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Abstract
When estimating path coefficients among psychological constructs measured with error, structural
equation modeling (SEM), which simultaneously estimates the measurement and structural parame-
ters, is generally regarded as the gold standard. In practice, however, researchers usually first com-
pute composite scores or factor scores, and use those as observed variables in a path analysis, for
purposes of simplifying the model or avoiding model convergence issues. Whereas recent
approaches, such as reliability adjustment methods and factor score regression, has been proposed to
mitigate the bias induced by ignoring measurement error in composite/factor scores with continuous
indicators, those approaches are not yet applicable to models with categorical indicators. In this arti-
cle, we introduce the two-stage path analysis (2S-PA) with definition variables as a general frame-
work for path modeling to handle categorical indicators, in which estimation of factor scores and
path coefficients are separated. It thus allows for different estimation methods in the measurement
and the structural path models and easier diagnoses of violations of model assumptions. We con-
ducted three simulation studies, ranging from latent regression to mediation analysis with categorical
indicators, and showed that 2S-PA generally produced similar estimates to those using SEM in large
samples, but gave better convergence rates, less standard error bias, and better control of Type I error
rates in small samples. We illustrate 2S-PA using data from a national data set, and show how
researchers can implement it in Mplus and OpenMx. Possible extensions and future directions of 2S-
PA are discussed.

Translational Abstract
Psychology researchers usually rely on questionnaire items with limited options (e.g., five-point
scales) to score individuals on psychological variables, but these scores, called factor scores, contain
measurement error as they do not perfectly measure the variables of interest. When ignored, measure-
ment error generally leads to biased statistical results. Structural equation modeling (SEM) is a popu-
lar statistical method that simultaneously estimates associations among variables while adjusting for
measurement error. However, because SEM requires using all individual items in an analysis, it
sometimes fails to give reasonable results, and other times fails to give any results at all. In this pa-
per, we propose the two-stage path analysis (2S-PA) with definition variables method as an alterna-
tive to SEM, which separates an analysis into two steps: researchers first compute factor scores and
estimate the amount of measurement error in each score, and then estimate the associations among
psychological variables using only the factor scores and the associated estimates of measurement
error. Thus, compared to SEM, 2S-PA greatly reduces the computational burden. Using simulated
data, we show that 2S-PA is less likely to fail compared to SEM, and generally gives more accurate
results in small samples. We also provide a pedagogical example of 2S-PA using a real data set, and
show how 2S-PA can be run using both commercial software and open-source software. As 2S-PA

This article was published Online First December 9, 2021.
Mark H. C. Lai https://orcid.org/0000-0002-9196-7406

Yu-Yu Hsiao https://orcid.org/0000-0001-9296-4517
Yu-Yu Hsiao was supported by the National Institute on Alcohol Abuse

and Alcoholism under Grant R01 AA025539.
Codes for simulations and the empirical demonstration, and supplemental

materials are openly available at the project’s Open Science Framework
page (https://osf.io/h95vx/).

We thank Winnie Tse for helping with the organization of the
supplemental materials, and Hio Wa Mak, Stefan Schneider, and Roy Levy
for thoughtful comments on earlier versions of the article.

The experiment materials are available at https://osf.io/h95vx/
Correspondence concerning this article should be addressed to Mark H.

C. Lai, Department of Psychology, University of Southern California, 3620
South McClintock Avenue, Los Angeles, CA 90089-1061, United States.
Email: hokchiol@usc.edu

568

Psychological Methods

© 2021 American Psychological Association 2022, Vol. 27, No. 4, 568–588
ISSN: 1082-989X https://doi.org/10.1037/met0000410

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

https://osf.io/h95vx/
https://orcid.org/0000-0002-9196-7406
https://orcid.org/0000-0001-9296-4517
https://osf.io/h95vx/
https://osf.io/h95vx/
mailto:hokchiol@usc.edu
https://doi.org/10.1037/met0000410


avoids the complexity of SEM, it has great potential to bring to psychology researchers awareness
the need to adjust for measurement error and obtain more accurate statistical results.

Keywords: measurement error, SEM, path analysis, reliability adjustment, definition variable
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In social and behavioral sciences, researchers are usually inter-
ested in estimating structural relations (i.e., path coefficients)
among constructs that cannot be directly observed and can only
be measured by noisy indicators (Kline, 2016). Traditionally,
researchers have been using computed variables—such as com-
posite scores (Hsiao et al., 2018) or factor scores (e.g., Skrondal &
Laake, 2001)—as proxies of the latent constructs of interest. How-
ever, because these computed variables are generally not measure-
ment error free, their use can result in biased estimates of
structural relations (e.g., Cole & Preacher, 2014) that are usually
of substantive interest to researchers. Two common approaches to
reduce such bias due to measurement error are (a) full structural
equation modeling (SEM; Figure 1) that simultaneously estimates
measurement models for the latent constructs and a structural
model specifying their relations (Jöreskog, 1970); and (b) two-step
analyses that adjust the estimated path (structural) coefficients
obtained using observed scores for measurement error (Devlieger
et al., 2016). Whereas full SEM is generally regarded as the gold
standard, in practice it usually requires a large sample size to get
stable parameter estimates, especially when the numbers of latent
variables and of observed variables are large (Savalei, 2019).
On the other hand, given their relative simplicity compared with

full SEM, recently there has been a renewed interest in observed
score regression and path analysis methods with measurement
error adjustment, which are based on concepts found in much ear-
lier literature in econometrics (e.g., Caroll et al., 2006; Reiersøl,
1950; Wansbeek & Meijer, 2000) and in SEM (Hayduk, 1987).
Examples include factor score regression (Devlieger et al., 2016;
Hoshino & Bentler, 2013), factor score path analysis (Devlieger &
Rosseel, 2017; Kelcey, 2019), and reliability-adjustment for latent
interactions (Hsiao et al., 2018) and mediation analyses (Savalei,
2019). When the assumptions of the underlying measurement
models are met, these methods have been shown to produce esti-
mates very similar to those with full SEM (Devlieger et al., 2016;
Hsiao et al., 2018), have better small sample properties (Kelcey,

2019; Savalei, 2019), and be more robust to misspecifications in
the measurement models (Devlieger & Rosseel, 2017).

Despite the promising results of these measurement error adjust-
ment methods, each of them have certain limitations. Most notably,
these methods assume that the observed indicators are continuous
and normally distributed so that the measurement error variance for
each observation is constant. In psychological measurement, how-
ever, indicators usually have discrete response options, which results
in measurement error with nonconstant variance at the observed
score level across different levels of the latent variable (Embret-
son, 1996). To address this limitation, in this article we aim to
(a) introduce the two-stage path analysis (2S-PA) with definition
variables, a general framework for adjusting measurement error
in regression and path analyses; (b) compare the performance of
2S-PA with observed score path analysis, full SEM, and other
measurement error adjustment methods in a series of simulation
studies with categorical indicators; and (c) demonstrate the use
of 2S-PA in a public data set. Potential benefits and limitations
of 2S-PA and possible extensions are discussed.

ATwo-Stage Approach for HandlingMeasurement Error

Consider a general path model for the relations among a set
of q constructs, represented by a variable vector gi = [hi1, hi2,

. . . ;giq�> for the ith observation (i = 1, 2, . . ., N):

gi ¼ aþ Bgi þ fi (1)

where a = ½a1; . . . ;aq�> contains the regression intercepts, B is a
q 3 q matrix with each element bmn representing the regression
coefficient of hm regressed on hn, and fi is a vector of length q of
disturbances, with the standard assumption that fi ¼ 0.1

For simplicity, and as a common practice, in this article we
assume that the components of fi are independently and identically
distributed following a multivariate normal distribution with a co-
variance matrix w, and that they are independent to the exogenous
components in g. Equation 1 is commonly referred to as the struc-
tural model linking the constructs (hs) of interest.

In practice, the hs are usually unobserved, latent variables and so the
parameters in the above equation cannot be directly estimated. When
each h is measured by multiple observed indicators, researchers usually
compute a sum score or factor score, denoted as ~g, as a single indicator
to represent each h. Such practice is not uncommon, as Cole and
Preacher (2014) reported that 11.7% of published articles in seven major
psychology journals in 2011 involved path analysis with observed single
indicators, and the prevalence would be much higher if articles using
multiple regression (which is a special case of path analysis) were also

Figure 1
Full SEM Specification of Linear Regression With a Latent
Predictor and an Observed Outcome

1We follow the “all-y” notation system by Jöreskog and Sörbom
(2001), except using Re later to indicate the measurement error variance of
the factor scores.
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included. However, researchers rarely adjust for measurement error in
observed single indicators despite recommendations from the SEM liter-
ature (e.g., Bollen, 1989; Hayduk, 1987; Hsiao et al., 2018; Savalei,
2019) and also in econometrics (e.g., Murphy & Topel, 1985) and statis-
tics (e.g., Caroll et al., 2006), which showed that ignoring measurement
error led to biased structural coefficient estimates, with unpredictable
bias in small samples (Loken & Gelman, 2017) and in moderately com-
plex path models (Cole & Preacher, 2014).
In the present article, we propose a two-stage alternative approach

to full SEM by first obtaining factor scores (which include the special
case of sum scores), eg, and the corresponding estimated standard
error of measurement for each factor score, using appropriate psy-
chometric analyses, and then accounts for measurement error in the
second-stage analysis of factor scores using definition variables.
Given space limitations we only discuss the use of the expected a
posteriori (EAP) method for computing factor scores and do not
compare other alternatives, but readers can get a good overview of
some common factor score options in Estabrook and Neale (2013).
Specifically, the two-stage approach estimates the measurement

and the structural models separately:

Measurement: ~gi jx;y (2)

Structural:
gi ¼ aþ Bgi þ fi
~gi ¼ Kigi þ ei
ei �Nð0;ReiÞ

;

8<
: (3)

where ~gi is the q-vector of factor scores for the ith person obtained
from a measurement model of observed item scores y with parame-
ters x, and Rei is the q 3 q covariance matrix of measurement error
for the factor scores, typically obtained from the first stage. When
separate measurement models are fitted to separate sets of items,
Rei is diagonal with elements ½r2

e1i;r
2
e2i; . . . ;r

2
eqi�. The loading

matrix K is a known diagonal matrix to standardize g, so that
elements of B are standardized coefficients. The above model
is a special case of the broader class of multivariate nonlinear
models with classical measurement error in the statistics and
econometrics literature (e.g., Caroll et al., 2006; Fuller, 1987;
Wansbeek & Meijer, 2000). However, instead of assuming
that Rei is given, it is estimated using psychometric methods
that are familiar to SEM researchers. While the above model
can be estimated using maximum likelihood as discussed in
Caroll et al. (2006, Chapter 8), because the estimated standard
error of measurement is not constant across observations, in
the SEM framework it requires the use of definition variables
to fix the error variance to individual-specific values.

