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ABSTRACT
The present study examined the demographic correlates of gene 
expression in a sample of adults (n = 543) from the Study of Midlife 
in the United States (MIDUS). Inflammatory and antiviral gene sets 
were operationalized using a priori composite scores and empirically 
derived co-regulatory gene sets. For both composite scores and co- 
regulatory gene sets, White/European Americans showed lower while 
Black/African Americans showed higher expression of genes involved 
in interferon responses and antibody synthesis. The effects of chron-
ological age on gene expression varied by sex, such that pro- 
inflammatory gene expression increased with age more rapidly for 
females than males. The difference between the average expression 
of inflammatory and antiviral genes also increased with age for 
females but not males. Results shed light on differential gene expres-
sion as a potential physiological correlate for race/ethnicity, age, and 
sex-related health disparities in adulthood.

Introduction

The prevalence and sequalae of physical and mental health problems are often heterogenous 
across demographic strata and tend to change with age. Demographic differences (including 
differences by age, race/ethnicity, and sex) are well documented for physical health pro-
blems, including cardiovascular disease (Mensah et al. 2005), adiposity (Wang and Beydoun 
2007), and diabetes (Kautzky-Willer, Harreiter, and Pacini 2016; Spanakis and Golden 
2013). DSM-defined psychiatric disorders also vary across lifespan development, as well 
as sex and race/ethnicity (American Psychiatric Association 2013). Sex differences in 
mortality due to parasitic and infectious disease vary across the lifespan, with higher rates 
for males peaking around midlife (Owens 2002). Moreover, sex differences in chronic 
disease incidence persist in late life and culminate in an average 6–8 year greater life 
expectancy for females relative to males (Austad and Fischer 2016). Mechanisms for these 
inequalities are not well understood but may include differences in parasitic exposures 
(Owens 2002), the impact of testosterone, estradiol, and progesterone on immunological 
response (Foo et al. 2017; Klein 2004), as well as social, medical, and economic causes 
(Phelan and Link 2015). These inequalities may also grow over time as exposures are 
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amplified by new exposures (LeBrón et al. 2019). Nevertheless, the large range of outcomes 
over which age, sex, and racial/ethnic differences emerge is perplexing – how might we 
expect the same disparities to be sensitive to exposures consistently emerging across a range 
of disease outcomes?

Trying to understand how social factors might cause the body to “break down” over time, 
researchers are increasingly turning to novel measures, such as genetic expression, to 
identify potentially actionable cellular changes that mediate the effects of these exposures. 
Notably, with respect to race/ethnicity, Black Americans have the highest all-cause mortal-
ity rates compared to any other racial/ethnic group (Williams and Mohammed 2009). 
Consistent with the view that molecular changes in genome function might be a crucial 
mediator of social phenomena, a recent study found sex, age, and race/ethnic differences in 
the expression of inflammatory and antiviral genes using data from the National 
Longitudinal Study of Adolescent Health (n = 1069; Cole et al. 2020). In that study, genes 
related to type-I interferon response were upregulated for Black participants relative to non- 
Hispanic White, and higher levels of inflammatory gene expression were observed in 
females relative to males. Supporting the view that these disparities emerged via cellular 
mechanisms rather than the effects of disease, these results were identified in the Add 
Health study, which surveyed gene expression in early adulthood (at approximately 30 years 
of age), before the presence of disease outcomes are routinely recognized.

One potential mechanism that may translate distal risk factors into proximal molecular 
determinants of health is a gene regulatory pathway known as the conserved transcriptional 
response to adversity (CTRA; Cole 2019). The CTRA describes a coordinated suite of 
nervous system-activated inflammatory gene expression, with a simultaneous downregula-
tion of antiviral genes involved in Type I interferon responses and antibody synthesis (Cole 
2013). Hypothesized to have emerged over the course of evolution, this genomic stress 
response may have been adaptive under ancestral conditions, enabling the immune system 
to combat bacterial infection and expedite recovery from physical injury (Cole 2019). 
However, increased inflammatory gene expression and the CTRA have been found to be 
associated with social isolation and other adverse life circumstances in modern populations 
(Cole et al. 2015), even after controlling for indicators of physical health and health-risk 
behaviors, suggesting that the CTRA may be activated by stressors that cause subjective 
stress and social impairment. To the extent that demographic factors are associated with 
differential rates of exposure to social stressors, as well as pathogens and risk of physical 
injury, the CTRA may serve as a physiological mechanism that helps explain why demo-
graphic factors become biologically imbedded to influence social gradients in health.

