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Abstract

Using within-family variation from twins and siblings, I find that smokers earn approximately
16% less than nonsmokers. Possible explanations for this earning difference are addiction-
related productivity declines and earning reductions from higher health insurance costs. To
investigate further, I use variation in the provision of employer-supplied health insurance
(ESHI) to examine the mechanism of whether the addiction or insurance component has a
larger influence on earnings. While I generally observe a larger earning penalty for smokers

with ESHI than smokers without ESHI, the earning difference is statistically indistinguishable

from zero.
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1 Introduction

Since the publication of the Surgeon General’s report (U.S. Department of Health, Educa-
tion, and Welfare, 1964) on the harmful effects of cigarette consumption, a vast literature has
emerged exploring the economic consequences of smoking. Early analyses on the economic
impacts of smoking anticipated that smoking would have adverse impacts in the labor market.
Such studies predicted that poor health would adversely affect productivity and raise the cost
of providing health care (Luce and Schweitzer, 1978; Oster et al., 1984), thereby lowering earn-
ings. However, precisely quantifying the effect of smoking on earnings has proven to be chal-
lenging. Comparisons between smokers and nonsmokers often reveal significant differences
on observable characteristics, which raises the possibility that significant differences may also
exist on unobservable characteristics. As a result, credible evidence on the effects of smoking
on earnings has been elusive'.

To address the concerns from differential selection into smoking, studies investigating
the effect of smoking on earnings have often invoked strong econometric assumptions. Many
of these studies have used distinct approaches such as covariance restrictions (Auld, 2005),
instrumental variables (Anger and Kvasnicka , 2010; Van Ours, 2004), longitudinal records
(Grafova and Stafford, 2009; Levine et al., 1997), and more recently twin siblings (Lang and
Nystedt, 2018) to overcome issues of selection. On the whole, these studies estimate the total
effect of smoking on earnings, and they find that smoking reduces earnings between 8% and
24%. Despite the large earning penalty, it remains unclear whether the differences in earnings
occur from the diminished productivity of smokers, their use of healthcare services, skill dif-
ferences, or some combination of each explanation.

To address concerns of skill differences between smokers and nonsmokers on observed
and unobserved characteristics, I exploit within-family variation in smoking from twin and
singleton siblings using data from the first three waves of the National Survey of Midlife Devel-
opment (MIDUS). Since individuals in families have similar backgrounds and face similar
environments, differences on unobservable characteristics are smaller within families than
between two random individuals. Thus, I contrast the within-family estimates with the more
traditional approaches using a representative sample of Americans. Estimates from the repre-
sentative sample of Americans in MIDUS show that smokers tend to earn approximately 16%
less than nonsmokers. The estimates from the within-family models show a penalty of similar
magnitudes of approximately 16% reduction in earnings for smokers. Overall, the estimates
for the earning reduction for smokers from within-family models are statistically similar to
the estimates from traditional models. At the minimum, these findings suggest that genetic
differences do not influence the earning gap between smokers and nonsmokers.

Next, I disentangle the hypothesized mechanisms that contribute to the earning
differences - namely, healthcare costs and addiction-related productivity declines - by exploit-
ing the provision of employer-supplied health insurance (ESHI), which is offered at the firm
level. I first compare the earnings of smokers with ESHI to the earnings of nonsmokers with
ESHI. Analysis by ESHI status reveals that smokers with ESHI experience an economically and

statistically significant reduction in earnings compared to nonsmokers. I compare the earnings

1 The study of Chaloupka and Warner (2000) contains a thorough selection of early studies evaluating the effects of
smoking on wages.
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of smokers with ESHI to those of nonsmokers without ESHI to examine whether healthcare
costs or addiction-related productivity is the primary factor that influences the earning dispar-
ity. Since in the latter comparison, smokers bear the costs of their own healthcare, any earning
differences should reflect addiction-related productivity losses. Although the earning effect for
smokers without ESHI is large and negative compared to that for nonsmokers without ESHI,
the difference is statistically indistinguishable from zero. Consequently, the empirical facts
from this difference-in-differences (DiD) framework suggests that healthcare costs for smokers
is a primary driver of their reduction in earnings.