Two-Stage Path Analysis With Definition Variables

In SEM, definition variables are “observed variables used to fix
model parameters to individual specific data values” (Mehta &
Neale, 2005, p. 259) and were originally developed in the Mx pro-
gram (see, e.g., Neale, 2000). In conventional SEM, definition var-
iables are not needed because the model parameters, such as factor
loadings, path coefficients, and the measurement error variance pa-
rameters, are assumed constant across individuals, which implies
that the likelihood function for each observation is the same. This
is obviously not the case for the model in Equation 3, as the likeli-
hood function depends on the standard error of measurement, Rei,

which is not constant across observations. Using definition varia-
bles, on the other hand, allows estimation with nonidentical likeli-
hood functions across observations.

Applications of definition variables include multilevel models with
random slopes (Mehta & Neale, 2005), models with heterogeneous
measurement error (Muthén & Asparouhov, 2002), and meta-analysis
(Cheung, 2013). A path diagram involving definition variables for a
regression model of h2 on h1, with h1 indicated by ~g1 with heteroge-
neous error variance, is shown in Figure 2b. In the diagram, both the

loading of ~g1 on h1, ~k1, and the error variance, ~r
2
e1, are fixed as defi-

nition variables, represented in diamonds.
In the proposed 2S-PA with definition variables, in Stage 1 the fac-

tor score variables (~gs) can be obtained with any appropriate psycho-
metric analyses (e.g., using Figure 2a), as long as the individual-
specific factor score and standard error of measurement estimates can
be obtained. For example, item response models can be used for bi-
nary or ordered categorical variables using maximum likelihood with
the EAP method. When one or more indicators in y is categorical, the
standard error of measurement generally varies across individuals
(Lord, 1984; also see Appendix A for an illustration).2

Because latent variables generally do not have an intrinsically
meaningful unit, when fitting a measurement model, it is common
to set the variance of the latent variables to unity. Let r̂ ~g1 i be the
estimated standard error of the factor score ~g1 for person i. Then
the true score variance of ~g1i is 1� r̂2

~g1 i
, which is also the esti-

mated individual-specific reliability of the factor score. As shown
in Figure 2b, in the second stage, ~g1 is modeled as an indicator of
h1 with unit variance, with the factor loading set to be k1i ¼
1� r̂2

~g1i
and the error variance set to r2

e1i ¼ r̂2
~g1i

ð1� r̂2
~g1i

Þ, so
that the reliability of each observation is fixed to 1� r̂2

~g1i
.

The second stage of 2S-PA can be easily performed on SEM
software that supports the use of definition variables, including
Mplus (Muthén & Muthén, 2017) and OpenMx (Neale et al.,
2016); as demonstrated in the online supplemental materials on
OSF (https://osf.io/h95vx/).

Comparing 2S-PA and Other Measurement Error
Adjustment Methods

If the indicators are continuous and normally distributed, 2S-PA is
similar to other approaches for adjusting for measurement error. For
example, Hsiao et al. (2018) and Savalei (2019) discussed the use of
composite scores in the context of interaction and path analyses by fix-
ing the factor loading for each latent variable, k, to be 1.0 and constrain-
ing the uniqueness (i.e., measurement error variance) to be s2yð1� qyyÞ
where s2y is the sample variance of the composite score and qyy is the

composite reliability (which can be an estimate or a fixed/known
value).3 It is thus obvious that path analysis with composite scores and
reliability adjustment is a special case of 2S-PA with ~g being the com-

posite scores and r2
ei set to s2yð1� qyyÞ, which is constant for all

2 Although the distribution of ~g is usually not exactly normal with
categorical indicators, it quickly converges to a normal distribution as the
number of items increases (Bock & Mislevy, 1982) so that Equation 3 is a
good approximation.

3 An alternative way to identify the same model is to fix the latent factor
variance to 1.0, and impose the constraint k2=ðk2 þ r2

eÞ ¼ qyy.
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observations. We expect this procedure to be biased when measurement
error varies across observations, such as in the case of categorical
indicators.
Factor score regression and factor score path analysis (Devlieger

et al., 2016; Devlieger & Rosseel, 2017; Kelcey, 2019), on the other
hand, directly use factor scores as observed variables for parameter
estimation in regression and path analysis, and then correct for the
biases in the estimated path coefficients and standard error esti-
mates based on the method by Croon (2002), which generalized the
results on the effects of measurement error in regression (e.g.,
Fuller, 1987; also Hardin, 2002; Murphy & Topel, 1985) to path
analysis. These methods share the same idea as in 2S-PA by treat-
ing the estimated factor scores as indicators of true latent variables
with known measurement error variances. It, however, requires
involved calculations of the adjustment factor, although the current
version of the lavaan R package (Rosseel, 2012; Rosseel et al.,
2020) has automated the computation. Also, unlike reliability
adjustment methods, it currently does not support estimation of
interaction and nonlinear effects. More importantly, like the reli-
ability adjustment approach, it assumes a constant covariance ma-
trix for the estimated factor scores, and so may not be appropriate
for heterogeneous measurement error variance, which is more the
norm than the exception for psychological measurement as binary
and Likert-type items are particularly common.4 As shown in
Greene (2003, Chapter 11), unmodeled heterogeneous error var-
iance may lead to inefficient estimators and inadequate standard
error estimates when the nonconstant variance is correlated with the
predictor, but it is not clear how unmodeled heterogeneity in mea-
surement error variance affects estimation in a path model.
Another estimation approach is the model-implied instrumen-

tal variable estimator (Bollen, 1996, 2019), with the extension of
the polychoric instrumental variable (PIV) estimator (Bollen &
Maydeu-Olivares, 2007) for binary and ordered categorical data.
PIV is a two-stage equation-by-equation estimation method
using instrumental variables that are implied from the model
structure, which is less susceptible to convergence issues. It has
also been shown to be more robust to model misspecification (e.
g., Jin et al., 2016; Nestler, 2013). We include PIV in our simu-
lation Study 2, which evaluates the performance of various
methods under model misspecifications.

Comparing 2S-PA and Full SEM

Although full SEM is commonly regarded as the gold standard
to account for measurement error in estimating structural relations,
previous studies have suggested that single indicator methods with
adjustment have several advantages over full SEM, including
more precise estimates of the path coefficients as measured by the
root mean squared error (RMSE) in small samples (Kelcey, 2019;
Savalei, 2019) and robustness to misspecification in the measure-
ment model (Devlieger & Rosseel, 2017) when factor scores were
estimated in separate models. As will be demonstrated and dis-
cussed in a series of simulation studies in this article, by reducing
model complexity, the proposed 2S-PA approach also provides
better control of Type I error rates and smaller RMSEs for the
structural coefficients, as well as drastically improved convergence
rates. Besides, on a more conceptual level, we argue that the 2S-
PA approach has the following two advantages over full SEM.

Separate Estimation of Measurement and
Structural Models

The first advantage of 2S-PA is that it allows for separate esti-
mation processes for the measurement and the structural models.
In a full SEM model, usually there are many more variables
involved in the measurement model than in the structural model.
In the presence of ordered categorical data, estimation methods
under full SEM generally fall into two categories: weighted least
squares (WLS) and maximum likelihood (ML). Whereas WLS
estimators were shown to have reasonable performance with suffi-
cient sample size (Asparouhov & Muthén, 2012), some research
found they produced biased structural coefficients (e.g., Li, 2016)
and, contrary to ML estimators, WLS estimators do not automati-
cally handle missing data under the missing at random mechanism

Figure 2
Linear Regression With Definition Variables

Note. (a) Stage 1: a measurement model for estimating factor scores ~g1 and the corre-
sponding standard errors; (b) Stage 2: path analysis with constraints to fix measurement
error variance using definition variables.

4 Croon and van Veldhoven (2007) discussed how to incorporate
heterogeneous error variance for two-stage estimation in the context of
multilevel modeling; Hardin (2002) discussed a sandwich estimator for
two-stage models for heterogeneous disturbances. These are limited
information maximum likelihood approaches with corrections on
parameter and covariance estimates, while 2S-PA uses joint modeling
that incorporates the heterogeneous measurement error in the likelihood
function.
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(as illustrated in Pritikin et al., 2018). On the other hand, ML esti-
mators for categorical data generally require the use of numerical
integration by conditioning on the latent variables (Embretson &
Reise, 2000), and estimating models with more than a few latent
variables is computationally challenging.5

Instead, with 2S-PA, researchers can fit a separate measurement
model for each latent variable in the overall model, which solves the
dimensionality problem. By doing so, it allows the use of the most
appropriate estimation method for each measurement model.
Researchers are also free to choose state-of-the-art psychometric
models that are available only in specialized software, and estimate
the structural model on SEM software that supports definition varia-
bles. For example, one can fit the monotonic polynomial generalized
partial credit model (Falk & Cai, 2016) with theMetropolis-Hastings
Robbins-Monro algorithm (Cai, 2010) in the mirt package in R
(Chalmers, 2012), obtain factor scores via the EAP method, and use
Mplus or OpenMx to estimate structural relations together with other
observed variables. Such an option, however, is currently limited
with full SEM as it requires that the SEM software directly supports
the advanced psychometric models. Indeed, many of the recent de-
velopment in psychometrics, such as IRT tree models (De Boeck &
Partchev, 2012), network psychometrics (Epskamp et al., 2017), and
so forth, are not based on the conventional SEM framework and thus
may not be available in some current SEM software. Similarly, the
structural model may contain nonnormal or discrete observed out-
come variables that require different intensive estimation methods,
and putting the measurement model and the structural model with all
variables together may not be feasible. By separately estimating the
measurement and the structural models, 2S-PA allows researchers to
combine the best from both worlds.

