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Abstract
In many disciplines of the social sciences, comparisons between a group mean and the total mean is a common but also
challenging task. As one solution to this statistical testing problem, we propose using linear regression with weighted effect
coding. For random samples, this procedure is straightforward and easy to implement by means of standard statistical software.
However, for complex or clustered samples with imputed or weighted data, which are common in survey analyses, there is a lack
of easy-to-use software solutions. In this paper, we discuss scenarios that are commonly encountered in the social sciences such
as heterogeneous variances, weighted samples, and clustered samples, and we describe how group means can be compared to the
total mean in these situations.We introduce the R package eatRep, which is a front end that makes the presented methods easily
accessible for researchers. Two empirical examples, one using survey data (MIDUS 1) and the other using large-scale assessment
data (PISA 2015), are given for illustration. Annotated R code to run group to total mean comparisons is provided.
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In the social sciences, comparing means of two or more
groups is one of the most frequently encountered re-
search tasks. A special case is when one of those means
is a group mean and the other the total mean. For in-
stance, one could ask whether the mean performance of
companies from a specific sector differs from the mean
performance of all companies, or whether students in
the United States differ from all students worldwide
with respect to their mean educational outcome. For
such group to total mean comparisons, the classical t-
test (e.g., Kalpic, Hlupic, & Lovric, 2011) and the z-test
(e.g., Salkind, 2010) are not appropriate because the

groups are not independent from each other (see, for example,
OECD, 2005, p. 132).

To construct appropriate group to total mean difference
tests, (1) the group to total mean difference ygroup−y and (2)

the standard error for this difference need to be obtained.
Whereas the first calculation is rather trivial, the computation
of standard errors requires more effort. A straightforward way
is to capitalize on linear regression methods (Searle, 1971). If
the contrasts in a linear regression analysis are not explicitly
specified, the reference coding which is used by default in
most software packages provokes that each group is compared
to the reference group (ygroup−yref ). Changing the contrasts

according to weighted effect coding (WEC; te Grotenhuis
et al., 2017) in the regression model yields regression param-
eters which correspond to ygroup−y, that is, the group to total

mean difference. WEC simply requires redefining the con-
trasts in a linear regression analysis. The intercept then repre-
sents the total mean, and the regression coefficients represent
deviations of the group means from the total mean. See
Appendix 1 for an illustration of the differences between var-
ious coding schemes with minimal example data.

The procedure described above yields analytical standard
errors when results from linear regression theory are applied.
One disadvantage of WEC is that most software packages do
not have implemented this procedure or use different coding
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schemes per default. However, we think that using WEC re-
gression comes with several desired features: WEC regression
analysis can be adequately adapted when design and/or data
characteristics are more complicated. Consider, for example,
that the sampling scheme involves unequally weighted cases,
because individuals included in the sample are not equally
representative of the whole population. In this case, we pro-
pose using a coding scheme that we call “weighted effect
coding for weighted samples” (WECW; see Appendix 1 for
details). WECW simply adjusts the WEC contrasts according
to the individual sampling weights. Moreover, by employing
the regression approach we can draw and rely on well-studied
and established methods and extensions that come into play
when design and/or data characteristics are more complicated,
for example when clustered or multi-stage sampling is ap-
plied, or imputed variables are part of the analyses. For these
scenarios, various well-studied extensions building on linear
regression exist and are also promising for the estimation of
group to total mean differences with WEC or WECW.

Instead of using analytical methods, standard errors for
the group to total mean difference can also be estimated
by employing bootstrap methods (Davison & Hinkley,
1997; Efron & Tibshirani, 1986). As pointed out by
Efron and Tibshirani (1986), bootstrap methods are an
alternative when the analytical computation of the stan-
dard errors becomes increasingly complicated or in cer-
tain situations such as small number of clusters (e.g.,
Cameron, Gelbach, & Miller, 2008).

Scope and objectives

This article aims to reach practitioners who are confronted with
group to total mean comparisons. We assembled and combined
trusted statistical techniques to conduct such comparisons for
frequently encountered scenarios into one easily accessible soft-
ware solution. In the present article, we (1) discuss frequently
encountered scenarios in social science research, surveys and
large-scale assessments, (2) describe how various types of effect
coding and statistical routines can be used to target research
questions that imply a comparison between a group mean with
the total mean within these scenarios, (3) present the R (R Core
Team, 2019) package eatRep (Weirich, Hecht, & Becker,
2020), which facilitates such comparisons, and (4) give two
empirical examples for illustration.

In the following, we present some typical scenarios which
come with specific characteristics researchers are confronted
within experimental studies and survey analyses and describe
howWEC can be adjusted and extended. For the sake of clarity,
analytical and implementation details are given in the appendi-
ces. All supported scenarios are summarized in Table 1 along
with practical guidance on how to use the functionrepMean() Ta
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from the eatRep package. Annotated R code with runnable
examples is provided in the Supplementary Material.

