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A B S T R A C T   

Background: Allostatic load (AL) is a multi-system composite index for quantifying physiological dysregulation 
caused by life course stressors. For over 30 years, an extensive body of research has drawn on the AL framework 
but has been hampered by the lack of a consistent definition. 
Methods: This study analyses data for 67,126 individuals aged 40–111 years participating in 13 different cohort 
studies and 40 biomarkers across 12 physiological systems: hypothalamic-pituitary-adrenal (HPA) axis, 
sympathetic-adrenal-medullary (SAM) axis, parasympathetic nervous system functioning, oxidative stress, 
immunological/inflammatory, cardiovascular, respiratory, lipidemia, anthropometric, glucose metabolism, 
kidney, and liver. We use individual-participant-data meta-analysis and exploit natural heterogeneity in the 
number and type of biomarkers that have been used across studies, but a common set of health outcomes (grip 
strength, walking speed, and self-rated health), to determine the optimal configuration of parameters to define 
the concept. 
Results: There was at least one biomarker within 9/12 physiological systems that was reliably and consistently 
associated in the hypothesised direction with the three health outcomes in the meta-analysis of these cohorts: 
dehydroepiandrosterone sulfate (DHEAS), low frequency-heart rate variability (LF-HRV), C-reactive protein 
(CRP), resting heart rate (RHR), peak expiratory flow (PEF), high density lipoprotein cholesterol (HDL-C), waist- 
to-height ratio (WtHR), HbA1c, and cystatin C. An index based on five biomarkers (CRP, RHR, HDL-C, WtHR and 
HbA1c) available in every study was found to predict an independent outcome – mortality – as well or better than 
more elaborate sets of biomarkers. 
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Discussion: This study has identified a brief 5-item measure of AL that arguably represents a universal and 
efficient set of biomarkers for capturing physiological ‘wear and tear’ and a further biomarker (PEF) that could 
usefully be included in future data collection.   

1. Introduction 

It has been proposed that lifetime exposure to psychosocial stressors 
increases the risk of diseases in later life by disrupting the physiological 
regulatory systems that are involved with initiating, maintaining, and 
inhibiting the stress response leading to greater ‘wear and tear’ on the 
body, and increased vulnerability to disease (Seeman et al., 2001). 
McEwen and Stellar (1993) invoked the concept of allostatic load (AL) to 
describe the physiological consequences when adaptive changes made 
by an organism in response to the experience of a stressor become 
maladaptive (i.e. dysregulated). 

The neurobiological response to stress induces activation in two 
neuro-endocrine pathways - the sympathetic nervous system (SNS) and 
the hypothalamic-pituitary-adrenal (HPA) axis - that are central to the 
stress response. The SNS responds to the recognition of a stressor by 
releasing catecholamines (e.g. epinephrine, norepinephrine) that facil-
itate the rapid increases in heart rate, blood pressure, and respiration 
that enable the ‘fight or flight’ response, while the HPA system is 
responsible for the slower onset stress response which involves secretion 
of stress hormones (e.g. cortisol) to ensure the muscles have a steady 
supply of energy (McEwen, 2008). These ‘primary mediators’ of the 
stress response – which also include pro and anti-inflammatory cyto-
kines - play a positive role in adaptation by allowing the body to respond 
to short term demands that exceed resources, but chronic activation can 
cause damage to secondary regulatory systems (e.g. cardiovascular, 
metabolic, immune functioning) that are hypothesised to contribute, in 
turn, to early disease progression, morbidity, and mortality (i.e. tertiary 
outcomes) (Juster et al., 2016). 

Researchers have attempted to capture variation in the physiological 
dysregulation resulting from such life-course stresses using an AL score, 
which is a multi-system composite index, usually involving neuroen-
docrine, immunological, cardiovascular, and metabolic components 
(Seeman et al., 1997; Szanton et al., 2005). Initial efforts to operation-
alize AL simply summed the number of parameters for which each 
participant scores in the highest quartile of clinical risk based on each 
biomarker’s distribution in the population studied. AL was originally 
measured using 10 biological parameters: epinephrine, norepinephrine, 
urinary cortisol, dehydroepiandrosterone sulfate, resting systolic and 
diastolic BP, waist-hip ratio, total and HDL cholesterol, and glycosylated 
haemoglobin. However, Seeman et al. (2010) acknowledged that: “this 
original set of 10 parameters was not meant to be comprehensive nor was it 
offered as a fixed/standard measure of AL” (p.228) as it was based on 
secondary data analyses from the MacArthur Successful Aging Study and 
was limited to available biological data. No gold standard measure of AL 
exists, and researchers have tended to use the list of biomarkers that are 
available to them to define AL. While the original authors did not wish to 
be prescriptive, the lack of a fixed definition has contributed to a type of 
atheoretical drift in the way AL has come to be defined in the literature. 

Juster et al. (2010) reported that 51 different biomarkers had been 
used to define AL across 58 studies included in their systematic review. 
Of these, metabolic system biomarkers tended to be the most common 
(34%), followed by neuroendocrine (25%), cardiovascular (20%), 
anthropometric (11%), and immune system biomarkers (10%). Johnson 
et al. (2017) reported that 59 biomarkers were used in the 26 studies 
they reviewed which examined the relationship of socio-economic po-
sition with AL. The number of biomarkers employed ranged between 6 
and 25 with a mode of 9. All studies included cardiovascular and 
metabolic system biomarkers, 82% included immune system bio-
markers, 58% included neuroendocrine system biomarkers, and sub-
stantially fewer studies included parasympathetic, respiratory, or 

biomarkers of kidney or liver functioning. Their analysis of study pairs 
revealed huge variation in the number of biomarkers shared between 
studies. Even within studies, there is considerable heterogeneity in how 
AL is defined. As a case in point, a recent paper noted that 21 analyses 
using the National Health and Nutrition Examination Survey (NHANES) 
calculated AL in 18 different ways using 26 different biomarkers (Duong 
et al., 2017). Surveying the literature, this tends to be the rule rather 
than the exception. Four recent papers using the UK Household Longi-
tudinal Study (UKHLS, Understanding Society) dataset defined AL using 
a different set of biomarkers (Chandola et al., 2019; Karimi et al., 2019; 
Präg and Richards, 2019; Prior et al., 2018), as have papers using the 
English Longitudinal Study of Ageing (ELSA) (Coronado et al., 2018; 
Read and Grundy, 2014; Tampubolon and Maharani, 2018), and The 
Irish Longitudinal Study on Ageing (TILDA) (McCrory et al., 2019; 
McLoughlin et al., 2020). 