Apply Diagnostic Tools Commonly Used in Regressions

Another advantage of 2S-PA is that, by explicitly obtaining the fac-
tor scores, it allows researchers to use diagnostic tools that are com-
monly deployed for regression models to assess problems such as
nonlinearity and outliers. As Hallgren et al. (2019) pointed out, none
of the 37 articles they reviewed in addiction research journals that
used SEM provided scatterplots or other diagnostic plots commonly
used in regression analyses, and a main reason was that the latent vari-
ables were not realized values. Therefore, Hallgren et al. (2019) rec-
ommended obtaining factor scores and used them to provide
diagnostic plots for structural relations in SEM. Although factor scores
are not the same as error-free latent variables and different options for
computing factor scores can sometimes produce substantially different
scores (Skrondal & Laake, 2001), by estimating and saving them in
the first stage, researchers are more equipped to evaluate the validity
of the specified functional form and the distributional assumption for
each path in the structural model, which are often masked when using
full SEM and cannot be detected with significance tests of path coeffi-
cients and goodness-of-fit indices. Figure 3, which is based on the em-
pirical example presented later in this paper, shows that the normality
assumption is violated at the factor score level.
In the following sections, we report the results of a series of

Monte Carlo studies comparing the performance of 2S-PA with
full SEM and several alternative methods. In Study 1, we use a
latent regression model with measurement error in the predictor.
In Study 2, both the predictor and the outcome in the model have
measurement error, and we examine the robustness of 2S-PA and

other approaches to misspecification in the measurement model. In
Study 3, we examine a path model with three latent variables, with
a focus on estimating an indirect effect.

Study 1: Measurement Error in a Single Predictor

In Study 1, we examine the performance of 2S-PA as compared
with full SEM and alternative measurement error adjustment
methods when there is measurement error on the predictor.

Method

Data Generating Model

The data generating model was similar to the one shown in Fig-
ure 1, where each indicator for h1, the latent predictor, has K cate-
gories. The indicators were generated from a graded response
model (Samejima, 1969) with different loadings, and parameter-
ized as an item factor analysis model (Wirth & Edwards, 2007)
with a cumulative logit link:

y�ij ¼ kjgi þ eij; (4)

yij ¼
0 if y�ij , sj1
k if sjk # y�ij , sjðkþ1Þ
K � 1 if y�ij $ sjðK�1Þ;

8<
: (5)

where y�ij is the score of the ith person on the latent continuous

response variate for indicator j, eij is the realized value of the
unique factor following a standard logistic distribution, and
sj1; . . ., sjðK�1Þ are the threshold parameters for the jth indicator.

We used R 3.6.1 (R Core Team, 2019) to first generate h1 from a
standard normal distribution, and then computed h2, the observed
outcome variable, as g2i ¼ b0 þ b1g1i þ fi, where fi was also nor-
mally distributed with mean 0 and variance 1 � b21 so that the total
variance of h2 was also 1. The indicators were then generated
according to the graded responsemodel as previously discussed.

We simulated the threshold levels so that the observed indi-
cators had skewed distributions. Specifically, when K = 2, the
thresholds were generated as s� = {�2.20, �1.39, �0.95,
�0.41, 0} on the logit scale so that the indicators had success
probabilities of .9, .8, .7, .6, .5. When K = 4, the first thresholds
s1 corresponded to �1 þ s�, the second thresholds s2 corre-
sponded to s�, and the third thresholds s3 corresponded to
1þ s�, respectively.

Design Factors

Number of Categories (K). The number of categories were
chosen to be two or four for each indicator. This covers a range of
commonly used response formats in the behavioral and social sciences.
More categories were not studied as we expected the results to be at
least as good as when K = 4, as discussed in Rhemtulla et al. (2012).

Sample Size Per Indicator (N/p). In full SEM a general rec-
ommendation is to have a sample size of 100 or more for a simple
model like this one (e.g., Kline, 2016), so we would like to exam-
ine whether 2S-PA performs better than SEM in small samples, as

5 See Wirth and Edwards (2007) for a more comprehensive comparison
of different estimation choices.
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Savalei (2019) found some evidence that reliability adjustment
methods with fixed reliability outperformed SEM. As sample size
recommendations in SEM were usually based on the relative N per
indicator (e.g., MacCallum et al., 1999), in Study 1 we chose N/p
= 6, 25, 100, which covered common situations with small to large
sample sizes. As a result, the maximum sample size was 2,000 and
the smallest was 30.

Average Factor Loading (k). We simulated data with varying
loadings with either k = 1 or 2.5. With unit variance for the latent
predictor, the average standardized loadings for the latent response
variates were approximately .48 and .81. The loadings sequentially
decreased in equally-spaced intervals across indicators, with the max-
imum being 1.5 3 k and the minimum being .5 3 k. For example,

in conditions with k = 2.5 and with 10 indicators, the maximum

Figure 3
Relations Among Estimated Factor Scores for the Empirical Demonstration

Note. The distribution of the estimated factor scores for the latent predictor was shown in the top left panel. See the online article for the color version
of this figure.
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loading was 3.75 and the minimum was 1.25. The combination of

k ¼ 1 and small p resulted in low com-posite reliability (e.g., coeffi-
cient omega for categorical indicators, xNL � .47 when p = 5 and K

= 2), whereas k ¼ 2:5 coupled with large p resulted in high compos-
ite reliability (e.g., xNL � .93 when p = 10 and K = 4).
In addition, we manipulated the number of indicators for the

latent predictor to be p = 5, 10, 20, and the regression (structural)
coefficient of h1 predicting h2 to be either b1 ¼ 0 (null effect) or
b1 ¼ 0:5 (medium effect).
Analytic Approaches. We compared six analytic approaches in

Study 1, which includes (a) linear regression/path analysis (PA); (b)
full SEM; (c) 2S-PA; and reliability adjustment with (d) coefficient
alpha (RA-a); (e) coefficient omega (RA-x); and (f) coefficient omega
for categorical indicators (RA-xNL). For PA, the predictor is a compos-
ite score of the five indicators of h1. Mplus 8.3 (Muthén & Muthén,
2017) was used for all approaches. For SEM, the diagonally weighted
least squares (DWLS) estimator with robust standard errors (ESTIM-
TOR=WLSMV in Mplus) was used.6,7 For 2S-PA, we first fit a one-
factor model to the five categorical indicators using maximum like-
lihood estimation with numerical integration with adaptive quadra-
ture and 15 integration points.8,9,10, and then obtained the factor
scores and the corresponding standard errors with the EAP method.
For the three RA methods, we obtained the composite reliability
estimates using R (with the psych package, Revelle, 2019; for a;
and theMBESS package, Kelley, 2020; for x and xNL).
For all models, we obtained the sample point and standard error

estimates of b1, denoted as b̂1 and ŜEðb̂1Þ. For all structural mod-
els, the measurement part of h1 was identified by constraining the
latent factor variance to be 1 and the uniqueness of X to be 0, so
that the latent predictor was standardized to ensure fair comparison
to the population b1 parameter. In other words, the analytic

approaches were compared on the standardized b̂1 coefficient,
consistent with previous simulation studies (e.g., Cole & Preacher,
2014; Savalei, 2019).
The Monte Carlo simulation was structured using the R package

SimDesign (Chalmers, 2020), which automatically collected warning
and error messages during the simulation. For replications where one
or more analyses returned an error, the package automatically resimu-
lated a new data set until convergence was obtained for all analyses,
but for each attempt we also saved information on which analyses
encountered convergence issues so that we could properly compute
convergence rates. For each condition, we obtained 5,000 complete
replications. The R code for all simulation studies can be found in the
online supplemental materials on OSF.

Evaluation Criteria

For each method in each replication, we computed the conver-
gence rate, bias, the root mean squared error (RMSE), the relative
standard error (SE) bias, the empirical Type I error rate (for b1 = 0
conditions), and the empirical power (for b1 . 0 conditions).
Convergence Rate. The convergence rate was computed as

the proportion of replications without an error, including replica-
tions where the program gave a warning (e.g., variance estimates
, 0), out of all replication attempts (including the failed ones that
did not go into the complete replications). Major reasons for non-
convergence included empirical underidentification due to simu-
lated indicators having close to zero correlations (mostly for full

SEM) and negative sample estimates of overall reliability (for RA
methods) or individual-specific reliability (for 2S-PA).

For some converged conditions, Mplus still gave extreme pa-
rameter and standard error estimates (e.g., SE. 500 in some small
samples). To avoid the influence of extreme outliers, we computed
robust versions of bias, RMSE, and SE bias, as explained below,
while the raw bias, RMSE, and SE bias can be found in the online
supplemental materials on OSF.11

Bias. The bias was computed as b̂1 � b1, where b̂1 =XR
i¼1

b̂1i=R with R = 5,000 replications is the 20% trimmed mean

(Wilcox, 2016) of the b̂1i estimates across replications. The 20%
trimmed mean was suggested to be a good compromise between
the arithmetic mean (or 0% trimmed mean), which is highly sensi-
tive to outliers, and the median (or 100% trimmed mean), which is
robust but inefficient for normally distributed data. For conditions
with b1 6¼ 0, we also computed the relative bias = bias/b1.

RMSE (Ratio). The robust RMSE was computed asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bias2 þ ½MADðb̂1Þ�2

q
, where MADðb̂1Þ was the sample median

absolute deviation (from the median with a scale factor of 1.4826) of

the 5,000 b̂1 estimates. The RMSE indicated the typical distance of
the sample estimated value from the true value of b1, the standardized
regression coefficient. As RMSE was heavily dependent on sample
size and the magnitude of b1, we computed the RMSE ratio relative

to PA (denoted as RR) as RR ¼ RMSEPAðb̂1Þ=RMSEMðb̂1Þ for
method M, with RR . 1 indicating the method M is more efficient
than PA.