Although longitudinal studies will ultimately be needed to map the role of stress- 
regulated gene expression dynamics as a mediator of demographic disparities in health, as 
well as highly controlled experimental work, an important first step is to identify the major 
gene expression correlates of health-relevant demographic factors. As noted above, this 
work has already identified differences between racial/ethnic groups and by sex. However, 
these results also identified age-based differences, raising the possibility that some demo-
graphic differences might potentially involve differential rates of aging. While studies often 
focus on the marginal effects of age and sex, the trend toward growing differences between 
sexes in mortality later in life highlights the possibility that the molecular mechanisms may 
be moderated by chronological age. Yet, to date, no studies have examined whether CTRA 
mechanisms are moderated by age. Consequently, the goals of the current study are twofold. 
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First, we plan to replicate prior work showing that age, sex, and race/ethnicity are associated 
with inflammatory, antiviral, and CTRA gene expression. Second, leveraging the hetero-
geneity of age in the present study, we interrogate whether sex differences in gene expres-
sion vary with age. Notably, the present study addresses the question of demographic 
differences in gene expression at a time in lifespan development when chronic diseases 
often begin to manifest clinically, and in a sample with greater age variation than available 
in the previous Add Health population-based transcriptome analysis.

Based on recent findings (Cole et al. 2020), we expect greater antiviral expression 
among Black participants, relative to other races/ethnicities. We also expect that 
females will have higher inflammatory expression than males, and antiviral and 
inflammatory expression will increase with age. How age-related differences in expres-
sion may differ for females and males is less clear. Although inflammatory expression 
is higher for females in early adulthood before the emergence of many age-related 
diseases (Cole et al. 2020), inflammatory expression may increase more rapidly with 
age for males, dovetailing with higher incidence of chronic disease and shorter life 
expectancy. Similarly, greater antiviral expression may be expected among males as 
they grow older, relative to females, because males tend to have greater parasitic 
exposure over the life course and higher mortality due to parasitic and infectious 
disease. On the other hand, the immunomodulatory effects of testosterone (Foo et al. 
2017) may accumulate over time and, in turn, decrease antiviral expression in males as 
they grow older. In sum, there are reasons to expect that age-related differences in 
gene expression may differ for females and males, but contradictory mechanistic 
hypotheses render the expected pattern of differences difficult to predict.

Method

Sample

The present study analyzed data from the biomarker subsample from the Refresher Cohort 
of the Study of Midlife in the United States (MIDUS; n = 863). Information regarding 
participant recruitment, study design, and data collection can be found elsewhere (Ryff and 
Krueger 2018). The present study utilized data from participants from the Biomarker 
sample, who have data available for gene expression composite scores (n = 543). Sample 
characteristics are reported in Table 1. The age of participants spanned 27 to 76 years 
(mean = 52 years). Approximately half of the sample identified as female (49.53% male). 
The majority of the sample identified as White (~72%), ~18% of the sample identified as 
Black and ~10% identified as another race/ethnicity (see Table 1). The most common level 
of educational attainment among participants was a bachelor’s degree (~25%).

Measures

Demographic, Behavioral & Physical Health Factors

Age was measured at the time of data collection. Participants reported sex (female or male), 
level of education, and race/ethnicity. Health-risk behavior was measured using partici-
pants’ self-reports of smoking behavior and alcohol consumption. Participants responded 
to “Have you ever smoked cigarettes regularly – that is, at least a few cigarettes every day?” 

238 F. D. MANN ET AL.



(Yes = 38%, No = 62%). Participants also reported “During the past month, how often did 
you drink any alcoholic beverages, on the average?” (57% = Never or less than one day 
a week). Indicators of physical health included body mass index (median BMI = 27.69) and 
self-reports of chronic conditions that participants had been diagnosed with or treated for 
in the past 12 months. The MIDUS administrative staff created a composite score of the 
total number of chronic conditions reported by participants (~21% reported no conditions). 
Detailed descriptive statistics for continuous variables are reported in supplemental materi-
als (Table S1).

Table 1. Descriptive statistics for demographic factors & health indicators.

MIDUS Refresher 
Biomarker Project

Full 
Sample

Analytic 
Sample p-value

(n = 863)
Combined 
(n = 543)

Female 
(n = 274)

Male 
(n = 269) Sample Diff.

Sex 
Diff.