Commonly encountered scenarios

Scenario 1: Random samples

To compare group means with the total mean in random
samples, we suggest employing linear regression with
weighted effect coding, a coding scheme which defines
the contrasts in a way that the regression coefficients
represent deviations of group means from the total mean
(see, e.g., Sweeney & Ulveling, 1972). In contrast to
effect coding (EC), WEC takes into account that the
groups may be of unequal size in the population. The
WEC-intercept represents the total mean, whereas the
EC-intercept represents the “synthetic” total mean (i.e.,
the mean of the equally weighted group means). Both
approaches yield identical results if the groups are of
equal size in the population, which is, however, rarely
the case. For an illustration of the differences between
EC and WEC, see Table 5 in Appendix 1. The contrasts
for group 1 are –1 for EC and –n2/n1 for WEC, where
n1 is the number of observations in group 1, and n2 is
the number of observations in group 2. As illustrated in
Appendix 1, applying linear regression with WEC yields
regression estimates which represent point estimates for
the differences of the group means from the total mean.
Moreover, the corresponding standard errors of parame-
ter estimates represent standard errors for these differ-
ences. As shown in Table 1, for scenario 1, the argu-
ment crossDiffSE of the repMean() function
needs to be set to “wec” (default).

In the following section, we describe how WEC can be
applied to designs and situations that are typically encountered
in the context of surveys and large-scale assessments. Samples
from such studies differ from common random samples in
several respects (for a more detailed description of survey
samples, see, e.g., Rutkowski, Gonzalez, Joncas, & Von
Davier, 2010).

Scenario 2: Weighted samples

Often, sampling designs include over- and/or under-
sampled groups. One common reason for this is that
groups that are only marginally represented in the pop-
ulation should be represented more strongly in the sam-
ple to ensure sufficient power in between-group compar-
isons (Schofield, 2006). Hence, group-level weights are
necessary to ensure that the estimates represent popula-
tion parameters if the proportion of the groups in the
sample does not represent the proportion of the groups

in the population. Moreover, individual weights are
needed to adjust for nonresponse (Rust, 2014).

To apply weighted effect coding for weighted samples
(WECW), the contrasts are defined in a different manner.
More specifically, the contrasts now additionally must take
into account that the relative group sizes in the sample differ
from the relative group sizes in the population. Picking up the
example given in Appendix 1, the contrast for group 2 is now

calculated as − ∑
n1þn2

i¼n1þ1
wi= ∑

i¼1

n1

wi

� �
, where wi are the individual

weights, and n1 and n2 are the number of examinees in the
corresponding group (see Appendix Table 5). Hence, the
number of observations in the corresponding group is replaced
by the sum of weights for all individuals in the corresponding
group. To use WECW instead of WEC, simply supply the
name of the weighting variable to the wgt argument of the
repMean()function.

Scenario 3: Clustered samples

If the sampling design is hierarchical, the primary sam-
pling unit is often some kind of higher-level entity, for
example, school classes instead of individuals. It is well
known that analyzing clustered samples with methods that
are based on the assumption of random sampling yields
biased standard errors (Lumley, 2004; Wolter, 1985).
Alternatively, so-called sandwich estimators (Freedman,
2006; Skinner & Wakefiel, 2017) can provide consistent
standard errors even if there is heteroscedasticity or clus-
tered sampling (Rogers, 1993). However, in large-scale
assessments, using complex designs which employ clus-
ters with unequal selection probabilities (probability-pro-
portional-to-size (PPS) selection; see Rust, 2014), sand-
wich estimators are seldom used (Gonzalez, 2014). One
possible reason might be that sandwich estimators can
yield biased results if the response variable is dichoto-
mous or when cluster sizes are small (Rabe-Hesketh &
Skrondal, 2006). Moreover, Efron and Tibshirani (1986)
noted that analytical computation of standard errors be-
comes increasingly complicated for complex sampling de-
signs. Hence, a common approach is to use resampling
techniques such as, for example, the bootstrap (Davison
& Hinkley, 1997), jackknife (Rust, 2014; Rust & Rao,
1996; Wolter, 1985), or balanced repeated replicates
(BRR; Rao & Wu, 1985). Resampling methods like the
bootstrap might be superior to analytical methods such as,
for example, the sandwich estimator (e.g., Harden, 2011),
particularly when the number of clusters is small (e.g.,
Cameron et al., 2008; Feng, McLerran, & Grizzle, 1996;
Sherman & le Cessie, 1997). Resampling techniques are
implemented in various software programs (Westat, 2000)
as well as in R packages such as survey (Lumley, 2019)
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or BIFIEsurvey (Robitzsch & Oberwimmer, 2019).
Which of these methods is appropriate depends on the
specific sampling procedure used in the study. For exam-
ple, when the aim is to re-analyze the PISA 2015 data, the
sampling procedure used by PISA 2015 should be taken
into account. PISA 2015 used a balanced repeated repli-
cation (BRR) variance estimator which is adjusted for
sparse population subgroups by Fay’s method (Judkins,
1990; OECD, 2017, p. 123). However, when re-
analyzing data of TIMSS 2007 (Mullis et al., 2008), the
jackknife estimator should be used as described in the
TIMSS 2007 technical report (Foy, Galia, & Li, 2008).
The R package eatRep includes both methods to yield
standard errors for group mean comparisons. For technical
details, see Appendix 2. In repMean(), the replication
method can be specified by the type argument. Valid
opt ions are “JK1” , “JK2” , “BRR” , and “Fay” .
Depending on the method, some additional arguments
need to be specified which are described in the help files
of repMean() in detail.