6 The DWLS estimator first estimates the polychoric correlation matrix
by assuming an underlying standard normal latent response variate for each
indicator as well as the asymptotic covariance matrix of the polychoric
correlations. The diagonal elements of the asymptotic covariance matrix is
then used as the weight matrix in weighted least square estimation of model
parameters.

7 Assuming an underlying normal distribution for an observed categorical
indicator corresponds to the probit link, which is different from the logit link
used to generate the data. In practice, probit and logit usually give very
similar results other than a scaling difference on the measurement
parameters (Paek et al., 2018), as the standard normal distribution has a
variance of 1 and the standard logistic distribution has a variance of p2=3.
To examine the sensitivity to this choice, in Study 2 we generated data using
a probit link.With ML, the logit link is used as the default in Mplus in the
first stage of 2S-PA.

8With ML, the logit link is used as the default in Mplus in the first stage
of 2S-PA.

9We did not include a version of 2S-PA that used DWLS for factor
score estimation in the first stage, as it did not perform well based on our
preliminary simulation results. The poor performance is likely due to the
computation of the factor scores and the associated standard errors based
on the maximum a posteriori (MAP) method.

10We also included a variant of 2S-PA that used the R package mirt for
factor score estimation in the first stage, but because the results were very
similar to using Mplus, we only presented results of 2S-PA using Mplus.
The full results can be found in the online supplemental materials on OSF.
(https://osf.io/h95vx/).

11 The full SEM method generally suffered more from extreme parameter
estimates, especially in small samples. For example, in one small sample
condition, the usual RMSE for SEM was 0.42, versus 0.25 for the robust
RMSE. In larger samples, the robust and nonrobust versions of the
evaluation criteria were almost identical. We also reported the proportion of
outliers for each method in the online supplemental materials on OSF.
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Relative SE Bias. The robust relative standard error bias

(RSB) was computed as ŜE ðb̂1Þ=MADðb̂1Þ � 1, where ŜE ðb̂1Þ
was the 20% trimmed mean of the estimated standard error of b̂1,

and MADðb̂1Þ was used as an estimate of the empirical SE. We
considered the bias acceptable if its absolute value is within 10%
(Hoogland & Boomsma, 1998).
Empirical Type I Error Rate/Power. The empirical Type I

error rate (a*) was defined as the proportion of replications
where the Wald test statistic exceeded the critical value at .05
significance level for conditions with b1 ¼ 0; empirical power
was similar defined but for conditions with b1 6¼ 0.

Results

Convergence Rate

For all methods, when either N/p = 100 or p $ 10, the conver-
gence rate was $99.41%. For almost all conditions, RA-a and 2S-
PA showed the highest convergence rates, especially for low reliabil-
ity conditions (p = 5, N/p = 6, k ¼ 1), where the mean convergence
rate was 98.60% for RA-a, 98.31% for 2S-PA, 94.11% for SEM,
76.40% for RA-x, and 91.53% for RA-xNL.

Bias

When b1 = 0, the estimates were essentially unbiased for all methods
(with absolute values , .004). Table 1 shows the relative bias when
b1 ¼ 0:5. Across conditions, full SEM provided the best estimates in
terms of bias as the relative bias was less than 7.94% in absolute value.
The three reliability adjustment methods also performed reasonably
with no more than 10% of bias in all but one condition; however, the
biases were higher for conditions with larger k, and did not decrease
with a larger sample size. The 2S-PA method demonstrated substantial
biases when k = 1, p = 5, where the relative bias was �25.16% when
K = 2 and�19.60% when K = 4. The bias was within 10% when there
were at least 10 indicators, N=p $ 25, or k ¼ 2:5.

RMSE Ratio

In general, the RMSE ratio (RR) relative to PA was smaller than 1
for all methods when b1 ¼ 0 (RRs between .66 and .98) or when N/p
= 6 (RRs between .66 and 1.13), so PA was generally more efficient
in small samples and when estimating a zero coefficient. When b1 ¼
0:5 and N=p$ 25, adjusting for measurement error generally pro-
duced better estimates than PA, with larger RR when k ¼ 1 and
b1 ¼ 0:5 (RRs between 1.33 and 3.02). There was little variation in
RR across the different analytic approaches.

Relative SE Bias

Table 2 shows the RSB values of the different methods across
conditions of N/p, K, and p. All methods showed acceptable RSB
except for SEM with downward bias of around 15% when the
sample size was small and p = 5.

Empirical Type I Error Rate/Power

For conditions with b1 ¼ 0, SEM showed the largest inflation
in a*, especially when N=p ¼ 6 and k = 1 (a* up to .14). PA
and the RA methods generally performed best (with a* up to
.07); 2S-PA had a* slightly worse than PA (with a* up to .08),

but improved with larger N/p, k, and p. As for power, there was
little difference across methods, except that SEM had larger
power in low reliability and small sample conditions; however,
the increased power in those conditions was largely driven by
the inflated a* of SEM.

Discussion

In Study 1, we compared the performance of 2S-PA with full
SEM and other reliability adjustment methods when there was
measurement error on the latent predictor measured by categor-
ical indicators. Overall, it was found that 2S-PA gave slightly
smaller path coefficient estimates with small sample sizes, and
otherwise performed similarly to SEM and had better conver-
gence rates and control of SE bias and Type I error rates. We
also examined the effect of number of indicators, which
increased the reliability of the composite scores and the esti-
mated factor scores. When p = 20, generally all methods that
accounted for measurement error performed similarly.

Given the downward bias of 2S-PA, some small sample adjust-
ment might be beneficial. Incorporating Bayesian priors in the first
stage of 2S-PA largely reduced the bias, as further shown and dis-
cussed in Study 2.

Study 2: Robustness Against Misspecifications in the
Measurement Model

So far, we have shown that 2S-PA performed favorably as
compared with SEM and other reliability adjustment methods
(other than RA-a), especially in small samples, in terms of con-
vergence rates and bias of standard error estimates. However,
one potential benefit of SEM is that it allows indicators to load
on more than one latent construct. Although with 2S-PA, one can
still obtain factor scores from a q-dimensional measurement model,
the errors in the obtained factor scores are usually correlated, and theo-
retically such covariances need to be incorporated into the definition
variable step to obtain unbiased path coefficients. In other words, one
would need to obtain a q 3 q covariance matrix for the factor score
estimates for each individual, which is not always available in standard
software.12

Instead, in Study 2, we evaluate an approach that fits a separate
unidimensional measurement model to each latent factor to obtain
factor score estimates, similar to what Devlieger and Rosseel (2017)
studied in the context of factor score path analysis with continuous
indicators. While this approach can lead to bias due to omitted cross-
loadings or unique factor covariances across latent factors, it also
reduces the model size in the measurement model and the structural
model, and Devlieger and Rosseel (2017) found that this approach
was more robust to misspecification in the measurement model part
compared with full SEM. We also include the polychoric instrumen-
tal variable (PIV) estimator, which was found robust to misspecifica-
tion in previous research (Jin et al., 2016; Nestler, 2013). Like in
Study 1, we compare the methods on the standardized b1 coefficient.

12 To our knowledge Mplus does not output individual covariance
matrices for factor score estimates, but they can be obtained in R packages
such as OpenMx and mirt.
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Method

Data Generating Model

The data generating model was similar to the one in Study
1, except that the latent outcome, h2, was measured by five bi-
nary indicators (i.e., K = 2), as Study 1 found relatively small
impact of K. Also, the probit link was used such that the
unique factors, eij in Equation 4, followed a standard normal
distribution. In addition, in some conditions, the third indica-
tors for h1 and for h2 were predicted by an unobserved con-
founding variable, so that they had a residual unique factor
covariance of d.

Design Factors

We manipulated sample size (N), population regression coeffi-

cient (b1), average standardized factor loading (k
s
), and the resid-

ual unique factor correlation (d). Similar to Study 1 we chose
N/p = 6, 25, 100, and with five indicators, N = 30, 125, and 500.
b1 was set to 0 (null effect) or .5 (medium effect). Under the probit
link, we set the average loading to .707 and 1.789, which corre-

sponded to standardized factor loadings

�
k
s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k
2
=½k2 þ 1�

q �
of

.5 and .8 for the latent responses and were similar to those of
Study 1 after the scale adjustment of probit/logit link. The first in-

dicator had a loading of 1:23 k, and the loading sequentially

decreased to 0:83 k for the fifth indicator, for both the latent pre-
dictor and the latent outcome. For d, the correlation between the
latent continuous response variates of the third indicators of h1

and of h2, the manipulated levels were �.16, 0, .16, and .64.

Analytic Approaches

We compared SEM (omitting the unique factor covariances),
SEM-cov (which correctly modeled the unique factor covariances),
RA-a, 2S-PA, 2S-PA with Bayes (see Appendix B for details of our
implementation), and PIV (see Appendix C for more details). Results
for PA were not reported as it substantially underestimated the popu-
lation coefficient, as demonstrated in Study 1, although it was still
used as a baseline to compute the RMSE ratios.

Results

Convergence Rate

For conditions with b1 ¼ 0, N = 30, and k
s ¼ :5, the conver-

gence rates for SEM and SEM-cov (medians = 90.44% and
90.52%) were substantially lower than those for RA-a, the 2S-
PA methods, and PIV (all of which had median convergence
rates . 98.16%).13

Bias

When b1 = 0, the 2S-PA methods, RA-a, and PIV showed only
small biases (between �.02 and .09), despite the model misspecifi-
cation. On the other hand, SEM gave biased estimates of b1 (bias =

.07 to .19) when k
s ¼ :5 and N = 30. Surprisingly, even the cor-

rectly specified model, SEM-cov, also demonstrated similar upward

bias (.07 to .11) when k
s ¼ :5 and N = 30.