The findings from this paper contribute to the economics of smoking by providing new
estimates on the effect of smoking on earnings that potentially address issues of skill differ-
ences between smokers and nonsmokers. Furthermore, the findings have labor market impli-
cations, as the results suggest that firms adjust compensation on the full dimensions of worker
quality, incorporating workers” health investments such as smoking. Legislation at both the
national level, such as the Health Insurance Portability and Accountability Act, and at the state
level, such as smoker protection laws, impose restrictions that prohibit differential insurance
prices beyond a certain threshold for smokers. The prominence of smoking-related insurance
legislation makes understanding the earning dynamics between health insurance and health
investments such as smoking especially salient. Recent legislation such as the Affordable Care
Act also imposes restrictions on the pricing of insurance to smokers and separates health
insurance from employment for a segment of the population. The expansion of public insur-
ance and the decoupling of insurance with employment raise important implications for the
incidence of health behaviors such as smoking.

Additionally, this paper contributes to the discussion in public policy regarding the inci-
dence of smoking. Scholars have often disagreed about the social costs of smoking (Manning
et al., 1989; Chaloupka and Warner, 2000), as well as to what degree smokers impose negative
externalities on the society. The results presented in this paper suggest that smokers do pay for
at least some portion of their healthcare costs through reduced earnings. This finding is relevant
because as of 2015 approximately 17% of Americans continue to smoke (CDC, 2015), and dis-
cussions on tobacco control policy remain prominent in the public sphere both in the US and
internationally. The relationship between earnings and smoking might be more pertinent in the

international context given the comparatively high rates of smoking in the developing world.

2 Conceptual framework

Following the framework on ESHI from Currie and Madrian (1999) and Gruber (2000), firms
compensate workers based on their marginal product. Workers can then choose compensa-
tion offers where they trade off monetary compensation in exchange for fringe benefits such
as health insurance. As shown in Equation 1, the total earnings denoted by E are based on the
marginal product for individual worker i and contain monetary compensation denoted by W
and nonmonetary compensation denoted by C. Health insurance forms a significant portion of
the nonmonetary component. Because of various transaction costs and legislative restrictions

on differential pricing of insurance, firms do not individually price health insurance,” and it

2 There is some variation in pricing based on smoking status and through differences in health plan choices.
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is offered at the firm level. Therefore, firms are unable to completely adjust compensation for

fringe benefits, but they can still adjust total compensation by reducing monetary earnings.
E,=MPL, =W,-C, ¢))

The economic framework presented in equation 1 provides a pathway denoting how
addiction and healthcare costs can serve as mechanisms that explain the earning differences
between smokers and nonsmokers. If addiction results in productivity decline, and healthcare
costs are fixed, then a reduction in monetary earnings will occur to reflect diminished worker
productivity. Even though firms may not directly observe individual smoking habits, they can
observe other attributes of addiction such as smoking breaks, sick days, and nicotine with-
drawal. Nicotine withdrawal occurs immediately upon cessation of smoking, which influences
the physiological state of smokers. In addition to declines in productivity at work, smokers also
miss more days of work (Lundborg, 2007; Halpern et al., 2007), which is observable to firms.
The next pathway involves usage of health benefits. If healthcare costs differ between smokers
and non-smokers for the same level of productivity, while health plans remain fixed at the
firm level, then the differential healthcare costs can also be reflected in the reduced earnings
of smokers.

Table 1 contains disaggregated estimates from Berman et al. (2014) on various addiction
and health insurance costs of smoker. Table 1 provides bounds for the various economic costs
of smoking. Addiction-related productivity declines include smoking breaks, missed days of
work, and nicotine withdrawal. The health insurance component includes the disproportion-
ate cost of providing health benefits for smokers. The bounds for health insurance and addic-
tion-related costs overlap in terms of whether healthcare costs versus productivity have larger
impacts.’ The notable exception in Table 1 concerns pension costs, as smokers tend to have
lower life expectancies than nonsmokers and thereby require pension payments for a shorter
duration. Nevertheless, the pension savings from smoking are trivial with respect to health
costs and addiction-related productivity declines.