Although several critiques of the AL literature have been penned 
over the years (Beckie, 2012; Dowd et al., 2009; Juster et al., 2016), the 
lack of consensus regarding which biomarkers should be used to define 
the concept remains, arguably, its most intractable problem. The lack of 
fidelity in the measurement of AL has two main consequences: (i) it 
renders comparisons across studies difficult, and (ii) it limits its potential 
utility as a screening tool for identifying pre-clinical health states 
(Rosemberg et al., 2020): one of its mooted applications. In essence, this 
represents a classic variable selection problem – leaving us with the 
question of how we can overcome the impasse? In this paper, we use 
individual-participant-data (IPD) meta-analysis and exploit natural 
heterogeneity in the number and type of biomarkers that have been used 
across 13 different cohort studies, but a common set of health outcomes, 
to determine the optimal configuration of biomarkers that can be used to 
define AL. Analyses presented here are designed to address a series of 
inter-related questions about the measurement of AL: (a) which 
biomarker works best within each physiological system to predict 
health? (b) are some physiological systems more important than others? 
(c) can we develop a subset of biomarkers that perform as well or better 
than longer, more elaborate batteries? (d) can we move towards a 
consensus definition of AL? A unique strength of these analyses is our 
ability to assess the consistency of the answers to these questions across 
data from 13 cohort studies. 

2. Methods 

2.1. Study populations 

Unlike many systematic reviews and meta-analyses which may 
consider the effect of one exposure / treatment on an outcome, AL 
indices comprise multiple biomarkers, so the effort required to pool and 
harmonise biomarkers across studies is substantial. Hence this study 
does not purport to represent a systematic review and meta-analysis of 
all AL studies, but was designed to calibrate a measure of AL from a 
reasonably representative sample of studies which were (1) publicly 
available or accessible to us through existing consortia, (2) collected 
biomarkers relevant to the AL concept, (3) measured walking speed and 
/ or grip strength in addition to self-rated health, and (4) did not incur 
data access charges. Notable exclusions included the 1936 Lothian Birth 
Cohort (LBC), West of Scotland twenty-07 cohort, the Northern Swedish 
Cohort, the Normative Aging Study, the Copenhagen Aging and Midlife 
Biobank (CAMB), the Atherosclerosis Risk in Communities (ARIC) study, 
the Coronary Artery Risk Development in Young Adults Study (CARDIA) 
and the Canadian Longitudinal Study on Aging (CLSA) which were not 
publicly available without additional collaboration agreement forms 
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and / or incurred data access charges. 
In total, we use data from 13 different cohort studies involving a total 

sample of 67,126 individuals aged 40–111, 53.9% female. Inclusion 
criteria were mid-to-late life cohorts that are population-based and have 
collected detailed biomarker batteries alongside several objectively 
measured functional health outcomes and self-rated health. Four of the 
cohorts were part of the LIFEPATH consortium (Vineis et al., 2020): The 
Irish Longitudinal Study on Ageing (TILDA); a population-based cohort 
of community dwellers of Porto, in Portugal (EPIPorto); the Swiss Kid-
ney Project on Genes in Hypertension (SKIPOGH), and Cohorte Lau-
sannoise (CoLaus/PsyCoLaus). The remaining nine cohorts were 
publicly available. Four were accessed via the UK Data Service: the 1958 
National Child and Development Study (NCDS) (University of London 
and Centre for Longitudinal Studies, 2019b); the 1970 British Cohort 
Study (BCS) (University of London and Centre for Longitudinal Studies, 
2019a); the UK Household Longitudinal Study (UKHLS, also known as 
Understanding Society) (University of Essex. Institute for Social and 
Economic Research, 2014), and the English Longitudinal Study of 
Ageing (ELSA) (Marmot et al., 2017). 

Two were accessed from the InterUniversity Consortium for Political 
and Social Research (ICPSR): Midlife in the United States (MIDUS II) 
Biomarker Project (Ryff et al., 2019) and the Social Environment and 
Biomarkers of Aging Study (SEBAS) (Weinstein et al., 2014). The 
remaining three datasets were the US Health and Retirement Study 
(HRS); the National Health and Nutrition Examination Survey 
(NHANES), and the Health and Ageing Study in Africa: A Longitudinal 
Study of an INDEPTH Community in South Africa (HAALSI) cohort. As 
most of these studies are prospective and have collected biomarkers at 
more than one sweep, we decided to include data for the sweep that was 
richest in terms of the number of biomarkers collected. For example, the 
2016 sweep of data collection for HRS was included, despite the study 
starting in 1992 as they performed a venous blood draw and assayed 
more biomarkers than other sweeps. The mean age of the samples 
ranged from 44.1 (SD=0.24) years in the NCDS to 66.2 years (SD=10.9) 
in the HRS. A detailed description of the study cohorts and of the sam-
pling design is presented in the supplementary appendix. 

2.2. Health outcomes 

As our dependent variables, we use three health outcome measures – 
grip strength, walking speed, and participant self-rated health (SRH). 
Detailed methods of assessment for each health outcome in each study 
are described in Supplementary Table S1. Grip strength is a measure of 
upper extremity muscle strength that has prognostic value as an indi-
cator of functional decline and mortality (Bohannon, 2008). Grip 
strength was available in 11/13 studies (excluding NHANES and NCDS) 
and measured using a hand dynamometer which consisted of a gripping 
handle and strain gauge. Each study collected at least one reading in 
each of the dominant and non-dominant hands. We use maximal grip 
strength (kgs). Walking speed requires the co-ordinated action of a 
number of different physical systems including the nervous, musculo-
skeletal, and cardiopulmonary systems; and serves as a useful indicator 
of health and vitality in older adults (Middleton et al., 2015). Walking 
speed was measured in 8/13 studies (HRS, NHANES, MIDUS II, ELSA, 
TILDA, EPIPorto, HAALSI, and SEBAS). The distance travelled ranged 
between 2.5 and 15.24 m across studies. We standardized the outcome 
across studies to express walking speed as the distance travelled in 
centimetres per second (cm/sec). SRH was employed as not all studies 
collected objective health outcomes. As the wording and response cat-
egories varied across studies, harmonisation was conducted by gener-
ating a binary variable to indicate fair/poor/bad, rather than good, very 
good or excellent, health. 