Table 1
Percentage Relative Bias of the Path Coefficient (b1 ¼ 0:5) in Study 1

PA SEM RA-a RA-x RA-xNL 2S-PA

N/p p K = 2 K = 4 K = 2 K = 4 K = 2 K = 4 K = 2 K = 4 K = 2 K = 4 K = 2 K = 4

k = 1

6 5 230.64 226.20 �4.30 27.94 1.33 1.43 25.82 �4.64 26.82 �4.71 225.16 219.60
10 221.63 217.36 �3.84 �3.43 �1.11 �1.13 �2.35 �2.32 �4.24 �3.26 28.90 25.74
20 213.08 210.01 �1.80 �1.45 �1.56 �1.19 �2.08 �1.63 �2.86 �1.85 �2.11 �1.46

25 5 231.86 226.22 �1.29 �0.98 2.11 1.75 �2.58 �1.70 �3.56 �2.38 210.20 26.15
10 220.74 216.23 �0.82 �0.55 �0.56 �0.26 �1.67 �1.22 �1.08 �0.75 �1.86 �1.11
20 212.81 29.70 �0.70 �0.48 �1.33 �0.89 �1.76 �1.27 �0.79 �0.58 �0.63 �0.48

100 5 231.75 226.02 �0.46 �0.46 1.57 1.40 �1.55 �1.24 �1.97 �1.61 �2.60 �1.60
10 220.70 216.16 �0.45 �0.29 �0.57 �0.22 �1.56 �1.10 �0.34 �0.30 �0.53 �0.38
20 212.65 29.51 �0.39 �0.17 �1.18 �0.70 �1.59 �1.06 �0.22 �0.15 �0.17 �0.08

k = 2.5

6 5 217.28 214.68 �0.59 �4.22 25.04 25.36 26.81 26.88 28.75 28.59 26.13 25.76
10 212.36 29.70 �2.39 �2.08 26.24 25.23 26.70 25.65 28.56 26.65 �2.46 �1.92
20 28.48 26.91 �0.89 �0.84 25.39 �4.67 25.56 �4.83 26.63 25.34 �0.64 �0.80

25 5 215.92 212.48 �0.46 �0.61 �3.85 �3.36 25.19 �4.58 26.28 25.26 �1.45 �1.19
10 210.92 28.59 �0.48 �0.42 �4.85 �4.12 25.23 �4.49 25.52 �4.62 �0.36 �0.39
20 28.32 26.71 �0.54 �0.45 25.24 �4.47 25.39 �4.62 25.50 �4.61 �0.21 �0.36

100 5 215.72 212.28 �0.40 �0.43 �3.76 �3.22 �4.98 �4.37 25.51 �4.78 �0.49 �0.44
10 210.72 28.43 �0.24 �0.21 �4.65 �3.96 25.02 �4.33 �4.92 �4.24 �0.03 �0.07
20 28.14 26.55 �0.32 �0.26 25.06 �4.31 25.21 �4.45 25.10 �4.32 �0.06 �0.04

Note. p = number of indicators for the latent predictor; K = number of indicator categories; k = average factor loading; PA = linear regression/path analy-
sis; SEM = structural equation model; RA = reliability adjustment method (with a, x, and xNL coefficients); 2S-PA = two-stage path analysis with defini-
tion variable with maximum likelihood. The results represent averages across conditions. Numbers larger than 5 (in absolute values) are bolded.

13 In 4.12% to 13.76% of the replications for conditions with N = 30,
standardized coefficients were not obtainable for PIV due to negative
variance estimates of the latent predictor.
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Figure 4 shows the relative bias on the estimates of b1 across
different methods when b1 = .5. Generally, all methods except
SEM-cov and PIV were affected by model misspecification.
When N = 30, SEM and SEM-cov showed the largest upward
biases (up to 51.97%), whereas PIV showed the largest down-
ward biases (up to �41.26%). Similar to the results in Study 1,
2S-PA showed smaller but still substantial downward biases

when reliability was low (i.e., k
s ¼ :5), but 2S-PA with Bayes

removed that bias and performed the best in terms of bias in
small samples. For larger samples, SEM-cov yielded estimates
with negligible bias only when N = 500 or when N = 125 and

k
s ¼ :8, whereas the bias for PIV did not go away until N = 500

and k
s ¼ :8. RA-a performed reasonably well in low reliability

conditions (except when d ¼ :64) but consistently yielded coeffi-
cients that were too small in high reliability conditions. On the
other hand, 2S-PA methods generally gave estimates with rela-
tive bias , 5%, except for conditions with strong misspecifica-

tion (d ¼ :64) and k
s ¼ :5.

RMSE Ratio

When b1 = 0, 2S-PA, 2S-PA with Bayes, and RA-a were
relatively more efficient than SEM and SEM-cov in small
samples. PIV was generally the least efficient with RRs = .30
to .67. When b1 = .5, the 2S-PA methods had better RMSE for

conditions with d ¼ :64 and k
s ¼ :5 (RRs = .77 to 1.80, com-

pared with .75 to 1.32 for SEM and SEM-cov). In other condi-
tions, the differences among the 2S-PA methods, SEM, and
SEM-cov were negligible. Again, PIV generally had the worst
RR ratio.

Relative SE Bias

Consistent with Study 1, 2S-PA and RA methods outper-
formed SEM in terms of the accuracy of SE estimates, especially
in small samples. When N = 30, RA-a and 2S-PA performed the
best (RSB = �15.81% to �5.50%), followed by 2S-PA with
Bayes (�21.38% to �6.81%); SEM and SEM-cov showed sub-
stantial biases (�62.43% to �18.98%). The SE bias improved
for all methods when N$ 125 and were generally within the
10% benchmark, except for SEM and SEM-cov (e.g., �35.51%
when N = 125 and �19.05% when N = 500) and PIV (which had

extremely large relative SE bias of up to 1,074.77% when N = 30
and 172.03% when N = 125).

Empirical Type I Error Rate

The empirical power was very similar across analytic
approaches except for conditions where SEM and SEM-cov
showed inflated a* levels. As shown in Figure 5, SEM and
SEM-cov showed the largest a* when N # 125, especially

when k
s ¼ 0:5 (a* between .15 and .48 for SEM and .14 and

.43 for SEM-cov). Although still inflated, RA-a and the two
2S-PA methods generally had a* closer to the nominal level
even under model misspecification (except with small N and

small k
s
). Consistent with previous studies, PIV was conserv-

ative and had a* below nominal level except when k
s ¼ :8 and

N = 500.

Discussion

In Study 2, we found that when both the latent predictor and
the latent outcome were measured with error, 2S-PA—even
when omitting some misspecification in the measurement
model—outperformed full SEM that omits or correctly mod-
els the unique factor covariance in terms of convergence rates,
bias, efficiency, and control of Type I error rates. This holds
not just with both low reliability and small sample size, but
also with medium or even large sample size and with high
reliability conditions. In addition, although RA-a performed
better than SEM, it was generally inferior to 2S-PA methods
in terms of convergence and robustness to misspecification,
but provided better control of Type I error rates. When the
sample size is small and bias is a concern, we recommend the
use of 2S-PA with Bayes to obtain factor scores in the first
stage, whereas 2S-PA with maximum likelihood estimation is
suitable for situations with high reliability or large sample
size.

Study 3: Mediation Model

In the previous two studies we have shown that 2S-PA is
mostly a good alternative to SEM when there is measurement
error in the predictor and/or the outcome in a regression model.

Table 2
Percentage Relative Standard Error Bias of Path Coefficient in Study 1

PA SEM RA-a RA-x RA-xNL 2S-PA

N/p p K = 2 K = 4 K = 2 K = 4 K = 2 K = 4 K = 2 K = 4 K = 2 K = 4 K = 2 K = 4

6 5 �5.30 �5.11 215.75 215.32 �5.72 �4.98 �4.92 �5.28 �5.30 �4.89 �9.65 �6.95
10 �2.12 �1.34 �7.43 �6.17 �0.85 �0.65 �1.03 �0.50 �0.97 �0.83 �2.96 �3.13
20 �0.50 �0.27 �3.28 �3.29 �0.12 0.40 �0.28 0.09 0.13 0.93 �2.47 �3.20

25 5 �1.75 �1.58 �6.39 �5.52 �1.55 �1.31 �1.53 �1.73 �1.31 �1.04 �4.56 �5.03
10 0.62 0.71 �1.69 �0.47 1.05 1.47 1.13 2.41 1.04 1.52 �0.95 �0.28
20 3.03 1.05 1.42 1.87 2.64 3.22 3.15 3.37 2.79 2.48 0.23 0.66

100 5 2.82 0.81 0.15 �0.88 2.63 2.03 2.23 2.15 2.08 2.36 �0.42 �1.37
10 1.54 1.31 0.09 1.34 2.37 3.54 2.60 3.43 2.33 3.34 �0.81 �0.10
20 �0.84 �0.96 �2.05 �2.42 �0.73 �1.27 �0.90 0.97 �0.24 �2.46 �2.09 �2.47

Note. p = number of indicators for the latent predictor; K = number of indicator categories; PA = linear regression; SEM = structural equation model;
RA = reliability adjustment method (with a, x, and xNL coefficients); 2S-PA = two-stage path analysis with definition variable using Mplus with maxi-
mum likelihood. The numbers are averages across multiple conditions. Numbers larger than 10 (in absolute values) are bolded.
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Given that 2S-PA can also handle multivariate analyses as in
SEM, following Savalei (2019), in Study 3 we compare the per-
formance of 2S-PA with SEM using a mediation model with
three variables, a model commonly used in psychological
research (see, e.g., MacKinnon et al., 2007).

Method

Data Generating Model

The data generating model is shown in Figure 6, where each of
the latent variables, h1 (the predictor), h2 (the mediator), and h3

(the outcome), was measured by five binary indicators. There were
no unique factor covariances among any pairs of indicators. The
structural model was:

g2 ¼ ag1 þ f2
g3 ¼ bg2 þ cg1 þ f3:

Different from Studies 1 to 3, here there were three path
coefficients instead of one. In addition, the indirect effect of
the latent constructs, defined as the product of the two coeffi-
cients ab, was also of interest, but none of the previous simu-
lation studies on measurement error adjustment specifically
studied the estimation of the indirect effect. Therefore, in
Study 3 we evaluated the estimation of the individual a, b, and

c coefficients, as well as the ab indirect effect. All coefficients
were obtained with the latent variables standardized.