Furthermore, a common type of clustered data are re-
peated measurements (i.e., longitudinal data). Here, the
groups (level 2 units) are the persons, and the level 1 units
are the observations which are nested within persons. As
longitudinal data are just a special case of two-level clus-
tering, the presented methods are suitable for longitudinal
data as well.

Scenario 4: Imputed variables

When missing values occur in surveys or large-scale
assessments, multiple imputation is a common method
to provide complete data for secondary analyses. Also, a
special case in which imputed values occur are latent
variable models (for an introduction to latent variable
modeling, see, e.g., Beaujean, 2014), where individual
values on the latent constructs (for example, mathemat-
ical or reading literacy) must be inferred from observed
indicators, for instance from items of a competence test
or from additional background information from a ques-
tionnaire. For missing values as well as for latent con-
structs, imputation techniques (Little & Rubin, 1987;
Rubin, 1987; van Buuren, 2007) such as plausible
values (PVs) imputation (Mislevy, Beaton, Kaplan, &
Sheehan, 1992; von Davier, Gonzalez, & Mislevy,
2009) are often applied. It is not uncommon to replace
each single missing value with multiple imputed values,
a procedure that results in multiple (imputed) data sets.
The analysis of this kind of data requires applying spe-
cific routines for pooling the results (Rubin, 1987).
These pooling routines are also applicable to linear re-
gression with WEC. Technical details are given in
Appendix 3. When using multiple imputed data in

eatRep, the data needs to be in the long format with
a variable indicating the number of the imputation. The
name of this variable needs to be passed to the imp
argument of the repMean() function.

Scenario 5: Heterogeneous group variances

Linear regression with weighted effect coding relies on
certain distributional assumptions, one of which is ho-
moscedastic residuals. Especially in survey analyses,
this assumption is frequently violated, which can also
lead to biased standard errors (White, 1980). To com-
pute standard errors which are robust with respect to
heteroscedasticity, various methods have been proposed
(Bell & McCaffrey, 2002; MacKinnon & White, 1985;
Smyth, 2002; Zeileis, 2004). We adopt these methods
for comparisons of group means with the total mean to
receive unbiased standard errors. Within the R package
eatRep, the function lm_robust() from the estimatr
package (Blair, Cooper, Coppock, Humphreys, & Sonnet,
2020) is called, which provides a variety of heteroscedasticity-
robust variance estimators. In repMean(), the argument
hetero defines whether group variances should be consid-
ered as heterogeneous or homogeneous. For heterogeneous
variances, just set argument hetero to TRUE (default).
With the additional argument se_type the method to handle
heterogeneous variances can be chosen with valid options
being “HC3” (default), “HC0”, “HC1”, “HC2” (which are
exactly the same as the labels in the lm_robust() function
from the estimatr package).

Scenario 6: Stochastic group sizes

Mayer and Thoemmes (2019) emphasize the distinction be-
tween fixed and stochastic group sizes. Group sizes are fixed
when the researcher determines the number of persons in each
group in advance of the sampling. This might be the case, for
instance, in experiments where the experimenter determines
howmany persons are assigned to each experimental group or
in surveys/large-scale assessments where the number of sam-
pled units is determined by the sampling design. However,
when population group sizes are unknown, these need to be
estimated from the group sizes in the sample. As group sizes
vary over samples, they are “stochastic” or “random”, and
estimation is accompanied by uncertainty. This uncertainty
should be taken into account to avoid flawed inferences
(e.g., Mayer & Thoemmes, 2019). For the estimation
of group to total mean differences, we adapted and
implemented a multigroup structural equation model with
stochastic group sizes as proposed by Mayer, Dietzfelbinger,
Rosseel, and Steyer (2016) using the R package lavaan
(Rosseel, 2012). Thus, the uncertainty associated with
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stochastic group sizes enters into the standard errors of the
mean differences.

The R package eatRep

When group to total mean differences are to be estimated,
eatRep employs linear regression. If no weights are speci-
fied (scenario 1), contrasts are defined according to WEC. If
weights are specified (scenario 2), contrasts are defined ac-
cording to WECW (see Appendix 1 for details). In clustered
samples (scenario 3), eatRep uses lm() in combination
with the withReplicates() function from the survey
package (Lumley, 2019) to provide cluster-robust standard
errors using replication techniques (see Appendix 2). When
imputed variables are part of the analysis (scenario 4), the
results of the regression analysis are pooled using the
pool() function from the mice package (van Buuren &
Groothuis-Oudshoorn, 2011; see also Appendix 3).
Heterogeneous group variances (scenario 5) are taken into
account by calling the lm_robust() function (instead of
the lm() function) from the estimatr package (Blair et al.,
2020). If group sizes should be considered stochastic (scenario
6), a multigroup SEM approach (Mayer & Thoemmes, 2019)
is called instead of the lm() function, using the R package
lavaan (Rosseel, 2012). These methods can also be com-
bined. For example, the multigroup SEM approach (scenario
6) can be used with or without imputed data, WECW can be
used with or without clustered data, and so on1.