2.3. Biomarkers 

Supplementary Table S2 describes the biomarkers that were 

available within each study to measure AL. We included respondents 
who had data for at least one biomarker and at least one health outcome. 
In total, data were available for 51 biomarkers across 12 physiological 
systems – (i) sympathetic-adrenal-medullary (SAM) axis, (ii) hypothalamic- 
pituitary-adrenal (HPA) axis, (iii) parasympathetic nervous system func-
tioning, (iv) oxidative stress, (v) immunological/inflammatory, (vi) cardio-
vascular, (vii) respiratory, (viii) anthropometric, (xi) lipidemia, (x) glucose 
metabolism, (xi) kidney, and (xii) liver. Meta-analysis requires the inclu-
sion of a minimum of two or more studies to derive a pooled effect size 
estimate. Therefore, the biomarker had to be available in at least two 
studies in which the three health outcomes were also measured to be 
included in the analysis. When these exclusion criteria were applied, a 
final panel of 40 biomarkers across 12 physiological systems remained. 
Biomarkers were harmonised prior to analysis to ensure they were 
expressed in the same metric. Mean values for each biomarker across 
studies are shown in Supplementary Table S3. 

Following the classic “count-based” method (Seeman et al., 2010), 
empirically defined high-risk thresholds were distinguished based on the 
distribution of each biomarker in the sample; “1” was assigned to values 
falling above the 75th percentile of the distribution for each marker, and 
“0” was assigned to values below this threshold. We use study specific 
cut-points to define high risk as AL is supposed to capture pre-clinical 
disease states, and there are no standard clinical cut-points for many 
of the biomarkers (e.g. cortisol, heart-rate-variability etc.). This method 
is advantageous as it is the most common approach in published studies, 
eliminates the need to standardize the measurements across labs, and 
obviates the requirement to apply transformations to account for 
skewedness of biological data. Limitations include the potential loss of 
information resulting from dichotomising a continuous variable, and 
population-specific risks which may not be generalisable to other 
studies. Nevertheless, studies comparing the predictive utility of a suite 
of scoring algorithms suggest this is not a major issue (Li et al., 2019; 
McLoughlin et al., 2020; Seplaki et al., 2005). Indeed, the count-based 
method performs well relative to more complicated scoring systems 
(e.g., factor scores). There were several biomarkers for which higher 
values indicate lower clinical risk, so we reversed the scores prior to 
calculating the cut-offs by multiplying by − 1. 

2.4. Statistical analysis 

Two-stage individual-participant-data (IPD) meta-analysis was 
implemented using the ipdmetan package in Stata (Fisher, 2015). The 
first stage involves fitting the specified model to each individual study’s 
data to derive a study-specific effect estimate and variance. In the second 
stage, the effect estimates are combined using an inverse variance 
weighting method to derive a weighted average (pooled) effect estimate 
for each biomarker. The inter-study variance was estimated using 
restricted maximum likelihood (REML) estimation with the 
Hartung-Knapp-Siduk-Jonkman (HSJK) method (Langan et al., 2019) 
and assessed using the I2 and tau2 statistic. I2 is the proportion of the 
total variation in the effect estimate due to between-study variability, 
while tau2 is the between-study variance estimate. In line with best 
current practice, we also report a 95% prediction interval (PI) which is a 
range of values likely to contain the value of a single new observation 
based on our existing model and can be used to quantify heterogeneity in 
model performance (IntHout et al., 2016). 

Meta-analyses of health studies typically contain few studies and 
simulation studies have shown that the estimated summary effect of the 
HSJK method is robust to changes in the heterogeneity variance estimate 
and works well in situations where there are small numbers of studies 
(Langan et al., 2019). We estimated separate linear regression models 
with respect to grip strength and walking speed adjusting for age (years), 
sex, and measured height (cm). The binary SRH measure was modelled 
using logistic regression adjusting for age and sex. We report the overall 
effect estimate, associated 95% confidence interval as well as I2, tau2, 
and the 95% PI for each biomarker in respect of each health outcome. 
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Having identified the best performing biomarker (if any) within each 
physiological system, we then compare how well a composite index 
composed of these biomarkers performed in predicting an independent 
criterion, mortality, compared with longer and more elaborate batteries 
published in the extant literature. Mortality data were available in 
10/13 studies contributing to this analysis, with the length of follow-up 
ranging between 2 and 14 years (Table 1). As time to event was not 
available in all studies, we use a binary variable to indicate mortality 
status. 

3. Results 

The aggregated results for the 40 biomarkers across the 12 different 
physiological systems are depicted graphically in Figs. 1–3 for grip 
strength, walking speed, and SRH respectively, and measures of between 
study heterogeneity are provided in Supplementary Table S4. We discuss 
results for each physiological system in turn, drawing attention to which 
biomarker (if any) within that system was most strongly and consistently 
associated with the 3 health outcomes. 

3.1. Hypothalamic-pituitary-adrenal (HPA) axis 

The HPA system is responsible for the slower onset stress response. 
Two measures of HPA-axis functioning were available for analysis across 
the diverse cohorts: dehydroepiandrosterone sulphate (DHEAS) and 
cortisol. DHEAS is the sulphated form of the molecule dehydroepian-
drosterone (DHEA), it declines rapidly with age, and low levels may 
indicate a problem with adrenal functioning (Urbanski et al., 2013). 
Cortisol is the primary glucocorticoid secreted by the HPA-axis 
following exposure to a stressor and plays an important role in the 
physiological response to stress (Sapolsky et al., 2000). DHEAS was 
available in 5/13 studies (HRS, ELSA, MIDUS II, UKHLS, SEBAS) while 
urinary cortisol measurements were available in 3/13 studies (MIDUS II, 
SEBAS, SKIPOGH). Lower DHEAS was associated with lower grip 
strength (B = − 1.02, 95CI= − 1.12, − 0.92), slower walking speed (B =
− 3.83, 95CI= − 6.23, − 1.43), and worse SRH (OR = 1.74, 95CI= 1.51, 
2.00). Despite its centrality to the theory of AL, cortisol was not related 
to the health outcomes assessed in the meta-analysis of these cohorts. 