Design Factors

Following previous simulation studies (e.g., Fairchild et
al., 2009), we manipulated each of a and b to be either 0 (null
effect) or .39 (medium effect). The population coefficient of
c was fixed to be.15 (small effect). Therefore, there were in
total four configurations of the coefficients {a, b, c, ab}: {0,
0, .15, 0}, {0, .39, .15, 0}, {.39, 0, .15, 0}, {.39, .39, .15,
.1521}.

The other design factors were similar to Studies 1 and 2:
N = 30, 125, 500, and k = 1 or 2.5 (under a logit link as in
Study 1). The analytic approaches included 2S-PA, 2S-PA
with Bayes, full SEM, RA-a, and path analysis (PA; using
sum scores without accounting for measurement error). For
2S-PA and 2S-PA with Bayes, we obtained factor scores sepa-
rately for h1, h2, and h3, in three separate measurement mod-
els. For each approach, the estimate of the indirect effect ab
was computed as the product of the estimated a and b coeffi-
cients, and we evaluated the convergence rate and the bias of
each coefficient. In addition, because it is common in practice
to use a 95% confidence interval (CI) for statistical inference
of the indirect effect ab (MacKinnon et al., 2002), for each
method we also computed the 95% CI using the Monte Carlo
method (MacKinnon et al., 2004; Preacher & Selig, 2012),
and obtained the empirical CI coverage for ab, defined as the

Figure 4
Relative Bias of a Nonzero Path Coefficient in Study 2
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Note. d = unique factor correlation between the third indicators of the latent predictor and the latent out-
come. S = structural equation model without unique factor covariance; Sc = SEM with unique factor covari-
ance; 2p = two-stage path analysis with definition variables with maximum likelihood in the first stage; Ra =
reliability adjustment with coefficient a. 2pB = 2S-PA with Bayesian estimation in the first stage; P = poly-
choric instrumental variable estimator. Values between the two dotted lines (65%) were considered to have
acceptable bias. See the online article for the color version of this figure.
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proportion of replications in which the 95% CI contained the
population value of ab. Note that for conditions where ab = 0,
the empirical coverage was the same as 1� a�.

Results

Convergence Rate

Similar to Studies 1 and 2, SEM had poor convergence rate for

conditions with N = 30 and k ¼ 1 (min = 72.58%) as compared
with RA-a (min = 85.91%), 2S-PA with Bayes (min = 92.22%),
and 2S-PA (min = 95.52%). When N$ 125, all methods had con-
vergence rates above 95%, although 2S-PA still yielded better

convergence when k = 1.

Bias

When the population values of coefficients a and b were
zero, only SEM tended to overestimate the zero coefficients

(bias between .09 and .15 when N/p = 6 and when k = 1), while
all other methods gave close to unbiased estimates in all condi-
tions (bias between .00 and .04). Figure 7 showed the relative
bias for estimating nonzero coefficients a, b, and c. Consistent
with Study 2, 2S-PA underestimated the nonzero coefficients

when N = 30 and when k = 1, but the bias was mostly corrected
in 2S-PA with Bayes. On the other hand, SEM overestimated

the true coefficients not only when N = 30 and k = 1 (up to

121.69%), but also when N = 125 and k ¼ 1 (up to 20.12%) as

well as when N = 30 and k ¼ 2:5 (up to 35.70%). RA-a also

showed upward bias when N = 30 and k ¼ 1 (up to 41.27%).
The biases were negligible with N = 500.

For the estimates of the indirect effect (ab), when a = b = 0,
all methods had bias with absolute value less than .02. When
either a = .39 or b = .39 but the true ab = 0, only SEM had some

upward bias when k = 1 (with bias up to .04), while all other
methods were unbiased. When a = b = .39, as shown in Figure 7,

2S-PA showed downward bias when k = 1 (�73.18% when N =
30; �34.38% when N = 125), and 2S-PA with Bayes could not
fully correct the small sample bias (�39.81% when N = 30;

�29.04% when N = 125). With larger k or N, the estimates of ab
under the 2S-PA method were close to the population values.

Figure 6
Mediation Model for Study 3

Note. Each latent variable was measured by five categorical indicators
(which were not presented in the graph).

Figure 5
Empirical Type I Error Rates in Study 2

Note. d = unique factor correlation between the third indicators of the latent predictor and the latent outcome.
S = structural equation model without unique factor covariance; Ra = reliability adjustment with coefficient a;
Sc = SEM with unique factor covariance; 2p = two-stage path analysis with definition variables with maximum
likelihood in the first stage; 2pB = 2S-PA with Bayesian estimation in the first stage; P = polychoric instrumen-
tal variable estimator. The dotted line shows the nominal value of .05. See the online article for the color ver-
sion of this figure.
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RA-a showed smaller small sample bias (up to �18.98%), but
did not provide consistent estimates as the bias was still large in
high reliability and large sample size conditions (�13.76%).
SEM showed upward bias when N = 30 (up to 43.37%). There-
fore, whereas 2S-PA showed less bias on the individual coeffi-
cients, it seemed to yield more biased indirect effect estimates in

small samples. When either k = 2.5 or N = 500, both 2S-PA
methods and SEM yielded virtually unbiased estimates of non-
zero indirect effects.

Empirical Coverage for the Indirect Effect

As shown in Table 3, the coverage for ab for 2S-PA was gen-
erally 92% or above except for two conditions for 2S-PA and
one condition for 2S-PA with Bayes (with nonzero ab, k ¼ 1,
and N# 125). For SEM, coverage ,92% for five conditions
with N# 125, and overall had inflated Type I error rates when
either a or b was zero (up to 10.6%), as compared to other
methods. RA-a had coverage above 92% except for conditions
with nonzero ab and low measurement error.

Discussion

In Study 3, we found that the 2S-PA methods generally
yielded consistent estimates and inferences for indirect effects,
but might produce negatively biased estimates of path coeffi-
cients in small samples, compared with overestimates in SEM.
Overall, 2S-PA methods provided better control on Type I error

and coverage rates, and had convergence rates superior to those
of SEM.

Empirical Demonstration

Here we demonstrate 2S-PA methods as well as path analysis
with composite scores, full SEM (with DWLS), and reliability
adjustment methods with alpha (RA-a) using an empirical path
model comparable to the model studied by Jang et al. (2008).
Data were collected from the Midlife Development in the
United States project from 1995 to 1996 (MIDUS I). The total
number of participants recruited in MIDUS I was 7,108. We
selected participants aged 45 to 74 based on the criterion in
Jang et al. (2008) and excluded those missing in all the varia-
bles in the model for the following analyses. The final sample
size for analyses ranged from 3,440 to 3,574.14

The latent predictor, perceived discrimination (PD), was
tapped by nine Likert-type items (1 = often to 4 = never)
assessing the frequency of maltreatment or disrespects by
others in daily life. The latent mediator, sense of control (SC),
was measured by twelve items (1 = agree strongly to 7 = dis-
agree strongly) capturing one’s sense of mastery and per-
ceived constraints within 30 days. The latent outcome,

Figure 7
Percentage Relative Bias of Nonzero Direct (a = .39, b = .39, and c = .15) and Indirect Effects
(ab ¼ :392) in Study 3
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Note. k = average factor loading; S = structural equation model without unique factor covariance; Ra = reli-
ability adjustment with coefficient a; 2p = two-stage path analysis with definition variables with maximum
likelihood (Bayesian) estimation in the first stage; 2pB = 2S-PA with Bayesian estimation in the first stage.
Values between the two dotted lines (65%) were considered to have acceptable bias. See the online article
for the color version of this figure.

14 The sample sizes were smaller for the 2S-PA methods and path
analysis, as they removed cases that had missing responses on all items for
one or more of the three constructs.
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positive affect (PA), was assessed by six items on 5-point
scales measuring the frequency of feeling cheerful, good spi-
rits, extremely happy, calm and peaceful, satisfied, and full of
life within 30 days. See the online supplemental materials on
OSF for the full set of items. For all constructs, we reverse-
coded some items in the analyses so that higher item scores
indicated higher levels of PD/SC/PA, and the score reliability
was high (a ¼ :926 and x ¼ :932 for PD; a ¼ :850; x ¼ :858
for SC; a ¼ :910; x ¼ :912 for PA).
We hypothesized that PD would be negatively related to SC

and that SC would be positively related to PA (Jang et al.,
2008), and tested a path model similar to the one used in
Study 3. R and Mplus were used to perform reliability estima-
tions and parameter estimations of four analytic approaches in
the same way as in Study 3. These approaches were compared
in terms of point and CI estimates of the indirect effect.
Table 4 listed the path coefficients and the product of coeffi-

cients for the path model across the four approaches, and signifi-
cant indirect effects were observed for all approaches. As
hypothesized, we found that higher PD was associated with
lower SC (all ps , .001), and individuals with lower SC had
lower PA (all ps , .001). Using the product of coefficient
method to calculate the indirect effect (MacKinnon et al., 2002),
we found evidence for the indirect effect of higher PD on lower
PA with all four approaches, based on the 95% Monte Carlo CIs.
In terms of the magnitude of the indirect effect, the two 2S-PA
methods, full SEM, and RA-a yielded comparable estimates,
ranging from �.089 to �.087. On the other hand, the indirect

effect yielded from the conventional path model was the smallest
in magnitude among the four approaches (�.069). The SE esti-
mates were also similar across the four approaches.