Empirical examples

The abovementioned scenarios are prototypical. In prac-
tice, however, researchers are often confronted with
combinations of such scenarios—for example, missing
values in weighted clustered samples. The R package
eatRep (Weirich et al., 2020) offers easy-to-use func-
tionality to compute group to total mean differences for
the five presented prototypical scenarios and further
combinations. In the following, two empirical examples
with annotated R code (see Supplementary Material) are
provided to illustrate how these comparisons can be
conducted with data from survey and large-scale assess-
ment studies.

Empirical example 1: MIDUS 1

In this example, we investigate whether the mean tobacco
usage in several industry sectors differs from the mean

tobacco usage in the population. To this end, we use data from
the “Midlife in the United States (MIDUS 1), 1995-1996”
project (Brim et al., 2019). This example can be seen as a
combination of scenarios 2, 5, and 6 because we have a
weighted sample and heterogeneous group variances. The
group sizes need to be treated as stochastic because the pop-
ulation sizes of the industry sectors are estimated by the sector
sizes in the sample. From the total sample of 7108 partici-
pants, we chose current smokers from the main sample who
completed the phone interview and the self-administered
questionnaire with non-missing values on the variables “cig-
arettes per day” (A1PA44) and “current industry”
(A1PINMJ)2. Moreover, industries with sample sizes below
30 were discarded. This yielded a sample size for our analysis
of 451 participants. As weights, we used the values from the
provided weighting variable (A1WGHT2). The analysis was
conducted with the repMean() function from the R package
eatRep using linear regression with weighted effect coding
for weighted samples (WECW) to test for differences between
the group means and the total mean.

Results are presented in Table 2. The estimated total
mean was 27.61 cigarettes per day. The group means of
the seven industries ranged from 24.30 (“Professional and
related services”) to 34.25 (“Construction”). The results
indicate that in the industries “Construction” (M = 34.25)
and “Transportation, communications, and public utility”
(M = 31.58), significantly more cigarettes are smoked
each day than in the total population (p = .003 and
p = .011, respectively). In “Professional and related ser-
vices”, the average tobacco use is significantly lower than
in the population (M = 24.30, p = .018). The group means
of the other industries do not significantly differ from the
total mean. Annotated R code and an example data set
which was generated based on these results is provided
in the Supplementary Material.3

1 However, not all combinations seem feasible or are implemented yet (see
Discussion).

2 Detailed information on the variables can be found in the MIDUS 1 material
of Brim et al. (2019). A1PA44 is a numeric variable in which the quantity of
daily smoked cigarettes is encoded. A1PINMJ is a numeric variable in which
the respondent’s current industry (major group) is represented. These 12major
groups (1=Agriculture, forestry, fishing, and mining; 2=Construction;
3=Manufacturing; 4=Transportation, communications, and public utility;
5=Wholesale trade; 6=Retail trade; 7=Finance, insurance, and real estate;
8=Business and repair services; 9=Personal services; 10=Entertainment and
recreational services; 11=Professional and related services; 12=Public admin-
istration) were coded from verbatim responses using Census 1980 classifica-
tion. The weighting variable A1WGHT2 is the “main random-digit-dial
(RDD) phone and self-administered questionnaire (SAQ) sampling and post-
stratification weight”.
3 The MIDUS data are only available after registration and are therefore not
directly downloadable. Also, further distribution is not allowed. Therefore, we
cannot provide the original data set. However, in order to offer R code that is
executable, we provide a “synthetic” data set which we simulated based on the
presented results. This approach yields only approximate results. Therefore,
the results presented in Table 2 (based on the original MIDUS data set) differ
slightly from the results obtained from our analysis of the “synthetic” data
presented in the supplemental R code.
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Empirical example 2: PISA 2015

We used data from the 2015 PISA study (OECD, 2016) to
compare the OECD countries’ performances in science. The
purpose was to test which country’s mean performance differs
from the OECD average4. This example can be seen as a
combination of Scenarios 2, 3, 4, and 5 as we have a weighted,
clustered sample with imputed values (PVs) and heteroge-
neous group variances. The group sizes, however, are consid-
ered to be fixed. The total sample consisted of N = 248,620
students in 35 countries. As the dependent variable, we used
10 plausible values (variables PV1SCIE to PV10SCIE from
the publicly available PISA 2015 data set)5. We employed the
senate weight variable (SENWT) “to sum up to the target
sample size of 5000 within each country” (OECD, 2017, p.
292). Again, the analysis was conducted with the
repMean() function from the R package eatRep.