Age 50.84 (13.41) 52.00 (13.26) 50.55 (12.50) 53.48 (13.87) .001 .005
BMI 29.24 (7.22) 29.02 (7.12) 29.47 (8.51) 28.55 (5.29) .228 .781
Chronic Conditions 2.80 (2.94) 2.78 (2.77) 3.19 (2.94) 2.36 (2.53) .851 <.001
Race/Ethnicity .067 <.001
White/European American 606 (70.22) 395 (72.74) 181 (66.06) 214 (79.55)
Black/African American 161 (18.66) 86 (15.84) 60 (21.90) 26 (9.67)
Native American 22 (2.55) 17 (3.13) 12 (4.38) 5 (1.86)
Asian American 12 (1.39) 8 (1.47) 3 (1.09) 5 (1.86)
Pacific Islander American 2 (0.23) 1 (0.18) 0 (0.00) 1 (0.37)
Another Race/Ethnicity 55 (6.37) 34 (6.26) 17 (6.20) 17 (6.32)
Don’t Know or Refused 5 (0.58) 2 (0.37) 1 (0.36) 1 (0.37)
Level of Education .923 .139
Eighth Grade/Junior High 5 (0.58) 3 (0.55) 3 (1.10) 0 (0.00)
Some High School 30 (3.48) 18 (3.32) 10 (3.66) 8 (2.97)
General Education Diploma 12 (1.39) 8 (1.48) 6 (2.60) 2 (0.74)
High School Diploma 102 (11.83) 65 (11.99) 33 (12.09) 32 (11.90)
1–2 years college, No Degree 132 (15.31) 81 (14.95) 40 (14.65) 41 (15.24)
>2 years college, No Degree 39 (4.52) 25 (4.61) 13 (4.76) 12 (4.46)
Associate/Technical Degree 92 (10.67) 55 (10.15) 28 (10.26) 27 (10.04)
Bachelor’s Degree 211 (24.48) 137 (25.28) 72 (26.37) 65 (24.16)
Some Graduate School 28 (3.25) 17 (3.14) 8 (2.93) 9 (3.35)
Master’s Degree 165 (19.14) 109 (20.11) 52 (19.05) 57 (21.19)
J.D., M.D., Ph.D. 46 (5.34) 24 (4.43) 8 (2.93) 16 (5.95)
Don’t know or Refused 1 (0.12) 1 (0.18) 1 (0.36) 0 (0.00)
Alcohol Consumption .671 <.001
Never 258 (29.90) 169 (31.12) 110 (40.15) 59 (21.93)
< 1 day a week 230 (26.65) 139 (25.60) 73 (26.64) 66 (24.54)
1–2 days a week 154 (17.84) 95 (17.50) 44 (16.06) 51 (18.96)
3–4 days a week 111 (12.86) 69 (12.71) 20 (7.30) 49 (18.22)
5–6 days a week 58 (6.72) 37 (6.81) 18 (6.57) 19 (7.06)
Everyday 52 (6.03) 34 (6.26) 9 (3.28) 25 (9.29)
History of Smoking .268 .602
Yes 342 (39.63) 207 (38.12) 101 (36.86) 106 (39.41)
No 521 (60.37) 336 (61.88) 173 (63.14) 163 (60.59)

Means and standard deviations or frequencies and percentages are reported. Before testing for sample and sex differences, 
two models were compared to determine whether level of education and alcohol consumption should be treated as 
nominal (multi-nominal) or ordinal (multi-ordinal). Information criteria (AIC & BIC) indicated that the multi-ordinal models 
were preferred, such that that both variables should be rank-ordered. P-values are reported for Mann-Whitney U tests with 
continuity correction for ordinal/interval variables and Pearson’s χ2 or Fisher’s Exact test for nominal variables.
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Gene Expression

Participants in the MIDUS biomarker project had blood samples collected during 
a laboratory visit. After collection, samples were shipped to the University of Wisconsin 
for storage at a central biospecimen repository. Peripheral blood mononuclear cells 
(PBMCs) were isolated by standard Ficol density gradient centrifugation and frozen at 
−70°C for several years prior to RNA extraction. PBMC samples were then thawed and total 
RNA was extracted using standard protocols (Qiagen RNeasy). Extracted RNA was checked 
for suitable integrity (RNA integrity number > 3) and yield (> 50 ng), and subject to 
transcriptome profiling using a high efficiency mRNA-targeted sequencing approach 
(Lexogen QuantSeq 3ʹ FWD cDNA library synthesis with sequencing on an Illumina 
HiSeq 4000 instrument), which targeted >10 million 65-bp single stranded sequencing 
reads per sample (achieved mean = 14.5 million). Quality-annotated FASTQ sequence 
reads were mapped to the ENSEMBL hg38 reference human transcriptome using the 
STAR aligner (mean 97.2% of reads successfully mapped) and quantified as gene transcripts 
per million mapped reads (with values < 1 transcript per million floored at that value to 
suppress spurious measurement variability and allow log transformation). RNA sequencing 
was conducted in batches comprised of a 96-well plate, which was indicated by a nominal 
variable and included as a technical covariate in analyses that tested associations with 
demographic factors. Two sets of genes were selected a priori based on their previous use 
in research: 19 inflammatory genes (IL1A, IL1B, IL6, IL8, TNF, PTGS1, PTGS2, FOS, FOSB, 
FOSL1, FOSL2, JUN, JUNB, JUND, NFKB1, NFKB2, REL, RELA, & RELB) and 32 antiviral 
genes involved in Type I interferon responses and antibody production (GBP1, IFI16, IFI27, 
IFI27L1- 2, IFI30, IFI35, IFI44, IFI44L, IFI6, IFIH1, IFIT1-3, IFIT5, IFIT1L, IFITM1-3, 
IFITM4P, IFITM5, IFNB1, IRF2, IRF7-8, MX1- 2, OAS1-3, OASL, IGJ, IGLL1, & IGLL3).