Empirical evaluations to examine addiction versus health costs have been limited. A nota-
ble study by Cowan and Schwab (2011) extends the theory of compensating differentials to
health behavior such as smoking and examines how the provision of ESHI influences earnings.

They use pooled person-year data from the National Longitudinal Survey of Youth 1979 to use

Tablel Theannual costs of a smoker (in 2010 dollars)

Best estimate High range Low range
Excess absenteeism $517 $576 $179
Presenteeism 462 1,848 462
Smoking breaks 3,077 4,103 1,641
Excess healthcare costs 2,056 3,598 899
Pension benefits —296 0 —296
Total costs 5,816 10,125 2,885

Source: Berman et al. (2014).

Notes: The table shows the differences in costs of employing a smoking employee versus a
nonsmoking employee. “Presenteeism” refers to the costs arising from nicotine withdrawal.

3 The estimates in Table 1 should be interpreted with caution because they include some studies that do not fully address
the issue of selection into smoking.
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a DiD research design that exploits variation from within-smokers who switch between ESHI
and non-ESHI employment. Their approach addresses concerns of unobserved skill differences
since they exploit variation in ESHI, which tends to be offered at the firm level. Their research
design only generates credibly estimates for smokers’ health insurance costs and not the total
costs of smoking on earnings. Consistent with the theory of compensating differentials, they

find that smokers with ESHI employment tend to earn less.

3 The National Survey of Midlife Development

This study uses data from the National Survey of Midlife Development or MIDUS (Brim et al.,
2011; Ryff et al., 2012; Ryff et al., 2013-2014). Data collection for MIDUS occurred in 1996,
2006, and 2014. MIDUS contains a nationally representative sample of Americans, a subsample
of twins and singleton siblings, and a large oversample of urban underrepresented individu-
als. The MIDUS sampling for twins and siblings involves a “snowballing” component. During
selection for the representative sample, interviewers inquired whether the respondent had a
twin or a sibling, and then sought to contact this twin or sibling for inclusion in the family
subsample. MIDUS surveyed all individuals from both the family and representative samples
on questions about their health, employment, retrospective family background, human capi-
tal, and labor market participation. This allowed for the family sample to be compared to the
nationally representative sample.

To construct my data, I transform the annual earning data, which are arranged on a cate-
gorical scale, to a continuous measure of earnings by using the midpoint values of the respec-
tive category.* For the lowest category of earnings, I use 1/3 the lowest value of earnings, and for
the highest category of earnings, I use 3/2 the maximum value of earnings.® I then use the con-
sumer price index from the Bureau of Economic Analysis to deflate earnings to constant 2006
dollars. I define individuals as having ESHI if they responded that their insurance is provided
through their employer. I use responses on past smoking history status to construct variables
for former smokers and response on current smoking status to identify current smokers. For
education, I use indicator variables for high school completion, college attendance, and college
completion. Lastly, I use labor market participation during the survey years to construct my
labor supply outcomes.

Table 2 contains the descriptive statistics for the national, twin, singleton sibling, and
the full sample. The average age of study participants is approximately 48 years, and one-
fifth of the sample currently smokes, with nearly half of the sample having smoked at one
point in their lives. Notable earning differences are evident for the sibling sample, which earns
more than the full sample, which are also statistically significant at the 1% significance level.
Besides earnings, the sibling and twin sample appear similar to the full sample on most char-
acteristics. This outcome is consistent with MIDUS’ random sampling approach in the search
for twins and siblings. Nevertheless, to assess the representative nature of the family sample,

I test for the similarity between the family sample and the representative sample in Table 3

4 Astrength of MIDUS is that the annual earnings categories are spaced unevenly with more categories for lower income
levels, thereby improving precision. There are 34 bins for income categories, with bins at the lower points of the income
distribution spaced in increments of $1,000, with the highest increment bins separated by $5,000.