3.2. Sympathetic-adrenal-medullary (SAM) axis 

Alongside glucocorticoids, catecholamines play a key role in the 
stress response because they are mediators of the adaptation of many 
systems of the body to acute challenges (McEwen, 2008). The sympa-
thetic nervous system responds to the recognition of a stressor by 
releasing catecholamines that facilitate the rapid increases in heart rate, 
blood pressure, and respiration that enable the ‘fight or flight’ response. 
Despite the hypothesised importance of these biomarkers as primary 
mediators in the original conceptualisation of AL, direct measures of 
SAM activation are rarely included in population-based surveys and 
were only available in two studies (MIDUS II and SEBAS). However, 
neither epinephrine nor norepinephrine were related to the health 
outcomes assessed in the meta-analysis of these cohorts. 

3.3. Parasympathetic nervous system 

Heart rate variability (HRV) refers to the variation in time between 
successive heart beats and is a standard non-invasive method for eval-
uating autonomic nervous system functioning. Variability is considered 
an important and adaptive characteristic of the stress-response ma-
chinery as it allows the body to make accommodations in respiration 
and cardiac outflow in response to physical and psychological stressors. 
Higher HRV is therefore considered healthy as it signifies neurovascular 
compliance. Parasympathetic Nervous System (PNS) biomarkers were 
available in only two studies (TILDA and MIDUS II). The four PNS bio-
markers common to both studies included two time-domain indices: the 
standard deviation of R-to-R intervals (SDRR) and root mean square of 
successive differences (RMSSD) and two frequency-domain indices: low 
frequency (LF-HRV) and high frequency heart rate variability (HF-HRV). 
LF-HRV was found to be the best performing biomarker within this 
system, with lower variability being consistently associated with lower 
grip strength (B = − 0.50, 95CI= − 1.49, 0.49), slower walking speed (B 
= − 3.35, 95CI= − 4.14, − 2.57), and worse SRH (OR = 1.76, 95CI= 1.32, 
2.33). 

3.4. Oxidative stress 

Oxidative stress is caused by an imbalance between production and 

Table 1 
Baseline characteristics of study participants aged 40 years and over.  

Study Wave Survey 
Year 

Country N 
participants 

Male / 
Female 

Mean Age 
(SD) 

Age 
range 

Grip 
Strength 

Walking 
speed 

Self-rated 
health 

Mortality 
follow-up 

HRS Wave 
13 

2016 USA  7782 3301 / 
4481 

66.2 
(10.9) 

50–99 Y Y Y 2 yr 

NHANES X- 
section 

2001/ 
2002 

USA  3486 1718 / 
1768 

61.5 
(14.1) 

40–85 N/A Y Y N/A 

MIDUS II Wave 1 2004/ 
2009 

USA  962 445 / 517 57.0 
(10.8) 

40–84 Y Y Y 14 yr 

ELSA Wave 4 2008/ 
2009 

UK  8640 3882 / 
4758 

65.8 (9.9) 40–90 Y Y Y 4 yr 

1958 NCDS Wave 8 2002/ 
2004 

UK  9376 4664 / 
4712 

44.1 
(0.24) 

44–46 N/A N/A Y 14 yr 

1970 BCS Wave 
10 

2016/ 
2018 

UK  8581 4154 / 
4427 

47.3 
(0.67) 

46–48 Y N/A Y N/A 

UKHLS Wave 2 2010/ 
2012 

UK  8363 3739 / 
4624 

59.1 
(12.0) 

40–97 Y N/A Y 6 yr 

TILDA Wave 1 2009/ 
2011 

Ireland  6094 2718 / 
3376 

62.5 (9.7) 40–98 Y Y Y 9 yr 

SKIPOGH Wave 1 2009/ 
2013 

Switzerland  721 328 / 393 58.3 
(11.2) 

40–90 Y N/A Y 3 yr 

CoLaus/ 
PsyCoLaus 

Wave 2 2003/ 
2006 

Switzerland  5064 2357 / 
2707 

57.8 
(10.5) 

40–82 Y N/A Y 9 yr 

EPIPorto Wave 1 2016/ 
2017 

Portugal  2000 763 / 
1237 

58.4 
(11.5) 

40–92 Y Y Y 9 yr 

HAALSI Wave 1 2014/ 
2015 

South 
Africa  

5021 2322 / 
2699 

61.7 
(13.1) 

40–111 Y Y Y 2 yr 

SEBAS Wave 2 2006 Taiwan  1036 556 / 480 65.8 (9.9) 53–85 Y Y Y N/A  
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accumulation of reactive oxygen species in cells and tissues and the 
reduced ability of antioxidant defences to detoxify these reactive prod-
ucts (Pizzino et al., 2017). Oxidative stress biomarkers included uric 
acid which was available in 4/13 studies (SKIPOGH, Colaus/PsyCoLaus, 
EPIPorto, SEBAS) and homocysteine which was available in 2/13 studies 
(HRS and SEBAS). Neither uric acid nor homocysteine were found to 
relate to the health outcomes in the meta-analysis of these cohorts, 
although the confidence intervals around the estimates were large given 
the small number of studies in which they were assessed. 