A priori gene composite scores were calculated because CTRA gene expression involves 
the increased expression of inflammatory genes and decreased expression of genes involved 
in interferon responses and antibody production. Consequently, composite scores were 
calculated to capture the average expression of inflammatory genes, the average expression 
of antiviral genes, and the difference between the average expression of inflammatory and 
antiviral genes (i.e., a CTRA composite). As the variance and average of RNA expression are 
heterogenous across different genes, to prevent arithmetic means from being predominately 
weighted by a small number of genes, expression values were log2 transformed and 
standardized before calculating mean composite scores.

Data Analytic Procedures

Data were analyzed using R Studio version 1.2.5003 and Mplus (Muthén and Muthen 
2017). After calculating descriptive statistics, a series of ordinary least squares regressions 
were used to estimate associations between demographic factors (age, sex, race/ethnicity, 
and level of education) and a priori gene expression composite scores, controlling for 
dummy-coded batch plates, RNA transcripts indicting the relative prevalence of 
T lymphocytes, B lymphocytes, NK cells, and monocytes. Alcohol use, history of smok-
ing, BMI, and number of chronic conditions were also included as covariates. The 
Benjamini-Hochberg procedure was then used to correct for multiple independent vari-
ables within each regression model (Benjamini and Hochberg 1995). For multiple 
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regressions, age was mean-centered, and level of education was standardized (M = 0, 
SD = 1). Sex (male = −0.5, female = 0.5), Black (No = 0, Yes = 1) and other races/ 
ethnicities (No = 0, Yes = 1) were included as predictors (with White/European 
Americans as the reference group). In addition, a product term between mean-centered 
age and effects-coded sex was included to test whether age-related differences in gene 
expression vary as a function of sex.

The distributions of gene expression composite scores approximated normality, but 
deviations from normality were nonetheless observed. Therefore, sensitivity analyses were 
performed whereby multiple linear regressions were estimated using maximum likelihood 
with robust standard errors (MLR; Muthén and Muthen 2017), and the results of hypothesis 
tests remained unchanged, as did the size and precision of estimated associations (see 
supplement). Note, including number of chronic conditions as a covariate may constitute 
a statistical over-control, as health conditions are one outcome that gene expression is 
hypothesized to mediate, but results also remained unchanged after excluding this poten-
tially over-controlling covariate (Table S2).

Although composite scores provide a simple a priori method for operationalizing the 
CTRA, different genes may exhibit a correlated pattern of expression that is not fully 
captured by composite scores. Therefore, to identify empirically derived co-regulatory 
gene sets, an exploratory factor analysis (EFA) of inflammatory and antiviral gene 
expression was conducted in conjunction with a parallel analysis using 1000 random 
draws (Montanelli and Humphreys 1976). Before conducting EFA, quantile-normalized 
gene expression values were log2-transformed and standardized within gene. RNA 
sequencing can yield an excess of zeros. Therefore, prior to conducting EFA, the dis-
tributions of gene transcripts were screened, and descriptive statistics were calculated to 
exclude data from any gene with an average expression level < .5 log2 transcripts 
per million mapped reads (TPM- i.e., the native value of the normalized expression 
data), which resulted in the deletion of data from 9 genes (CXCL8, IL1A, FOSL1, IL6, 
IFI27, IFITM4P, IFITM5, IFNB1, IGLL1).

EFA models were estimated using Mplus version 8.1 (Muthén and Muthen 2017). 
One through seven factor solutions were estimated, and the best-fitting solution was 
determined by consulting model fit statistics (Table S5). We also compared the scree 
plots from the EFA and parallel analysis (Figure S1). After determining the number of 
co-regulatory factors needed to best characterize correlated expression across multiple 
transcripts, associations with study variables were estimated using a series of explora-
tory structural equation models (ESEMs; Asparouhov and Muthén 2009), whereby 
demographic factors, BMI, alcohol-use, and history of smoking were specified as 
exogenous predictors of co-regulatory factors, while simultaneously regressing co- 
regulatory factors on technical covariates. To identify co-regulatory factors in ESEMs, 
estimated factor loadings from the best fitting EFA model were included as fixed 
parameters to ensure that latent dependent variables were apposite to the co- 
regulatory factors extracted from the best fitting EFA model. Finally, because gene 
allele frequencies vary across world populations (Jakobsson et al. 2008; Wang, Zöllner, 
and Rosenberg 2012), additional sensitivity analyses were performed to evaluate 
whether findings were biased by the presence of genetic heterogeneity by estimating 
multiple regressions and EFA models after excluding observations from all nonwhite 
participants (see supplemental material).
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Results