Results are summarized by Table 3. In line with the results
reported in the PISA 2015 report (OECD, 2016, p. 67), means
of seven OECD countries (United States, Austria, France,
Sweden, Czech Republic, Spain, and Latvia) did not signifi-
cantly differ from the 2015 OECD average of 493, whereas 18
countries range above the OECD average and 10 below.
Annotated R code to reproduce these results using the freely
available data from the OECD homepage is provided in the
Supplementary Material.

Discussion

Research questions aiming at group to total mean com-
parisons are frequently encountered in the social sci-
ences. To address such comparison problems analytical-
ly, different methods can be used. A straightforward
method is linear regression with weighted effect coding.
To facilitate and promote usage of this approach, we
developed the R package eatRep, in which routines
for various situations that are typical in survey and
large-scale assessment studies (e.g., heterogeneous vari-
ances, weighted samples, clustered samples, and multi-
ple imputations) are implemented. To illustrate the usage
of eatRep, we conducted two empirical example anal-
yses in which we compared mean tobacco consumption
in certain industries to the total mean (MIDUS 1 data)
and the mean science competence of students in the
OECD countries to the total OECD mean (PISA 2015
data).

Several issues and limitations need to be taken into
consideration: (1) Weighted effect coding (WEC) pre-
supposes that there is only one single grouping variable.
With more than one variable (e.g., country and gender),
the crossed groups (e.g., Japanese girls) need to be tech-
nically mapped onto one grouping variable. (2) In
eatRep, the functionality to handle stochastic group
sizes is incorporated. To this end, we used the Mayer

4 The OECD average is calculated as the mean of equally weighted country
means, which ensures “an equal contribution by each of the countries”
(OECD, 2017, p. 377). Alternatively, the OECD total is calculated as the
weighted mean where “each country contributes in proportion to the number
of 15-year-olds enrolled in its schools” (OECD, 2016, p. 19). Whether each
single country’s mean should be compared to the OECD average or the OECD
total depends on the specific research question. If the focus lies on comparison
of countries, the OECD average might be the appropriate reference criterion.
However, if the research question deals with the question whether a randomly
selected student from a specific country outperforms a randomly selected
student from the entirely of OECD countries, the OECD total might be the
appropriate reference criterion. The standard of comparison can be chosen by
using the senate weight variable for OECD average and the (adjusted) student
weight variable for the OECD total.
5 Detailed information on the variables can be found in the technical report of
the PISA 2015 study (OECD, 2017). The PV1SCIE to PV10SCIE variables
refer to 10 plausible values for the latent dependent variable “science literacy”.
As latent variables are considered to be inherently unobserved, 10 plausible
values were generated using the observed item responses as well as back-
ground information gathered from student questionnaires (see chapter 9 in
OECD, 2017). We use the SENWT variable as the weighting variable. The
so-called senate weights assume a population of 5000 in each country. To take
the sampling design of PISA into account, we specify Fay’s method with the
type argument in eatRep. As the OECD provides the replicate weights
within the data, the 80 replicate weighting variables have to be specified with
the repWgt argument.

Table 2 Mean number of cigarettes per day by industry (MIDUS 1 data)

Group mean Industry ngroup Mgroup Diff. SEdiff p SDgroup

Significantly above total mean Construction 55 34.25 6.65 2.15 .002 14.24

Transportation, communications, and public utility 53 31.58 3.97 1.52 .009 11.56

Equal to total mean Manufacturing 117 27.81 0.20 1.29 .875 14.56

Business and repair services 35 27.60 0.00 2.61 .999 17.68

Finance, insurance, and real estate 40 25.36 −2.25 2.05 .273 13.36

Retail trade 85 25.13 −2.48 1.63 .128 13.51

Significantly below total mean Professional and related services 91 24.30 −3.31 1.38 .016 12.10

Ntotal = 475;Mtotal = 27.61; SDtotal = 13.90; α = .05; Diff. = Estimated difference of groupmean and total mean. All statistics reported are calculated using
the weighting variable A1WGHT2
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et al. (2016) approach, which takes the additional un-
certainty due to the stochasticity of the group sizes into
account. Mayer and Thoemmes (2019) note that alterna-
tive model-based approaches are also feasible, for exam-
ple, a multinomial model which could be estimated
using the KNOWNCLASS option in Mplus (Muthén &
Muthén, 1998–2017). (3) To date, the multigroup SEM
implemented in eatRep does not account for clustered
data. Hence, for complex samples, the standard errors of

the group to total mean differences are determined using
resampling approaches. To appropriately account for sto-
chastic group sizes in clustered and/or complex data, we
believe that an appropriate resampling procedure needs
to be chosen. For example, we assume that resampling
approaches are needed in which the group sizes vary
over replicates (e.g., classic bootstrap with case-wise
resampling). However, as this is a topic for future re-
search, to date, eatRep treats group sizes as fixed

Table 3 Mean science performance by country (PISA 2015 data)