3.5. Inflammatory / immune system 

The absolute number of different biomarkers measured across 
studies was greatest for measures of the inflammatory/ immune system 

involving 9 in total. Consistent with the hypothesis that chronic low- 
grade inflammation is a common thread in the pathophysiology of 
ageing (Cevenini et al., 2013), we observed a general pattern whereby 
the constellation of inflammatory biomarkers tended to be negatively 
related to health state, although the magnitude of the associations varied 
across biomarkers. CRP was available in all studies and was consistently 
associated with lower grip strength (B = − 0.78, 95CI= − 1.05, − 0.50), 
slower walking speed (B = − 6.35, 95CI= − 8.31, − 4.39), and worse SRH 
(OR = 1.88, 95CI= 1.61, 2.20). Likewise, the coefficients for fibrinogen 
were marginally lower than those observed for CRP, although measured 
in fewer studies overall (6/13). Albumin was inversely associated with 
grip strength (B = − 1.57, 95CI= − 2.09, − 1.05) and SRH (OR = 1.66, 
95CI= 1.11, 2.46), but not with walking speed. Although available in 
only 6/13 studies, the primary cytokine IL6 was also found to be 

Fig. 1. Relationship between scoring in the highest risk quartile for each biomarker with maximal grip strength (kg) in individual participant data (IPD) 
meta-analysis. Legend: Estimates were derived using restricted maximum likelihood (REML) estimation with the Hartung-Knapp-Siduk-Jonkman (HSJK) method 
while holding age, sex, and height (cms) constant. No adjustment for height was made with respect to body mass index or waist-to-height ratio. *denotes biomarkers 
which are reverse scored prior to analysis. 
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consistently associated with lower grip strength (B = − 0.93, 95CI=
− 1.90, 0.03), slower walking speed (B = − 6.85, 95CI= − 8.46, − 5.24), 
and worse SRH (OR = 1.60, 95CI= 1.08, 2.38). IGF1 was available in 
8/13 studies and was associated with lower grip strength (B = − 0.53, 
95CI= − 1.02, − 0.04) and worse SRH (OR = 1.34, 95CI= 1.15, 1.57), 
while IL1ra, IL10, ICAM, and E-Selectin, were found to be unrelated to 
the 3 health outcomes. 

3.6. Cardiovascular system 

Cardiovascular measures are the most employed biomarkers of AL 
across studies (Juster et al., 2010; Misiak et al., 2022), and systolic blood 
pressure (SBP), diastolic blood pressure (DBP) and resting heart rate 
(RHR) were available in all 13 studies. Assessment usually involved 2–3 

measurements in each study expressed as the mean value averaged over 
the number of measurement occasions. Although measures of blood 
pressure and RHR are intimately related, RHR was most strongly related 
to the 3 health outcomes under examination in the meta-analysis of 
these cohorts. Being dysregulated in RHR was associated with lower grip 
strength (B = − 0.45, 95CI= − 0.67, − 0.24), slower walking speed (B =
− 3.43, 95CI= − 5.64, − 1.22), and worse SRH (OR = 1.56, 95CI= 1.36, 
1.79). By contrast, SBP and DBP performed poorly. Indeed, being dys-
regulated in SBP and DBP was found, counter-intuitively, to be associ-
ated with higher grip strength, while neither measure was related to 
walking speed or SRH when pooled across studies. For the age range 
included in this study, SBP increases and DBP decreases with age, which 
is why pulse pressure (i.e. SBP – DBP) may be preferred as a biomarker of 
risk at older ages. Nevertheless, pulse pressure did not perform notably 

Fig. 2. Relationship between scoring in the highest risk quartile for each biomarker with average walking speed (cms/sec) in individual participant data 
(IPD) meta-analysis. Legend: Estimates were derived using restricted maximum likelihood (REML) estimation with the Hartung-Knapp-Siduk-Jonkman (HSJK) 
method while holding age, sex, and height (cms) constant, No adjustment for height was made with respect to body mass index or waist-to-height ratio. *denotes 
biomarkers which are reverse scored prior to analysis. 
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better than SBP or DBP. Medication use represents a major confounding 
factor as a substantial proportion of the older population are using 
anti-hypertensive medications. Prior studies have accounted for this by 
treating someone as being biologically dysregulated in blood pressure if 
they are using anti-hypertensive medications (Geronimus et al., 2006). 
We therefore re-estimated the models including cohorts for whom 
medication data was available (9/13). Supplementary Table S5 shows 
that the relationship of blood pressure (SBP, DBP, pulse pressure) with 
our various outcome measures improved substantially when we account 
for medication use. 

3.7. Respiratory system 

Peak expiratory flow (PEF) measurement is a simple measure of the 
air expelled from the lungs during forceful expiration following full 

inspiration and was available in 6/13 cohorts. Scoring in the lowest 
quartile of the distribution with respect to respiratory functioning was 
associated with a ~2 kg reduction in grip strength (B = − 2.09, 95CI=
− 2.48, − 1.70), ~10 cm/sec slower walking speed (B = − 10.27, 95CI=
− 16.03, − 4.51), and two times the odds of reporting fair/poor SRH (OR 
= 2.07, 95CI= 1.71, 2.51). 

3.8. Anthropometric 

Metabolic system dysregulation was measured using two sub- 
systems - anthropometric measures of body fat composition, and 
serum measures of blood glucose intolerance. Body mass index (BMI), 
waist circumference (WC), waist-hip-ratio (WHR), and waist-to-height 
ratio (WtHR) are all measures used to estimate body fat composition. 
WtHR was found to be the best performing biomarker within the 

Fig. 3. Odds ratio of scoring in the highest risk quartile for each biomarker with fair/poor self-rated health in individual participant data (IPD) meta- 
analysis. Legend: Estimates were derived using restricted maximum likelihood (REML) estimation with the Hartung-Knapp-Siduk-Jonkman (HSJK) method 
while holding age, sex constant, *denotes biomarkers which are reverse scored prior to analysis. 
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anthropometric system and was associated with lower grip strength (B =
− 0.52, 95CI= − 1.05, 0.02), markedly slower walking speed (B =
− 10.11, 95CI= − 13.56, − 6.65) and worse SRH (OR = 2.11, 95CI= 1.76, 
2.54). WHR was available in fewer studies (9/13) but was also associ-
ated with lower grip strength, slower walking speed, and worse SRH. 
Paradoxically, being in the highest quartile of the risk distribution with 
respect to BMI was associated with higher grip strength (B= 0.58, 95CI=
0.06, 1.08). 