Gene Expression Composite Scores

Table 2 reports multiple regression coefficients, standard errors, p-values, and FDR- 
adjusted p-values (Benjamini and Hochberg 1995). In the text below, we report point 
estimates and 95% confidence intervals for noteworthy findings. Compared to other 
races/ethnicities, Black/African Americans showed greater antiviral gene expression 
(b = .201 [.104 to .297], p < .001, FDR-adjusted p < .001). Ancillary analyses indicated 
that White/European Americans showed lower antiviral gene expression compared to other 
races/ethnicities (b = −.127 [−.206 to −.050], p = .001, FDR-adjusted p = .005). The 
inflammatory gene expression composite scores were not significantly associated with 
race/ethnicity (ps > .10; Table 2). Thus, driven by the differential expression of antiviral 
genes (which represents a component of the overall CTRA profile), CTRA composite scores 
were lower for Black participants (b = −.154 [−.257 to −0.052], p = .003, FDR-adjusted 
p = .010).

Table 2. Multiple linear regressions of gene composite scores on technical covariate, demographic 
factors, and indicators of behavioral and physical health estimated using maximum likelihood with 
robust standard errors.

Inflammatory 
Composite

Antiviral 
Composite

CTRA 
Composite

b SE p FDR b SE p FDR b SE p FDR

Technical Covariates
Batch Plate 2 −.169 .078 .032 .117 −.164 .126 .193 .314 −.005 .133 .971 .971
Batch Plate 3 −.146 .040 <.001 .003 .327 .064 <.001 <.001 −.474 .068 <.001 <.001
Batch Plate 4 −.133 .040 .001 .006 .283 .064 <.001 <.001 −.416 .068 <.001 <.001
Batch Plate 5 .037 .041 .364 .557 .291 .065 <.001 <.001 −.254 .069 <.001 <.001
Batch Plate 6 −.075 .043 .082 .193 .356 .069 <.001 <.001 −.431 .073 <.001 <.001
Batch Plate 7 −.068 .042 .105 .228 −.035 .068 .602 .745 −.033 .072 .645 .762
Batch Plate 8 .239 .042 <.001 <.001 .188 .067 .006 .014 .051 .071 .475 .686
CD3E −.004 .023 .844 .896 −.048 .037 .189 .314 .044 .039 .261 .520
CD3E .023 .017 .191 .327 .085 .028 .002 .006 −.063 .029 .032 .084
CD4 .061 .020 .003 .014 .080 .033 .014 .034 −.019 .034 .582 .735
CD8A .024 .012 .038 .122 .045 .019 .016 .035 −.021 .020 .293 .520
CD14 .170 .014 <.001 <.001 .111 .023 <.001 <.001 .059 .024 .016 .046
CD19 .008 .010 .402 .580 −.023 .016 .139 .258 .031 .017 .059 .139
FCGR3A .019 .011 .076 .193 .086 .017 <.001 <.001 −.067 .019 <.001 .002
RNCAM1 .007 .010 .485 .664 −.014 .016 .384 .588 .021 .017 .218 .473
Demographic Variables
Age .002 .001 .048 .138 .001 .002 .578 .745 .001 .002 .523 .716
Sex (Female) −.012 .021 .554 .720 .007 .034 .844 .878 −.019 .036 .594 .735
Age × Sex .004 .002 .008 .030 −.005 .002 .046 .092 .009 .003 .001 .002
African American .046 .031 .135 .270 .201 .049 <.001 <.001 −.155 .052 .003 .010
Other Race/Ethnicity −.008 .033 .806 .896 .040 .053 .457 .660 −.048 .056 .397 .607
Level of Education .002 .011 .877 .896 .001 .018 .966 .966 .001 .019 .959 .971
Health Indicators
Alcohol Consumption −.009 .007 .201 .327 .003 .011 .762 .852 −.013 .012 .300 .520
History of Smoking −.010 .022 .642 .791 .025 .036 .492 .673 −.035 .038 .356 .579
Body Mass Index .000 .002 .896 .896 −.001 .002 .786 .852 .001 .003 .739 .836
Chronic Conditions −.002 .004 .670 .791 −.002 .006 .733 .852 .000 .007 .943 .971