In addition, as shown in Figure 3, the estimated factor scores
of PD had a strong floor effect as a majority of the participants
responded with a “1” for all items of PD. Such assessment of
distributional assumptions was rarely reported when using
SEM,15 but can be easily obtained using 2S-PA and RA meth-
ods. Looking at the distribution of PD, it might be sensible for
researchers to estimate separate models for participants with all
“1”s on PD items and the remaining ones, or consider alterna-
tive analytic approaches that take into account the nonnormal-
ity of the latent predictor, a step we would argue is usually
ignored when using SEM, based on our experiences. Moreover,
with 2S-PA and RA methods one can easily obtain robust SEs
(e.g., with the ESTIMATOR=MLR option in Mplus and the
imxRobustSE() function in OpenMx) in the second stage,
which should give inference that is more robust to nonnormal-
ity of the latent predictor and disturbances.16

To compare the small sample performance of the four ana-
lytic approaches, we randomly sampled 100 participants from
the whole sample and reran the analyses on the subset. The

Table 3
Empirical Coverage Percentages of Indirect Effect in Study 3

a b N PA RA-a SEM 2S-PA 2S-PA (Bayes)

k = 1

.00 .00 30 99.6 100.0 96.6 99.4 99.9
125 99.8 99.9 98.5 99.7 99.8
500 99.8 99.9 99.7 99.8 99.8

.39 .00 30 99.0 100.0 96.0 99.0 99.7
125 97.0 99.1 94.4 97.9 98.1
500 93.6 95.5 93.5 94.9 94.5

.00 .39 30 98.7 99.9 94.0 99.3 99.6
125 97.9 98.3 93.1 98.1 98.0
500 95.3 95.4 93.0 94.8 94.5

.39 .39 30 56.4 97.0 90.5 87.6 96.3
125 6.0 94.4 91.5 86.6 89.1
500 0.0 95.3 95.0 95.3 94.6

k = 2.5

.00 .00 30 99.4 99.5 96.3 99.2 99.3
125 99.9 99.9 99.7 99.8 99.8
500 99.9 99.9 99.9 99.8 99.8

.39 .00 30 96.1 97.2 89.4 96.3 97.1
125 94.4 94.7 92.6 94.2 94.2
500 93.9 94.6 94.3 94.6 94.6

.00 .39 30 97.3 97.7 90.0 97.4 97.5
125 95.5 95.5 93.5 94.8 94.8
500 94.4 94.4 94.0 93.5 93.5

.39 .39 30 81.1 92.0 88.4 92.7 94.2
125 58.2 91.8 93.1 94.3 94.5
500 7.7 87.0 94.5 94.2 94.3

Note. p = number of indicators per latent variable; a = population coefficient of predictor to mediator; b = population coefficient of mediator to outcome;
k = average factor loading; PA = path analysis; RA-a = reliability adjustment method with a; SEM = structural equation model; 2S-PA = two-stage path
analysis with definition variable with maximum likelihood (Bayesian) estimation in the first stage. Values below 92% are bolded.

15 Strictly speaking, given that PD was an exogenous variable, the
normality assumption was only made when PD was modelled as a latent
variable but not when it was treated as observed as in path analysis.

16 See the online supplemental materials on OSF for the Mplus and
OpenMx syntaxes that compute robust SEs in the second stage of 2S-PA.
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detail can be found in the online supplemental materials on
OSF, together with the Mplus and R codes for running the anal-
yses. It was found that, whereas the indirect effect was not sig-
nificant for all four approaches due to the small sample size,
the estimate was largest with full SEM (�.106) compared with
the other approaches (�.086 for RA-a and �.092 for 2S-PA
methods), and the SE estimates were smallest with full SEM.
As a result, SEM yielded a narrower 95% CI for the indirect
effect, [�.232, .013], as compared to that with 2S-PA, [�.239,
.050]. These were consistent with the results of Study 3 that
CIs under full SEM had undercoverage in small samples.

General Discussion

In this article, we propose a two-stage path analysis with def-
inition variables framework and report findings from three sim-
ulation studies comparing it with conventional SEM and other
methods that account for measurement error, when constructs
are measured by ordered categorical indicators. We also illus-
trate the 2S-PA method using real data from a public data set,
and provide software code in both Mplus and in R (using the
OpenMx and the mirt packages) for implementing 2S-PA. Here
we summarize the findings from the three studies, discuss the
pros and cons of 2S-PA and the implications for research, and
explore future extensions of the method.

Summary of Findings

Results of Study 1 show that for data generated with equal
loadings, 2S-PA with maximum likelihood estimation gener-
ally yields estimates with negligible biases for the standardized
path coefficient and the corresponding standard error and ac-
ceptable control of Type I error rates. It performs similarly as
SEM in large sample and high reliability conditions, but is bet-
ter than SEM in small sample and low reliability conditions in
terms of SE bias, Type I error rate, and convergence rates. 2S-
PA tends to yield underestimated path coefficients in small
sample (N = 30) and low reliability conditions; the bias, how-
ever, can be reduced with the use of weakly informative priors
with Bayesian estimation of factor scores.
Although the reliability adjustment method RA-a is not a

main focus of this research, we also find that it performs reason-
ably well in most simulation conditions, especially in small sam-
ples. Indeed, with small samples, it is slightly better than both
2S-PA and SEM in terms of SE bias, Type I error rate control,
and convergence rates, despite making the assumption of homo-
geneous standard error of measurement across participants.

Therefore, for data similar to the small sample conditions in
Study 1, we conclude that RA-a is also a good alternative to
SEM for data with small to medium sample size and with moder-
ate reliability. On the other hand, the homogeneous measure-
ment error variance assumption leads to inconsistent estimates
of the path coefficients with categorical indicators, as the esti-
mated coefficients from RA-a did not converge to the population
coefficient and had lower RMSE than those from SEM and 2S-
PA when sample size is large and reliability is high, where the
bias dominates the sampling variance. We also expect that the
unmet assumption of homogeneous measurement error may
have a bigger impact for data with more extreme values on the
latent variable distributions than a normal distribution, as
extreme values generally resulted in higher standard errors for
the composite scores.

From Study 2, 2S-PA still performs well when both the latent
predictor and the latent outcome are measured with error and
with minor misspecification in the measurement model. It is
more robust than full SEM, produces more accurate standard
error estimates of the path coefficients in small sample sizes,
and gives better control of Type I error. On the other hand,
with small samples full SEM yields highly biased coefficient
estimates and has highly inflated Type I error rates (as much as
50%), even with a correctly specified model. Study 3 shows
that 2S-PA tends to yield negatively biased estimates of path
coefficients in small samples, as opposed to overestimates by
SEM, but both 2S-PA and SEM give consistent estimates and
inferences for indirect effects. Overall, 2S-PA has higher con-
vergence rate and better control of SE bias and Type I error
rates.

Implications for Practice

With the introduction of 2S-PA and the simulation results, we
now offer several recommendations for conducting path analysis
using error-prone psychological measurement. First, as more
journals are encouraging researchers to share their data, we sug-
gest researchers to also compute the estimated factor scores and
the corresponding standard errors of those scores for each latent
variable when they are using 2S-PA or SEM, and append them
to the data they share. We think such a practice is advantageous
for two reasons. First, the estimated factor scores can be visual-
ized to examine whether standard assumptions such as linearity
and normality are appropriate, which are rarely checked in SEM
analyses (Hallgren et al., 2019). Second, these scores make rep-
lications and secondary analyses easier: rather than refitting a

Table 4
Parameter Estimates of the Empirical Demonstration With Four Different Approaches

Approach a (SE) b (SE) c (SE) ab [95% CI]

PA �0.156 (0.017) 0.445 (0.014) �0.085 (0.015) �0.069 [�0.085, �0.054]
SEM �0.182 (0.020) 0.479 (0.013) �0.095 (0.017) �0.087 [�0.107, �0.068]
RA-a �0.176 (0.019) 0.501 (0.016) �0.081 (0.017) �0.088 [�0.108, �0.069]
2S-PA �0.189 (0.020) 0.472 (0.015) �0.105 (0.018) �0.089 [�0.109, �0.070]

Note. N = 3,547. The a-path was perceived discrimination to sense of control. The b-path was sense of control to positive affect. The c-path was per-
ceived discrimination to positive affect. ab = indirect effect estimate. PA = path analysis with composite scores as error-free observed variables; RA-a =
reliability adjustment of PA with reliability coefficient a; 2S-PA = two-stage path analysis with definition variables. The 95% CIs for ab were obtained
with the Monte Carlo method.
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full SEM model with many indicators from scratch, researchers
can use 2S-PA with only the factor scores and the corresponding
standard errors to get mostly the same (and sometimes more
accurate) results. Item-level data, however, are still important as
they allow examination of alternative measurement models that
may fit the data better, and analyses that require cross-sample
comparisons of items such as measurement invariance (e.g.,
Millsap, 2011).
Although the present studies examined only ordered categori-

cal indicators, the recommendations above also applies to mea-
surement models for continuous variables, such as confirmatory
factor analysis (CFA), which is usually used for indicators with
five or more categories (Rhemtulla et al., 2012). With CFA,
measurement error is assumed to be constant across trait levels,
so the 2S-PA model will be reduced to one where the loadings
and unique factor variances of the factor scores are constrained
with constants, which is equivalent to the reliability adjustment
method (except that factor scores, instead of composite scores,
are used). However, even with continuous indicators, the
assumption of constant measurement error will not hold in the
presence of missing item responses or differential item function-
ing (Millsap, 2011), whereas 2S-PA will have no problem han-
dling measurement error with nonconstant variance. Therefore,
in our opinion, 2S-PA represents a widely applicable approach
for handling measurement error and producing reproducible
results.
Although we have preliminary evidence as shown in Study 2

that 2S-PA may be more robust than regular SEM against mis-
specification in measurement models, consistent with the find-
ings in Devlieger and Rosseel (2017), the path coefficient
estimates still depend on whether the measurement models are
specified correctly (at least approximately). Therefore, it is im-
portant that researchers assess the fit of the measurement mod-
els in the first stage, either using regular SEM fit indices for
CFA for continuous indicators (cf. Kline, 2016), or fit indices
based on item response theory (e.g., M2, Maydeu-Olivares &
Joe, 2006). In the online supplemental materials on OSF, we
also provide modified software syntax for the empirical demon-
stration where unique factor covariances are added based on
improvement of model fit, and the fit indices of the measure-
ment model for each construct.