3.9. Lipidemia 

Markers of lipid dysregulation are amongst the most common bio-
markers used in the calculation of the AL score in the extant literature 
and were well represented across the different studies. Measures of total 
cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and tri-
glycerides were available in all 13 studies, while low-density lipoprotein 
cholesterol (LDL-C) was available in fewer studies (10/13). The ratio of 
TC to HDL cholesterol was derived for all cohorts (TC/HDL ratio). HDL 
cholesterol outperformed all other lipid biomarker in terms of its asso-
ciation with the health outcomes assessed in this study. Scoring in the 
highest HDL quartile (reversed, i.e., lower levels of HDL cholesterol), 
was consistently associated with lower grip strength (B = − 0.09, 95CI=
− 0.34, 0.16), slower walking speed (B = − 5.04, 95CI= − 7.13, − 2.95), 
and worse SRH (OR = 1.65, 95CI= 1.40, 1.94). Importantly, TC is 
considered a mainstay of the AL measure yet was found to be associated 
with the health outcomes in the opposite direction than hypothesised. 
Similar patterns were observed for LDL cholesterol. In sensitivity ana-
lyses, we attempted to account for medication usage by counting par-
ticipants as biologically dysregulated in total cholesterol if taking lipid 
modifying medications (Supplementary Table S5). The association of TC 
with the outcome measures were closer to expected associations after 
accounting for medication use. 

3.10. Glucose metabolism 

Metabolic alterations are a central feature of the ageing process 
(López-Otín et al., 2016), characterised by insulin resistance, changes in 
body composition, and physiological declines in growth hormone 
(Barzilai et al., 2012). Three measures of blood glucose metabolism were 
considered in the present study, including fasting insulin levels (4/13), 
fasting blood glucose levels (8/13), and glycated haemoglobin (HbA1c) 
(11/13). Insulin is a hormone secreted by the pancreas which helps 
regulate blood glucose levels by signalling muscle, liver, and fat cells to 
absorb glucose from the blood. Blood glucose indicates the average level 
of glucose in the blood, while glycated haemoglobin (HbA1c) reflects an 
individual’s average glycaemic control over a longer time-period 
(approx. 8–12 weeks). Overall, the glucose-based biomarkers were 
associated with the health outcomes in the hypothesised direction. 

3.11. Renal system 

Two measures of renal function were available in a subset of studies: 
Serum creatinine was available in 6/13 studies, while cystatin C (CYS-C) 
was available in 4/13 studies. Creatinine and CYS-C are used to estimate 
glomerular filtration rate because they are freely filtered at the level of 
the glomerulus (functioning unit of the kidney). Creatinine is a by- 
product of muscle cell catabolism, while CYS-C is produced by all 
nucleated cells meaning it may have broader impacts on ageing biology 
beyond just the renal system. In the meta-analysis of these cohorts, being 
dysregulated in CYS-C was associated with lower grip strength (B =
− 1.48, 95CI= − 3.55, 0.59), slower walking speed (B = − 9.39, 95CI=
− 14.09, − 4.69), and worse self-reported health (OR = 2.13, 95CI= 1.53, 
2.96). On the other hand, creatinine measures performed less well in this 
regard. 

3.12. Liver system 

Liver based biomarkers have rarely been utilised in AL research to 
date, although a recent study by Karimi et al. (2019) using the UKHLS 
dataset included alanine transaminase (ALT) and aspartate trans-
aminase (AST) as part of an expanded AL composite. Elevated levels of 
ALT and AST may indicate liver disease, although AST is considered a 
less specific marker for liver injury than ALT due to expression in other 
tissues (Giboney, 2005). These two biomarkers were available in HRS 
and SEBAS, in addition to the UKHLS, but neither related strongly to the 
health outcomes assessed in this study. 

3.13. Summary of results 

There was at least one biomarker within 9/12 systems that was 
reliably and consistently associated in the hypothesised direction with 
the three health outcomes under investigation in the meta-analysis of 
these cohorts. The list includes DHEAS, LF-HRV, CRP, RHR, PEF, HDL-C, 
WtHR ratio, HbA1c, and CYS-C. Biomarkers of SAM functioning, 
oxidative stress, and liver functioning were not related to the health 
outcomes in our meta-analysis, although it should be acknowledged that 
these biomarkers were available in fewer studies overall. The results of 
the analysis suggest that these 9 biomarkers might constitute an efficient 
panel of biomarkers for capturing physiological ‘wear and tear’. Un-
fortunately, these 9 biomarkers were not all available within a single 
study. There was, however, a subset of five biomarkers (CRP, RHR, HDL- 
C, WtHR, and HbA1c) common to almost all studies that may constitute 
an abbreviated five-item measure of AL. 

3.14. Validating an abbreviated five-item measure of AL 

We sought to determine how well this brief measure compared with 
longer, more elaborate batteries in predicting mortality, (which was 
available for 10/13 studies) by recreating the AL indices used in previ-
ously published studies and comparing results directly against the five- 
item measure using the same case base. If a study included any of the 
four additional biomarkers (DHEAS, LF-HRV, PEF, CYS-C) which the 
meta-analysis suggested might serve as useful adjuncts to the short five- 
item index, we created additional indices to determine whether the 
predictive performance of the five-item AL measure was improved by 
the addition of that biomarker. These alternate indices were compared 
against the common set by variance explained (R2); and model fit 
(Bayesian Information Criterion (BIC)) as the models were non-nested. 
Following Raftery (1995), an absolute reduction in BIC of between 
0 and 2, 2–6, 6–10, and 10 or more was deemed to provide weak, pos-
itive, strong, and very strong evidence for alternative model specifica-
tions, respectively. The results of these analyses are depicted graphically 
in Fig. 4 and summary statistics are presented in Supplementary 
Table S6. In general, we found that the abbreviated five-item measure 
performed as well or better than more elaborate batteries in predicting 
mortality, with only a marginal loss in R2. However, in general, the 
performance of the five-item index was improved markedly by the 
addition of PEF, and to a lesser extent by DHEAS and CYS-C, but not 
LF-HRV. 