b = unstandardized multiple regression coefficient. SE = standard error. p = p-value for multiple regression coefficient. 
FDR = p-value for multiple regression coefficient adjusted for false discovery rate using the Benjamini-Hochberg procedure. 
Statistically significant (p < .05) effects are printed in bold font.
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Controlling for all study variables, the association between inflammatory expression and 
age was moderated by sex (b = .004 [.001 to .007], p = .008, FDR-adjusted p = .005). 
Depicted on the left and middle panels of Figure 1, the unadjusted association between age 
and inflammatory expression was positive for both females (r = .396 [.291, .491]) and males 
(r = .294 [.181, .400]). Holding other study variables constant, the estimated marginal 
means of age-trends from the multiple linear regression indicated that inflammatory gene 
expression was predicted to increase with age more rapidly for females (b = .004 [.001, 
.006]), compared to males (b = .000 [−.002, .002]). Similarly, the association between CTRA 
composite scores (i.e., inflammation – antiviral) and age was significantly moderated by sex 
(b = .009 [.004 to .014], p < .001, FDR-adjusted p = .001). The unadjusted association 
between CTRA expression and age was positive for females (r = .170 [.053, .283], but not for 
males (r = −.095 [−.213, .024]). Holding other study variables constant, CTRA gene 
expression was predicted to increase with age for females (b = .005 [.001, .010]) but not 
males (b = −.003 [−.007, .001]).

The interaction between age and sex was marginally significant for antiviral expression 
after adjusting for multiple predictors (b = −.005 [.000 to −.010], p = .046, FDR-adjusted 
p = .092). The unadjusted association between age and antiviral expression was positive for 

Figure 1. Age and sex differences in gene expression composite scores. Age trends in inflammatory and 
CTRA gene expression composite scores are depicted before (left and middle panels) and after (right 
panel) adjusting for the effects of study variables. Individual observations are plotted using green circles 
and black triangles for females and males, respectively. The right panels depict age × sex interactions 
from multiple linear regressions predicting gene expression composite scores. p = probability of the 
observed interaction effect if the null hypothesis is true. Shaded regions around linear trends depict 95% 
confidence intervals.
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both females (r = .200 [.084, .311]) and males (r = .329 [.219, .432]). However, after 
adjusting for the effects of other study variables, estimated linear trends indicated that 
antiviral gene expression increased with age for males (b = .003 [.000, .007]) but not females 
(b = −.002 [−.006, .002]).

Co-Regulatory Gene Sets

Factor loadings, standard errors, and coefficients of determination for gene transcripts are 
reported in Table 3. The eigenvalues from the EFA and parallel analysis, both average and 
95th percentile, indicated that a five-factor solution was preferred to alternative solutions. 

Table 3. Estimates for empirically identified co-regulatory gene sets.
F1 F2 F3 F4 F5

λ SE λ SE λ SE λ SE λ SE R2

Inflammatory Genes
FOS .72 .04 −.05 .04 .01 .03 −.02 .03 .20 .06 .61
FOSB .51 .05 .07 .05 −.10 .05 −.18 .05 .02 .04 .29
FOSL2 .35 .04 .68 .04 −.01 .03 .04 .03 −.02 .03 .75
IL1B .30 .05 .12 .06 .13 .05 .28 .05 .05 .05 .36
JUN .16 .05 .44 .06 −.10 .05 .15 .05 .18 .06 .38
JUNB .52 .04 .58 .05 .04 .03 −.01 .02 .03 .03 .87
JUND .05 .03 .66 .08 −.01 .03 −.15 .04 .42 .06 .79
NFKB1 .00 .03 .36 .08 −.05 .04 .34 .05 .34 .06 .49
NFKB2 −.01 .05 .39 .06 .11 .05 −.31 .05 .01 .05 .21
PTGS1 −.11 .05 .28 .07 .13 .05 −.01 .04 .28 .07 .23
PTGS2 .51 .05 .13 .06 .04 .04 .12 .05 −.14 .05 .34
REL −.01 .04 .30 .07 −.09 .05 .42 .05 −.27 .07 .29
RELA −.16 .04 .92 .04 −.08 .04 .00 .03 .08 .06 .77
RELB −.02 .04 .76 .03 .02 .04 −.10 .04 −.05 .06 .53
TNF −.02 .04 .55 .05 .09 .05 .00 .04 .05 .05 .36
Antiviral Genes
GBP1 −.04 .04 .23 .06 .25 .06 .46 .05 −.21 .05 .49
IFI16 .09 .04 −.11 .08 .08 .05 .85 .04 .06 .04 .80
IFI27L1 −.03 .05 .33 .06 .06 .05 −.04 .05 .23 .06 .22
IFI27L2 .05 .04 .62 .06 .07 .04 .08 .04 .20 .05 .61
IFI30 .25 .05 −.01 .04 .07 .05 .08 .05 −.45 .05 .22
IFI35 .13 .04 .43 .05 .38 .04 −.04 .04 .05 .05 .54
IFI44 .03 .02 −.51 .04 .63 .04 .33 .04 .07 .04 .66
IFI44L −.06 .03 −.18 .05 .94 .03 −.03 .03 .00 .03 .74
IFI6 .06 .03 .38 .05 .68 .03 −.11 .03 .07 .03 .81
IFIH1 −.04 .03 −.27 .07 .18 .06 .73 .04 −.03 .03 .64
IFIT1 .03 .03 −.05 .04 .78 .03 .00 .03 .07 .04 .63
IFIT2 .09 .04 −.05 .04 .46 .05 .46 .04 −.01 .03 .64
IFIT3 .08 .03 .21 .05 .72 .03 .01 .03 −.03 .03 .72
IFIT5 −.11 .04 .09 .07 .28 .05 .32 .05 .28 .06 .41
IFITM1 .04 .04 .43 .08 .10 .04 .05 .04 .39 .07 .55
IFITM2 −.02 .03 .91 .03 .10 .04 .04 .03 −.02 .04 .90
IFITM3 .10 .04 .57 .04 .43 .04 −.03 .03 −.13 .05 .68
IRF2 .07 .05 .17 .07 −.03 .04 .56 .04 .00 .04 .39
IRF7 .08 .04 .39 .07 .36 .04 .00 .03 .31 .05 .66
IRF8 .25 .05 .26 .09 .01 .03 .25 .05 .42 .05 .62
JCHAIN −.01 .04 .30 .07 .09 .05 .09 .05 .32 .06 .33
MX1 −.18 .04 .00 .02 .84 .03 .07 .04 −.09 .04 .70
MX2 −.03 .04 .07 .05 .53 .05 .31 .04 .04 .04 .58
OAS1 .18 .04 .40 .05 .36 .04 .23 .04 −.01 .04 .70
OAS2 −.05 .03 .53 .05 .44 .04 .12 .04 .09 .04 .77
OAS3 .02 .03 .12 .04 .64 .04 .21 .04 −.08 .04 .65
OASL −.09 .04 .25 .05 .43 .05 .16 .05 −.05 .05 .39