Group mean Country ngroup Mgroup Diff. SEdiff p SDgroup

Significantly above the OECD average JPN 6647 538.40 45.19 2.89 <.001 93.48

EST 5587 534.19 40.99 2.14 <.001 88.91

FIN 5882 530.66 37.46 2.35 <.001 96.18

CAN 20,058 527.71 34.50 1.99 <.001 92.37

KOR 5581 515.81 22.61 2.99 <.001 95.19

NZL 4520 513.30 20.10 2.37 <.001 104.11

SVN 6406 512.86 19.66 1.40 <.001 95.20

AUS 14,530 509.99 16.79 1.51 <.001 102.30

GBR 14,157 509.22 16.02 2.52 <.001 99.66

DEU 6504 509.14 15.94 2.68 <.001 99.34

NLD 5385 508.58 15.37 2.16 <.001 100.95

CHE 5860 505.51 12.30 2.87 <.001 99.53

IRL 5741 502.58 9.37 2.30 <.001 88.90

BEL 9651 502.00 8.80 2.22 <.001 100.19

DNK 7161 501.94 8.74 2.36 <.001 90.30

POL 4478 501.44 8.23 2.46 .001 90.80

PRT 7325 501.10 7.90 2.25 <.001 91.83

NOR 5456 498.48 5.28 2.19 .016 96.25

Equal to the OECD average USA 5712 496.24 3.04 3.13 .331 98.63

AUT 7007 495.04 1.84 2.35 .436 97.35

FRA 6108 494.98 1.78 2.07 .390 101.97

SWE 5458 493.42 0.22 3.52 .950 102.49

CZE 6894 493.20 −0.37 2.18 .865 95.27

ESP 6736 492.83 −0.42 2.07 .841 88.02

LVA 4869 492.79 −2.98 1.54 .054 82.22

Significantly below the OECD average LUX 5299 482.81 −10.40 1.11 <.001 100.41

ITA 11,583 480.55 −12.66 2.54 <.001 91.44

HUN 5658 476.75 −16.45 2.41 <.001 96.34

ISL 3371 473.23 −19.97 1.66 <.001 91.22

ISR 6598 466.55 −26.65 3.38 <.001 106.37

SVK 6350 460.78 −32.43 2.54 <.001 98.94

GRC 5532 454.83 −38.37 3.82 <.001 91.93

CHL 7053 446.96 −46.25 2.38 <.001 86.02

TUR 5895 425.49 −67.71 3.84 <.001 79.27

MEX 7568 415.71 −77.49 2.12 <.001 71.41

Ntotal = 248,620 (unweighted); OECD average = 493.20; OECD SD = 98.55; α = .05; Diff. = Estimated difference of group mean and OECD average.
All statistics reported (except for the unweighted Ntotal and ngroup) are calculated using the weighting variable SENWT. The weighted group size is 5000
for all countries, and the weighted total size is 175,000
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when resampling methods are applied. (4) The imple-
mentation of weighted effect coding for clustered sam-
ples and/or for imputed data is based on replication
methods. In contrast to alternative methods for cluster-
robust standard errors like sandwich estimators, replica-
tion methods like BRR or jackknife are also suitable for
nonlinear statistics (Krewski & Rao, 1981; Rao & Wu,
1985) and therefore more flexible. They come, however,
with substantially more computational effort. Following
the PISA example, 80 replication analyses are conduct-
ed according to 80 replicate weights, and afterwards, the
whole procedure is replicated 10 times according to 10
plausible values. Overall, 80 × 10 = 800 replications are
necessary which is computationally very demanding. In
the future, the currently implemented routines in
eatRep might possibly be improved, for instance, by
employing computationally more efficient C++ routines
or computational optimizations, for example, suitable
time-saving shortcuts for replication methods (e.g.,
Magnussen, McRoberts, & Tomppo, 2010; Westfall,
2011). (5) Most data in the context of large-scale as-
sessments provided by institutions such as the OECD is
presented in the wide format; that is, each line in the
data set represents one discrete person. Imputed vari-
ables, if present, occur in different columns. However,
the package eatRep requires that data are in long for-
mat. Thus, as illustrated in the supplementary R code,
the user needs to reshape the data manually. Amongst
others, the R packages reshape2 (Wickham, 2007) or
tidyr (Wickham & Henry, 2020) provide convenient
and efficient functionality for this task. (6) Although we
used trusted statistical approaches and routines, the
complexity encountered in survey and large-scale as-
sessment studies calls for further validation of the pro-
posed methods. In future research, simulation studies
should examine their performance and estimation
quality.

In conclusion, we have compiled trusted methods into
a versatile software solution that can be used to solve
the common problem of comparing group means to the
total mean, and we hope that this will help researchers
conducting such mean comparisons in the future.

Open practice statement

We did not preregister our presented work because we do not
test substantive hypotheses. The data which we have used are
already publicity available (see MIDUS 1 and PISA 2015
citations). We provide annotated R code to reproduce the re-
ported analyses as supplementary material.

