165-5
https://doi.org/10.1017/S0140525X17002266
https://doi.org/10.1016/0165-1781(89)90047-4
https://doi.org/10.1016/0165-1781(89)90047-4
https://doi.org/10.1002/da.22908
https://www.statmodel.com/download/relatinglca.pdf
https://www.statmodel.com/download/relatinglca.pdf
https://doi.org/10.1891/1061-3749.25.3.476
https://doi.org/10.1891/1061-3749.25.3.476
https://doi.org/10.1038/s44220-023-00161-6
https://doi.org/10.1038/s44220-023-00161-6
https://doi.org/10.1002/sim.9681
https://doi.org/10.1002/sim.9681
https://doi.org/10.1177/0898264310374355
https://doi.org/10.1016/j.yfrne.2018.03.001
https://doi.org/10.1136/ebmed-2016-110522
https://doi.org/10.1186/s12916-017-0849-x
https://doi.org/10.1186/s12916-017-0849-x
https://doi.org/10.1007/s10597-012-9542-x
https://doi.org/10.1007/s10597-012-9542-x
https://doi.org/10.3389/fnins.2023.1041433
https://doi.org/10.31887/DCNS.2006.8.2/mgoodwin
https://doi.org/10.31887/DCNS.2006.8.2/mgoodwin
https://doi.org/10.1038/s41398-022-02297-y
https://doi.org/10.1007/s11920-013-0400-5
https://doi.org/10.1016/j.ynstr.2016.03.003
https://doi.org/10.1016/j.ynstr.2016.03.003
https://doi.org/10.1016/j.bbi.2019.06.001
https://doi.org/10.1017/S0140525X1800105X
https://doi.org/10.1017/S0140525X1800105X
https://doi.org/10.1016/j.yhbeh.2016.11.018
https://doi.org/10.1016/j.yhbeh.2016.11.018
https://doi.org/10.1016/s0361-9230(00)00251-3
https://doi.org/10.1016/s0361-9230(00)00251-3
https://doi.org/10.1177/0020764020981604
https://doi.org/10.1073/pnas.1531903100
https://doi.org/10.1073/pnas.1531903100
https://doi.org/10.1016/S0736-5748(99)00067-2
https://doi.org/10.1016/S0736-5748(99)00067-2
https://doi.org/10.1002/9781444343359.ch15
https://doi.org/10.3389/fpsyg.2010.00163
https://doi.org/10.3389/fpsyg.2010.00163
https://doi.org/10.1038/s41386-023-01664-7
https://doi.org/10.1038/s41386-023-01664-7
https://doi.org/10.1373/clinchem.2007.091959
https://doi.org/10.1016/j.bbi.2017.01.011
https://doi.org/10.1016/j.bbi.2017.01.011
https://doi.org/10.18632/oncotarget.16784
https://doi.org/10.18632/oncotarget.16784
https://www.icpsr.umich.edu/web/ICPSR/series/203
https://www.icpsr.umich.edu/web/ICPSR/series/203


Brain, Behavior, & Immunity - Health 39 (2024) 100815

9

Miyamoto, Y., Boylan, J.M., Coe, C.L., et al., 2013. Negative emotions predict elevated 
interleukin-6 in the United States but not in Japan. Brain Behav. Immun. 34, 79–85. 
https://doi.org/10.1016/j.bbi.2013.07.173. 

Ni, P., Yu, M., Zhang, R., et al., 2020. Dose-response association between C-reactive 
protein and risk of all-cause and cause-specific mortality: a systematic review and 
meta-analysis of cohort studies. Ann. Epidemiol. 51, 20–27.e11. https://doi.org/ 
10.1016/j.annepidem.2020.07.005. 

Pepe, M.S., Fleming, T.R., 1989. Weighted Kaplan-Meier statistics: a class of distance 
tests for censored survival data. Biometrics 45 (2), 497–507. https://www.ncbi.nlm. 
nih.gov/pubmed/2765634. 

Phillips, A.C., Carroll, D., Gale, C.R., Lord, J.M., Arlt, W., Batty, G.D., 2010. Cortisol, 
DHEA sulphate, their ratio, and all-cause and cause-specific mortality in the Vietnam 
Experience Study. Eur. J. Endocrinol. 163 (2), 285–292. https://doi.org/10.1530/ 
EJE-10-0299. 

Pitharouli, M.C., Hagenaars, S.P., Glanville, K.P., et al., 2021. Elevated C-reactive protein 
in patients with depression, independent of genetic, health, and psychosocial factors: 
results from the UK biobank. Am. J. Psychiatr. 178 (6), 522–529. https://doi.org/ 
10.1176/appi.ajp.2020.20060947. 

Qaseem, A., Barry, M.J., Kansagara, D., Clinical Guidelines Committee of the American 
College of Physicians, 2016. Nonpharmacologic versus pharmacologic treatment of 
adult patients with major depressive disorder: a clinical practice guideline from the 
American college of physicians. Ann. Intern. Med. 164 (5), 350–359. https://doi. 
org/10.7326/M15-2570. 

Radler, B.T., 2014. The Midlife in the United States (MIDUS) series: a national 
longitudinal study of health and well-being. Open Health Data 2 (1). https://doi.org/ 
10.5334/ohd.ai. 

Radloff, L.S., 1977. The CES-D scale: a self-report depression scale for research in the 
general population. Appl. Psychol. Meas. 1 (3), 385–401. https://doi.org/10.1177/ 
014662167700100306. 

Rallidis, L.S., Vikelis, M., Panagiotakos, D.B., et al., 2006. Inflammatory markers and in- 
hospital mortality in acute ischaemic stroke. Atherosclerosis 189 (1), 193–197. 
https://doi.org/10.1016/j.atherosclerosis.2005.11.032. 

Rosenberg, J., Beymer, P., Anderson, D., van Lissa, C.j., Schmidt, J., 2018. TidyLPA: an R 
package to easily carry out latent profile analysis (LPA) using open-source or 
commercial software. J. Open Source Softw. 3 (30), 978. https://doi.org/10.21105/ 
joss.00978. 

Ryff, C.D., Miyamoto, Y., Boylan, J.M., et al., 2015. Culture, inequality, and health: 
evidence from the MIDUS and MIDJA comparison. Cult Brain 3 (1), 1–20. https:// 
doi.org/10.1007/s40167-015-0025-0. 

Scrucca, L., Fop, M., Murphy, T.B., Raftery, A.E., 2016. Mclust 5: clustering, classification 
and density estimation using Gaussian finite mixture models. R J 8 (1), 289–317. 
https://doi.org/10.1186/s12942-015-0017-5. 

Singh-Manoux, A., Shipley, M.J., Bell, J.A., Canonico, M., Elbaz, A., Kivimäki, M., 2017. 
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