F1 – F5 = Empirically-identified co-regulatory gene sets (i.e., exploratory latent factors). λ = Geomin rotated loading. 
SE = standard error. R2 = coefficient of determination. Estimates printed in bold are statistically significant at p < .001

244 F. D. MANN ET AL.



Moreover, RMSEA = .048 and CFI = .930 evinced good model fit for the five-factor solution, 
and a similar solution emerged when observations from nonwhites were excluded from 
analyses. Factor loadings that were statistically significant (p < .001) and greater than |.30| 
are emphasized in the interpretation of results. The first and third co-regulatory factors 
largely captured up-regulation of inflammatory genes (e.g., FOS, FOSB, FOSL2, IL1B, JUNB, 
& PTGS2) and up-regulation of antiviral genes (e.g., IFI35, IFI44, IFI44L, IFI6, IFIT1, IFIT2, 
IFIT3, IFIT5 IFITM3, IRF7, MX1, MX2, OAS1, OAS2, OAS3, & OASL), respectively. More 
nuanced patterns of expression emerged for the remaining co-regulatory factors (Table 3). 
Together, the five co-regulatory factors explained 21% to 90% of the variation in the 
analyzed gene transcripts (ps < .001).

The demographic correlates of empirically derived co-regulatory gene sets were similar 
to the demographic correlates of gene expression composite scores. For example, Black/ 
African American was positively associated with the co-regulatory gene set characterized by 
upregulation of antiviral genes (b = .371 [.153 to .588], p = .001, FDR-adjusted p = .012), 
mirroring the racial/ethnic difference observed for the antiviral gene expression composite 
scores. The association between age and the co-regulatory gene set characterized by 
upregulation of inflammatory genes was also marginally moderated by sex (b = .008 
[.000, .018], p = .045, FDR-adjusted p = .108). The results of ESEMs are reported in 
supplemental materials.

Discussion

There is increasing interest in using gene expression as a method for understanding how 
demographic disparities in health arise over the life course. This study of community- 
dwelling middle-aged US adults identified demographic differences in white blood cell 
expression of two key health-relevant sets of genes: those involved in inflammation, and 
those involved in innate antiviral responses. As in previous studies (Cole et al. 2020; Kohrt 
et al. 2016; McDade et al. 2016), the current study observed marked race-related differences 
in expression of innate antiviral genes and marked sex-related differences in the expression of 
inflammatory genes that varied in size across adulthood. The sample analyzed here involved 
a substantially greater range of ages than available in previous population health transcrip-
tome profiling studies, allowing us to confirm a general age-related trend in the expression of 
both inflammatory and antiviral genes. The greater age variation in this sample also allowed 
us to test whether sex differences in gene expression might vary across age-groups, and 
potentially contribute to the greater risk of late-life disease and mortality in males.