Appendix 1: Examples of linear regression
with four coding schemes

Here, we illustrate with an example that effect coding (EC),
weighted effect coding (WEC), andweighted effect coding for
weighted samples (WECW) yields the desired target statistics.
Additionally, we contrast effect coding with the popular dum-
my coding (DC).

For the purpose of illustration, consider the hypothetical
data in Appendix Table 4. Let us assume N = 5 persons, of
which n1 = 3 persons are in group 1 (with values y11, y12, and

y13) and n2 = 2 persons are in group 2 (with values y21 and
y22). The weighting variable consists of group-level compo-
nents and individual components—the average weights differ
between groups, and the individual weights differ between
examinees within each group. Based on the data provided in
Table 4, Table 5 shows the contrasts according to EC, WEC,
and WECW.

(1) EC

The value column vector is y = (y11, y12, y13, y21, y22)´.

Table 4 Exemplary data for N = 5 persons

Person i Group j Value yji Weight wi

1 1 y11
2/3

2 1 y12
4/3

3 1 y13 2

4 2 y21
3/8

5 2 y22
5/8

Table 5 Codes for three coding schemes

Coding

Group EC WEC WECW DC

1 –1 −n2/n1 − ∑
n1þn2

i¼n1þ1
wi= ∑

i¼1

n1

wi

 !
0

2 1 1 1 1

EC effect coding, WECweighted effect coding, WECWweighted effect
coding for weighted samples, n1 number of observations in group 1, n2
number of observations in group 2, wi individual weights
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The predictor matrix with effect codes is:

X ¼
1
1
1
1

−1
−1
−1
1

1 1

0BB@
1CCA

With y and X the regression coefficients can be calculated
with the well-known equation:

bβ ¼ X0Xð Þ−1X0y:

This yields:

bβ ¼ bβ0bβ1

 !
¼

2y11 þ 2y12 þ 2y13 þ 3y21 þ 3y22
12

−2y11−2y12−2y13 þ 3y21 þ 3y22
12

0B@
1CA:

The regression intercept bβ0 can be rewritten as 1
2 y1 þ 1

2 y2,
thus, it is the total mean of equally weighted group means (yew ).bβ1 can be transformed:

bβ1 ¼
−2 3y1
� �

þ 3 2y2
� �

12

¼ 1

2
y2−

1

2
y1

¼ 1

2
y2 þ

1

2
y2−

1

2
y2−

1

2
y1

1

2
−y1 þ

1

2
y1

¼ 1

2
y2 þ

1

2
y2−

1

2
y1 þ

1

2
y2

� �
¼ y2−yew:

Thus, bβ1 is the difference of the mean of group 2 and the
total mean of equally weighted group means.

(2) WEC

The predictor matrix with weighted effect codes is:

X ¼
1
1
1
1

−2=3
−2=3
−2=3
1

1 1

0BBB@
1CCCA:

This yields:

bβ ¼ bβ0bβ1

 !
¼

y11 þ y12 þ y13 þ y21 þ y22
5

−2y11−2y12−2y13 þ 3y21 þ 3y22
10

0B@
1CA:

We see that the regression intercept bβ0 is the total mean (y )
or, rewritten, the weighted mean of the group means:

bβ0 ¼ 3y1 þ 2y2ð Þ=5, where y1 is the mean of group 1 and
y2 is the mean of group 2.bβ1 can be transformed:

bβ1 ¼
−2 3y1
� �

þ 3 2y2
� �

10

¼
−6

5y−2y2
3

 !
þ 6y2

10

¼ 10y2
10

−
10y
10

¼ y2−y:

Thus, bβ1 is the difference of the mean of group 2 and the
total mean.

(3) WECW

The predictor matrix with weighted effect codes adjusted
with weights is:

X ¼
1
1
1
1

−1=4
−1=4
−1=4
1

1 1

0BBB@
1CCCA:

The weight matrix is:

W ¼

2=3 0 0
0 4=3 0
0
0
0

0
0
0

2
0
0

0 0
0 0
0

3=8
0

0
0

5=8

0BBB@
1CCCA:

The regression parameters can be obtained by:

bβ ¼ X0WXð Þ−1X0
Wy:

This yields:

bβ ¼ bβ0bβ1

 !

¼
16y11 þ 32y12 þ 48y13 þ 9y21 þ 15y22

120
−4y11−8y12−12y13 þ 9y21 þ 15y22

30

0B@
1CA:

The regression intercept bβ0 can be rewritten as
2
3y11þ4

3y12þ2y13þ3
8y21þ5

8y22
5 . Thus, it is the total mean of weighted

individuals (yw).
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bβ1 can be transformed:

bβ1 ¼
−4y11−8y12−12y13 þ 9y21 þ 9y21−9y21 þ 15y22 þ 15y22−15y22

5 � 6

¼
−4y11−8y12−12y13−

9

4
y21−

15

4
y22

5 � 6 þ
9y21 þ 9y21−

27

4
y21 þ 15y22 þ 15y22−

45

4
y22

30

¼ −

2

3
y11 þ

4

3
y12 þ 2y13 þ

3

8
y21 þ

5

8
y22

5
þ

3

8
y21 þ

5

8
y22

1
¼ y2w−yw

Thus, bβ1 is the difference of the weighted mean of group 2
and the total mean of weighted individuals.