Limitations

Like other statistical methods, 2S-PA has its limitations.
First, because it requires different likelihood functions for each
individual, to our knowledge, currently it can be implemented
only in Mplus and OpenMx among the general purpose SEM
software. It also requires additional specification, but future de-
velopment can simplify these steps, as has been done with fac-
tor score regression in lavaan. Second, whereas fit indices can
still be obtained for the separate measurement models in the
first stage of 2S-PA, as with other models using individual like-
lihood (e.g., random slope models, IRT with maximum likeli-
hood), conventional SEM fit indices could not be obtained for
the structural model. It is however still possible to compare
models using the likelihood ratio test. On the same note, it
should be pointed out that existing cutoffs on fit indices for
SEM models were mostly based on simulation studies on the

measurement models (e.g., Hu & Bentler, 1998, 1999), whereas
other studies have shown that fit indices performed differently
for misspecification in the path coefficients (e.g., Fan & Sivo,
2007). In the structural model, even though constraining some
paths or covariances to be zero may give better fit indices due
to an increase in degrees of freedom of the model, those con-
straints may cause misspecification that leads to biased esti-
mates of structural coefficients of interest. Therefore, we
recommend that researchers use a saturated structural model
except for paths that should be constrained based on theoretical
and conceptual reasons (see Kenny et al., 2015).

In addition, the simulation studies in this article do not cap-
ture the diversity of models that researchers use in SEM, such
as growth curve analyses, latent interactions, and so forth.
Therefore, future studies are needed to further extend the 2S-
PA method to these models. Also, we considered only one type
of misspecification where indicators of two latent variables
have unmodeled association, so future studies are needed to
examine the performance of 2S-PA under other types of mis-
specification in the measurement models and its sensitivity to
misspecification in the structural model.

Like other reliability adjustment methods such as factor
score regression (Devlieger et al., 2016) and reliability adjust-
ment for interaction effects (Hsiao et al., 2018); the proposed
2S-PA approach does not fully take into account the uncer-
tainty in the estimated standard errors of measurement in the
first stage as they are assumed known when used in the second
stage (cf. Cole & Preacher, 2014). Although, as demonstrated
in Yang et al. (2012) and our simulations, the impact of omit-
ting that uncertainty is generally minimal with moderate to
large sample sizes, it is likely responsible for the biases of 2S-
PA in small samples, even though 2S-PA mostly still outper-
formed full SEM based on our results. Future research effort to
develop small-sample corrections would greatly improve 2S-
PA. Although we propose an ad hoc Bayesian solution in Mplus
with weakly informative priors to mitigate the bias, the standard
error of the factor scores are obtained as a separate step with
plausible value imputation and limited iterations; future research
can explore alternative priors and the use of more general Bayes-
ian programs such as STAN (Stan Development Team, 2020).
Alternatively, a Bayesian approach that takes the uncertainty of
these estimates into account by assigning a prior probability on
the estimated standard errors of measurement may further
improve the approach discussed in this article (see Levy, 2017
for a recently proposed Bayesian solution with continuous indi-
cators). Another reason for the bias observed in 2S-PA in small
samples and low-reliability conditions is that, for extreme factor
scores, their sampling distributions may be highly skewed so that
the normal approximation is not reasonable. Possible solutions
for future explorations include using the width of asymmetric
confidence intervals to quantify the measurement error, relaxing
the normality assumption with a skewed distribution, and Bayes-
ian methods that directly use the full posterior distributions of
factor scores.

Finally, it should also be pointed out that the 2S-PA approach
is similar to the recent development in mixture modeling for
adjusting for measurement error in the assignment of class mem-
bership (Asparouhov & Muthén, 2014; Bolck et al., 2004; Ver-
munt, 2010). Future studies can explore the possibility of a
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unifying framework for reliability adjustment that accommo-
dates continuous and categorical latent variables.
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Appendix A

Measurement Error of Factor Scores With Categorical Indicators

This appendix provides a simple demonstration that the
error variance of the factor score is heterogeneous under the
factor model for categorical data defined in Equation 4, even
though the error variance for the underlying latent response
variates were assumed constant such that VarðeiÞ ¼ he for all
is. For simplicity, we assume k = 1, which was one of the val-
ues used in our simulation conditions, and that the test has only
one binary item without loss of generality. It is sufficient to
show that the error variance of factor score depends on the
observed item response. We also assume that the expected a
posteriori (EAP) score is used as a factor score, but the hetero-
geneity applies to essentially all types of factor scores.

Based on the above model, the EAP score can be obtained
as the posterior mean of h given the observed data Y = y. By
Bayes’s theorem, the posterior distribution of g j y is

Pðg j yÞ ¼ pðgÞPðY ¼ y jgÞð1
�1

pðhÞPðY ¼ y j hÞ dh
;

and the EAP score is the expected value of g j y. Often, pðgÞ is
chosen to be N(0, 1) to match the scaling of the latent variable.

The error variance of the EAP score is the posterior variance
of g j y :

Varðg j yÞ ¼ Eðg2 j yÞ � ½Eðg j yÞ�2;

where Eðgm j yÞ ¼
ð1
�1

gmPðg j yÞ dg. In general, the above

expression depends on y such that Varðg j yÞ is different for
different response patterns, except in some special cases such as
when s = 0 or when PðY jgÞ is normal. To illustrate, if s ¼
2:20 (one of the values used in our simulation conditions),
which corresponds to PðY ¼ 1 jg ¼ 0Þ ¼ 0:9, using numerical
integration to evaluate Varðg j yÞ, the error variance for the EAP
score is .91 when y = 0, and .87 when y = 1.

Figure A1 shows the association between the factor
score estimates and the corresponding error variance where
there are 10 items, assuming that the measurement parame-
ters are known, k = 1, and other parameters as specified in
Study 1.

(Appendices continue)
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Appendix B

More Details of 2S-PA With Bayes

To reduce the small-sample bias found in 2S-PA in Study 1,
we tested a Bayesian variant that used Bayesian estimations in
the first stage for obtaining factor scores. Specifically, we
incorporated Bayesian priors by assigning a normal prior with
mean of 0 and SD of

ffiffiffi
5

p
to the loadings (which was the default

in Mplus) to stabilize the parameter estimates. Note that the
probit link was used in Bayesian estimation, which is the
default in Mplus, as opposed to the logit link in maximum like-
lihood estimation. Therefore, the priors on the loadings were
considered weakly informative priors. For other parameters,
we used the default priors in Mplus, which were uniform on
the real line for thresholds and means, and uniform on the posi-
tive real line for variance parameters.

For each measurement model, we used Markov Chain
Monte Carlo (with Gibbs sampling) with two chains to per-
form fully Bayesian estimations. Gibbs sampling stopped

when the potential scale reduction factor dropped below
1.01, or when it reached 500,000 iterations. For each obser-
vation, we obtained the factor scores and the corresponding
SEs as the means and SDs of 200 draws from the posterior
predictive distributions of the latent variable, with a thinning
interval of 10.

For simulated data in Study 1, the priors drastically reduced
the bias to �3.59% for the worst condition, and also improved
convergence rate for conditions with small sample sizes.

These regularizing estimates can similarly be obtained
using the mirt package in R, which treated the input priors as
penalty terms to obtain penalized maximum likelihood esti-
mates for measurement parameters and factor scores. See the
sample Mplus syntax and R code in the online supplemental
materials on OSF for carrying out 2S-PA with Bayes for the
empirical example.

(Appendices continue)

Figure A1
Error Variance of Factor Score Is Not Constant With Categorical Data
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Appendix C

Polychoric Instrumental Variable (PIV) Estimator With Model-Implied Instrumental Variables

We used the R package MIIVsem (Version .5.5, Fisher et al.,
2020) to perform PIV estimations and obtained estimates for
the standardized latent regression coefficient. Based on the
theory of instrumental variable estimation and the simulation
results from Nestler (2013) and Jin et al. (2016), for each equa-
tion, the PIV estimator is consistent under certain model mis-
specifications such as the omitted unique covariances in Study
2. However, unlike other methods in the study, PIV requires a
scaling indicator (i.e., with loading set to 1) for each latent fac-
tor, and in this case the first indicator was used for that purpose.
The software automatically identified model-implied instru-
mental variables (IVs) for each estimating equation: for esti-
mating loadings, the IVs are all other indicators that are not
scaling indicators; for the latent regression coefficient, the IVs
are the nonscaling indicators for h1. Because the scaling of the
latent variables in PIV is different from other methods, we also
obtained the standardized latent regression coefficient estimate
as

b̂ ¼ b̂3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂arðg1Þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂arðg1Þb̂2 þ f̂

q ;

where b̂; V̂arðg1Þ, and f̂ are the estimates of unstandardized
path coefficient, variance of the latent predictor, and disturbance
of the latent outcome from MIIVsem. At the time of writing,
however, MIIVsem does not provide the estimates of variance

parameters by default. Using the var.cov = TRUE option would
provide the point estimates of the variance parameters based on
the diagonally weighted least square estimations, but it does not
provide the asymptotic covariance matrix of the variance param-
eter estimates, which are needed to apply the delta method to
compute the SE of b̂. Therefore, we followed Equations 26 to 31
in Bollen and Maydeu-Olivares (2007, p. 315) to obtain the
unweighted least squares estimates of Varðg1Þ and f, and the
corresponding asymptotic covariance matrix. The formulas in
Bollen and Maydeu-Olivares (2007) did not cover the covarian-
ces between b̂ and ðV̂ar½g1�; f̂Þ, which are also needed to apply
the delta method, so we compute them as, following Equation
31 of Bollen and Maydeu-Olivares (2007, p. 315),

dAcovðĥ1; ĥ2Þ ¼ 1
N
K̂�R̂qqK̂

�;

where K̂� ¼ ½K> j Ĥ>
2 ðI� D̂1K̂Þ>�>, and all other matrices

were defined in Bollen and Maydeu-Olivares (2007). The R
code for carrying out the delta method estimation of the stand-
ardized path coefficient can be found in the online supplemen-
tal materials on OSF.
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