4. Discussion 

The AL framework has generated a large volume of publications in 
the last three decades but has been criticised for the lack of consistent 
definition. This meta-analytic study was motivated by the desire to 
identify a core set from among the broad array of biomarkers that have 
been used to instantiate the concept. The results of this IPD meta- 
analytic study moves the field forward by enabling teams of re-
searchers working with the AL framework to make informed decisions 
regarding which biomarkers are integral to the concept and which are 
more peripheral, at least in the context of physical health. We 
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acknowledge that our findings are based on selected outcomes and 
future work should seek to expand the range of outcomes examined. 

4.1. A brief five-item AL measure 

We identified a small panel of five, primarily cardio-metabolic bio-
markers – CRP, RHR, HDL, WtHR, and HbA1c - that were available in 
most studies contributing to this IPD meta-analysis that were consis-
tently associated with health status. An abbreviated AL measure 
comprising our five biomarkers was found to predict mortality as well as 
longer, more elaborate AL batteries. Notably, three of these biomarkers - 
CRP, Hba1C, and RHR – (alongside PEF), were among the most strongly 
predictive of all-cause mortality in a prior study involving the NCDS 
cohort, while measures of HPA-axis activation such as baseline cortisol 
and change in cortisol, were not (Castagné et al., 2018). An obvious 
tension therefore exists between selecting biomarkers that remain 

faithful to the original theoretical exposition of AL, which emphasised 
the centrality of the primary stress mediators in the physiological 
cascade that leads to disease states; or choosing biomarkers that predict 
health outcomes. Our analytical strategy was designed to select the best 
performing set of biomarkers across different physiological systems 
based on their association with several important health outcomes 
irrespective of their association with stress. One interpretation of the 
results is that chronic inflammation is the common thread linking the 
biomarkers with the health outcomes as inflammation is strongly 
implicated in the development of many age-related diseases (Cevinini 
et al., 2013). 

We expound briefly on each of the five biomarkers that comprise our 
abbreviated AL index. CRP is an acute phase inflammatory protein 
produced by cells in the liver during an inflammatory episode, largely in 
response to signalling by interleukin-6 and other primary cytokines. As a 
non-specific marker of inflammation, elevated levels of CRP may 

Fig. 4. Within-cohort comparison of the performance of the brief 5-item allostatic load index with longer batteries in predicting odds of mortality. 
Legend: All models adjusted for age and sex. Five-item = C-Reactive Protein, Resting Heart Rate, High Density Lipoprotein-Cholesterol, Waist-to-Height Ratio, 
HbA1c. DHEAS = dehydroepiandrosterone sulfate; PEF = peak expiratory flow; CYSC = cystatin C; LF-HRV = low frequency heart rate variability. 
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indicate the presence of acute inflammation, low grade chronic 
inflammation, or a state of upregulated tissue repair and regeneration, 
which incurs a physiological cost (Del Giudice and Gangestad, 2018). 
RHR is a readily available vital sign that holds important prognostic 
information about general health state as it reflects the number of times 
the heart beats in a minute while inactive, so a higher RHR signifies that 
the heart is having to work harder to pump blood around the body. The 
heart is a muscle subject to biomechanical stress, so it is perhaps un-
surprising that a higher RHR has been identified as a risk factor for 
incident cardiovascular disease (CVD) and cardiovascular mortality in 
many studies (Zhang et al., 2016). WtHR ratio is a simple measure of 
central adiposity that has recently received attention as a biomarker of 
health risk (Ashwell and Gibson, 2016), and possesses properties that 
arguably make it a better metric of body composition compared with 
other measures of total or central adiposity. HDL cholesterol is known as 
‘good cholesterol’ as it helps remove other forms of harmful cholesterol 
from the bloodstream via the liver. Low HDL cholesterol is a 
well-established biomarker of dyslipidemia that has been inversely 
associated with CVD risk in a number of meta-analyses (Di Angelantonio 
et al., 2009). Finally, glycated haemoglobin (HbA1c) serves as a 
biomarker of pre/diabetes and provides a read-out of average blood 
sugar levels over a longer time horizon (2–3 months) compared with 
fasting glucose or insulin. 

These biomarkers have the advantage of being relatively inexpen-
sive, easy-to-measure variables that have well-established clinical cut- 
points enabling direct comparisons across studies and hold promise as 
a sub-clinical index of physiological dysregulation with diagnostic util-
ity as long envisaged with the AL concept. As a further sensitivity check, 
we generated a clinical risk score based on established cut-offs for CRP, 
RHR, HDL-C, WtHR, and HbA1c, and compared its performance against 
study-specific cut-points. In general, results using study-specific cut- 
points (OR=1.31; 95CI = 1.22, 1.40; 95PI = 1.14, 1.50) (Supplementary 
Fig. S1) were very similar to results obtained using high-risk clinical cut- 
points (OR=1.34; 95CI = 1.20–1.49; 95PI = 1.01, 1.78) (Supplementary 
Fig. S2). We generated a funnel plot (Supplementary Fig. S3) to check for 
potential bias in the studies included in our IPD meta-analysis, but the 
graph looks fairly symmetrical given the relatively small number of 
studies and some heterogeneity in terms of the general characteristics of 
the cohorts. Finally, the magnitude of the effect sizes reported here are 
entirely consistent with the results of a recent systematic review and 
meta-analysis that examined the relationship of AL with mortality and 
reported hazard ratios of 1.22 (95CI = 1.14, 1.30) and 1.27 (95CI =
1.10, 1.46) using population-based and clinic-based cut-offs respectively 
(Parker et al., 2022). We tested for effect modification by fitting an 
AL*sex interaction term in the IPD meta-analysis, but it was 
non-significant in respect of both the population-based (Fig. S4) and 
clinic-based cut-offs (Fig. S5). 

Would our conclusion have been different if we had calibrated our 
AL measure using mortality as the dependent variable? In short, no. 
Supplementary Fig. S6 indicates that our conclusions would have been 
the same, and that CRP (OR = 2.14, 95CI= 1.85, 2.47), RHR (OR = 1.82, 
95CI= 1.56, 2.11), HDL (OR = 1.30, 95CI= 1.18, 1.44), WtHR (OR =
1.33, 95CI= 1.11, 1.60), and HBA1c (OR = 1.22, 95CI= 0.91, 1.64) were 
all positively associated with increased odds of mortality in the meta- 
analysis of these cohorts. 