This analysis examined inflammatory and antiviral gene sets because these specific 
aspects of white blood cell gene expression are subject to regulation by stress-related 
neuroendocrine signaling and may thus help to answer key questions in the public health 
literature (Williams, Lawrence, and Davis 2019) regarding the biological pathways through 
which health disparities arise (Spence et al. 2016). The present study operationalized 
differential gene expression using both a priori composite scores and a posteriori co- 
regulatory gene sets. Notably, irrespective of operationalization and across a variety of 
sensitivity analyses, age, sex, and racial/ethnic differences in gene expression emerged. The 
most consistent finding was that antiviral genes were expressed at relatively higher levels in 
Black adults, and at relatively lower levels for White adults.
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A number of age-by-sex interactions also emerged. In contrast with recent findings from 
a study of young adults only, whereby higher levels of inflammatory gene expression were 
observed in females during early adulthood (Cole et al. 2020), the present study found that 
inflammatory expression was more strongly associated with age in females, relative to males. 
This finding is in the opposite direction as expected, given the higher incidence of all-cause 
mortality and shorter life expectancy for males after midlife. However, in this sample, females 
reported a greater number of chronic conditions than males (Table 1), which may contribute 
to the greater age-related inflammatory expression observed in females. The age-related trend 
toward greater antiviral expression for males in later adulthood is consistent with sex 
differences in mortality due to parasitic and infectious disease, though this trend was no 
longer statistically significant after accounting for multiple comparisons. As the current study 
tested for demographic differences in a relatively young subfield and was the first to test for 
sex differences in age-trends, future studies should interrogate the replicability and general-
izability of these findings, especially given plausible countervailing hypotheses, high variability 
of gene expression, and the number of associations that were tested in the current study. Sex 
differences in linear age-trends were also relatively small in magnitude, and the lower bound 
of the 95% confidence intervals for these interactions approached zero. Moreover, sex 
differences in age trends appeared only in adjusted analyses and were not evident in the 
absence of covariate adjustment (Figure 1). Collectively, these conditional results underscore 
the need for future studies to assess the replicability and generalizability of sex differences in 
gene expression across lifespan development. On the other hand, there was a comparatively 
low probability of the racial/ethnic differences observed in the present study, assuming a null 
hypothesis of no difference, and the observed effects were consistent with those previously 
reported in a large sample of young adults (Cole et al. 2020), suggesting that racial/ethnic 
differences in antiviral expression may be robust across different stages of the life course.

After accounting for technical covariates and demographic differences, educational attain-
ment and indicators of behavioral and physical health were not significantly associated with 
gene expression composite scores, despite other studies that have found otherwise (e.g., Cole 
et al. 2020. This may be explained, in part, by the fact that participants in the current study 
tended to be well-educated and were relatively healthy. Although the subsample of partici-
pants with gene expression data did not differ systematically on study variables from other 
participants in the biomarker Refresher cohort, other studies have found that the MIDUS 
biomarker subsample differs from the larger MIDUS cohort and is not fully representative of 
the U.S. (Dienberg Love et al. 2010). Future studies should further probe the sample 
characteristics, study designs, measures, specific health outcomes, and physiological mechan-
isms that modulate the relation between gene expression and physical health.

Limitations

The present study implemented a non-experimental, cross-sectional design. Therefore, 
causal inference is not warranted. Moreover, there are likely many down-stream pheno-
types, both biological and behavioral, which link differential gene expression to physical and 
mental health outcomes. Future studies may benefit from implementing longitudinal 
designs that may track potential biological, behavioral, and social factors that mediate 
associations with demographic factors that were documented in the present study. In 
addition, sex/gender was only reported once in the current study but may change over 
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time, and sex was not distinguished from gender identity. Future studies may also benefit 
from asking respondents to report their gender at more than one point in time (Hanes and 
Clouston 2020) or differentiate biological sex as determined by genotype from gender 
identity.

The present study also included few participants that identified as a race or ethnicity 
other than White or Black. Similar to other genetically informative studies (Martin et al. 
2019), future studies should include larger samples of other racial and ethnic groups to 
provide a more comprehensive assessment of biological processes underlying minority 
health disparities. Finally, the extent to which genetic variation contributes to demographic 
differences in antiviral expression should be interrogated in future studies that capture 
variation in both DNA and RNA in a racially/ethnically diverse sample. From the current 
study alone, it is unclear whether racial/ethnic differences in antiviral expression are due to 
differences in social exposures, microbial exposures, or genetic differences. Despite these 
limitations, the present study provides an important step toward understanding the biolo-
gical mechanisms that may contribute to health disparities across demographic strata in 
adulthood.
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