(4) DC

The predictor matrix for the dummy codes (with group 1
being the reference group) is:

X ¼
1
1
1
1

0
0
0
1

1 1

0BB@
1CCA:

This yields the following regression parameters:

bβ ¼ bβ0bβ1

 !
¼

y11 þ y12 þ y13
3

−2y11−2y12−2y13 þ 3y21 þ 3y22
6

0B@
1CA:

We see that the regression intercept bβ0 is the mean of the

reference group, y1. bβ1 can be rewritten as:

bβ1 ¼
1

2
y21 þ

1

2
y22

� �
−

1

3
y11 þ

1

3
y12 þ

1

3
y13

� �
¼ y2−y1:

Thus, bβ1 is the difference between the mean of group 2 and
the mean of the reference group 1. Notice that this interpreta-

tion differs from the interpretation of bβ1 under effect coding,

where bβ1 is the difference of the mean of group 2 and the total
mean. Therefore, when group to total mean comparisons are
of interest, effect coding schemes should be chosen. In con-
trast, dummy coding is suitable for group to group mean
comparisons.

Appendix 2: Resampling methods
for clustered samples

Assume a hierarchical sampling design which corresponds
to the jackknife procedure with n unique jackknife repli-
cates. Then, linear regression with a certain coding
scheme is applied to each of the n jackknife replicate
samples, using one of the coding schemes given in

Appendix Table 5. Let bθ 1ð Þ be the estimator of the group

mean difference in the ith jackknife replicate sample. The

empirical average of the jackknife replicates then isbθ �ð Þ ¼ 1
n ∑

n

i¼1

bθ ið Þ, and the standard error is defined as

SEjack
bθ� � ¼ n−1

n ∑
n

i¼1

bθ ið Þ−bθ �ð Þ
� �2� �1=2

(Efron & Tibshirani,

1986; McIntosh, 2016). If the hierarchical sampling design is
according to the balanced repeated replication method with R
replicates, the standard error can be estimated by the square
root of the covariance matrix of replication estimates, i.e.

SEBRR
bθ� � ¼ 1

R ∑
R

r¼1

bθ rð Þ−bθ �ð Þ
� �2� �1=2

(SAS Institute Inc.,

2018, p. 9941; Wolter, 1985). When applying Fay’s method

to BRR, the standard error can be estimated via SEBRR Fayð Þ bθ� �
¼ 1

R� 1−kð Þ ∑
R

r¼1

bθ rð Þ−bθ �ð Þ
� �2� �1=2

(Judkins, 1990, p. 225; SAS

Institute Inc., 2018, p. 9942), where 0≤k<1 is referred to the
Fay factor. In PISA, as originally suggested, k = 0.5 (OECD,
2017, p. 125).

Appendix 3: Pooling rules for imputed
variables

When analyzing multiple imputed data sets, the combin-
ing rules of Rubin (1987) have to be applied to the
estimates obtained from linear regression with weighted
effect codes. Assume a data set with missing values or
latent constructs for which M imputed data sets (or M
plausible values) have been generated. The quantities of
interest (i.e., the regression coefficients) have to be es-
timated for each imputed data set separately. The re-
gression coefficients will slightly vary between imputed

data sets. Let bθ mð Þ
be the quantity of interest in the mth

imputed data set. In random samples with missing data,bθ mð Þ
is simply the regression coefficient for one group in

the mth data set; in clustered samples with missing data,bθ mð Þ
is the jackknife or BRR estimate of the regression

coefficient for one group in the mth data set. According

to Rubin (1987), the pooled estimate θ is simply the

average of the individual estimates: θ ¼ 1
M ∑

M

m¼1

bθ mð Þ
To

pool the standard errors, we need the overall average

of the associated variance estimates, U :

U ¼ 1

M
∑
M

m¼1
SE bθ� � mð Þ� �2

:
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SE bθ� � mð Þ
is the standard error of the regression coeffi-

cient in the mth imputed data set. Again, in clustered sam-

ples, SE bθ� � mð Þ
may result from jackknife or BRR proce-

dures. Hence, the combining rules of Rubin (1987) are
applicable to random and clustered samples as well. The

between-imputation variance is B ¼ 1
M−1 ∑

M

m¼1

bθ mð Þ
−θ

� �2
.

The estimated total variance is B ¼ T ¼ U þ 1þ 1
M

� 	
. To

estimate the pooled standard error, we take the square root
of T. For nested or two-stage multiple imputation (Harel &
Schafer, 2003; Reiter & Raghunathan, 2007; Weirich et al.,
2014), the combining rules of (Rubin, 2003) can be used.
For the sake of brevity, we omit the formulas and refer the
interested reader to the appendix of Weirich et al. (2014).

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.3758/s13428-021-01553-1.
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