4.2. An expanded 8-item AL measure 

The supplementary analyses suggest that the five-item measure 
could be improved, particularly by the addition of PEF, and to a lesser 
extent DHEAS and CYS-C. In fact, the results for PEF make a compelling 
case for it to be included as a core constituent of a 6-item AL index, 
except that it was not available in every cohort. PEF was the best per-
forming biomarker in terms of its absolute effect sizes across the three 
health outcomes, which is perhaps unsurprising as it likely operates as a 
surrogate measure of physical health and lifetime smoking (Enright 

et al., 2001; Trevisan et al., 2019), as well as exposure to other occu-
pational and environmental toxins. DHEAS was strongly associated with 
each of the three health outcomes and is generally regarded as being a 
reliable endocrine biomarker of ageing because circulating levels are 
very high in young adulthood and decline rapidly with age. Finally, 
there is growing evidence that CYS-C is more than just a marker of 
kidney disease as it is produced by all nucleated cells and its range of 
peptidase and proteolytic inhibitory functions, coupled with expression 
in almost all tissues, means it has broader impact on ageing biology 
beyond just the renal system (Zi and Xu, 2018). 

4.3. Re-evaluation and retrenchment 

One of the most interesting findings to emerge from this study was 
that the biomarkers of neuroendocrine functioning, which are posited to 
play a central load in the physiological cascade that contributes to 
allostatic overload, were for the most part, unrelated to the three 
physical health outcomes examined; although it should be acknowl-
edged that epinephrine, norepinephrine and cortisol were measured in 
few studies overall. Furthermore, numerous reviews have documented 
challenges in the measurement of these biomarkers (Peaston and 
Weinkove, 2004), particularly cortisol (El-Farhan et al., 2017), which 
may help account for the lack of a signal in this study. These biomarkers 
may impact outcomes, not through levels - which is what is generally 
measured (e.g. average overnight output) - but through patterns of ac-
tivity, as these systems (especially the catecholamines), oscillate rapidly 
over the course of a day making it difficult to use them as biomarkers. 
The corollary is that available data are less well-suited for picking up the 
potential impacts of dysregulation in these systems as they are measured 
on different time scales. 

There were other biomarkers, considered mainstays of the AL index 
such as SBP, DBP, and total cholesterol that were not strongly related to 
the outcomes we measured. We found that medication use represented a 
major confounding factor as a substantial proportion of older persons 
use anti-hypertensives or statins. Despite this, not all studies capture 
medication usage, nor indeed account for it when constructing their AL 
composites. Some theorists have argued that a person should be counted 
as biologically dysregulated if they are taking medications (Geronimus 
et al., 2006), while others have argued that biomarker levels are 
controlled under these circumstances, and hence, the person should not 
be counted as biologically dysregulated unless they fall into the highest 
risk quartile (Seeman et al., 2004), yet others suggest a 0.5 point 
weighting to indicate some level of elevated risk (Rodriquez et al., 
2019). Notwithstanding these caveats, the central point remains that 
these biomarkers may be less than ideal components of the AL index in 
studies including older people unless medication usage is accounted for. 

4.4. Recommendations 

The lack of a gold standard definition has been a persistent criticism 
levelled at the AL framework since its inception. This study represents an 
initial attempt to distil a core set from the wide array of biomarkers that 
have been used to instantiate the concept, and, it is hoped, stimulate 
further research in this vein. Of course, our study also has several lim-
itations that arguably hamper any conclusions that can be drawn. These 
limitations include: (i) the lack of a systematic review and meta-analysis 
to inform the inclusion of studies meaning that the included studies 
represent only a subset of the wider corpus of studies that have 
measured AL, (ii) some heterogeneity in the general characteristics of 
the included cohorts (iii) a restricted age sample focused on mid-to-late 
life so we do not know whether these results generalise to younger co-
horts, (iv) exclusion (e.g. testosterone) or under-representation (e.g. 
cortisol. epinephrine / norepinephrine) of some biomarkers that are 
central to the theory of AL, which tend to be less represented in large 
population-based cohort studies and may bias results and conclusions, 
(v) not stratifying biomarker levels by sex as men and women are known 
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to differ in levels of specific biomarkers, (vi) failure to account for 
medication usage when characterising dysregulation, (vii) the choice of 
outcome variables which focus on objective physical function and SRH 
as opposed to selecting biomarkers based on disability, disease states or 
mortality (although we used mortality in our sensitivity analysis), and 
(viii) the use of cross-sectional data which assumes that elevated levels 
of the biomarkers leads to worse health (rather than the reverse). 

While acknowledging these caveats, we would also point to a number 
of strengths including, samples that span the relevant age range for these 
outcomes, samples that span continents, samples that have extensive 
biomarker data available, and an analytical approach to the problem of 
variable selection designed to move the field forward. The panel of 
biomarkers selected to represent the core construct may help address 
some of the essential criticisms associated with the AL framework, most 
notably, that it lacks construct validity since its formulation varies from 
study to study. 

This meta-analytic investigation suggests that some of these issues 
can be addressed in the following way:  

1. Studies should consider reporting results for the common set of five 
biomarkers to allow for comparison of cumulative physiological 
burden across different socio-demographic groups and age ranges.  

2. Studies should consider reporting results for the common set of five 
biomarkers using clinical cut-points to facilitate comparisons across 
studies.  

3. De novo studies should consider including the expanded eight-item 
measure as well as other theoretically informed biomarkers.  

4. Studies should take account of medication usage when calculating 
AL composite measures. 

5. Researchers should endeavour to include measures of neuroendo-
crine functioning to allow for a fuller understanding of their role in 
predicting disease as they are still under-represented in many studies 
of allostatic load, particularly observational panel studies.  

6. Researchers should revisit this question using other extant datasets 
and outcome variables to determine how well the proposed abbre-
viated panel works, and ways in which it could be further refined or 
improved. 

These suggestions are offered only as a harmonising framework for 
comparative research, and it is anticipated that the panel will continue 
to be expanded and refined as teams of researchers revisit this issue 
armed with better data or newer analytical approaches, and a range of 
different outcome variables. 
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