5  Alternative approaches to top coding and bottom coding of earnings do not influence the results in a meaningful way.
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Table2 Descriptive statistics for The National Survey of Midlife Development

Random Sibling Twin All
Age 45.58 (10.53) 47.33 (9.60) 4523 (10.01)  45.67 (10.30)
Female 0.50 (0.50) 0.52 (0.50) 0.53 (0.50) 0.51 (0.50)
Employer insurance 0.58 (0.49) 0.57 (0.50) 0.582 (0.49) 0.583 (0.49)
(ESHI)
Schooling 14.244 (2.48) 14.717 (2.37) 14.1(2.40)  14.351 (2.46)
High school 0.94 (0.23) 0.97 (0.16) 0.94 (0.24) 0.95(0.22)
Some college 0.67 (0.47) 0.76 (0.43) 0.65 (0.48) 0.69 (0.46)
College graduate 0.41 (0.49) 0.48 (0.50) 0.39(0.49) 0.43 (0.50)
Non-white 0.13(0.33) 0.05 (0.22) 0.07 (0.26) 0.10 (0.30)
Earnings 51,830 (43,073) 59,041 (46,269) 52,508 (42,374) 54,510 (44,322)
Log earnings 10.44 (1.08) 10.58 (1.11) 10.47 (1.08) 10.50 (1.08)
Smoke 0.22 (0.41) 0.19 (0.39) 0.21 (0.41) 0.21 (0.41)
Ever smoke 0.52 (0.50) 0.45 (0.50) 0.46 (0.50) 0.49 (0.50)
n 5,615 5,681 4,078 11,306

Source: National Survey of Midlife Development (1996, 2006, and 2014).

Notes: Standard deviations are under the mean values of the variables. Sample size
represents person-year observations.

Abbreviation: ESHI, employer-supplied health insurance.

Table 3 Testing for sample selection: singletons vs. twins

Question Singletons Twins Difference P-value
Mother’s education
Has less than high school 0.360 0.343 -0.017 0.29
Graduated high school 0.402 0.403 0.009 0.59
Attended some college 0.129 0.130 0.009 0.45
College graduate 0.108 0.108 0.0002 0.98
Schooling (years) 11.20 11.44 0.242** 0.03
Father’s education
Has less than high school 0.409 0.408 0.007 0.68
Graduated high school 0.325 0.293 —0.044** 0.04
Attended some college 0.089 0.100 —-0.010 0.28
College graduate 0.177 0.191 0.014 0.33
Schooling (years) 11.04 11.11 —0.076 0.60
n 5,615 4,078

Source: National Survey of Midlife Development (1996, 2006, and 2014).

Notes: Sample size is in person-years. P-values are from Two sample t-test for equality
of mean values between singletons and twins. Statistical significance is denoted by the
following: **P < 0.05.

by comparing family background variables. The twin sample is statistically similar to the
representative sample on all variables except for father’s high school completion.

Next, I examine smoking history. Figure 1 shows the distribution of ages at smoking ini-
tiation. Most individuals begin smoking in their teen years with a small portion of individuals

initiating as preteens and a small portion initiating in early adulthood. The age of initiation is
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important because it shows that individuals start smoking when they are young, possibly sug-

gesting that within-family estimates can be useful since there are more commonalities with-

in-families when twins and siblings are young.
In Figure 2, I show the distribution of log earnings between smokers and nonsmokers.

Figure 2 reveals that smokers tend to earn less than nonsmokers. I test this difference using
a Kolmogorov-Smirnov test for equality of distributions and find that the distributional dif-
ferences are statistically significant at the 1% significance level. To evaluate whether demo-

graphic characteristics could possibly influence this difference, I compare whether smokers

Figurel When do smokersinitiate?
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and nonsmokers are different on demographic and ability variables in Table 4. Notable and
statistically significant differences are detected for age and gender, as smokers tend to be
younger than nonsmokers and are more likely to be male. Besides the demographic differ-
ences, smokers show a 1-year difference in completed schooling and tend to be thinner than

non-smokers as measured by the body mass index (BMI).

4 Estimation strategy
4.1 The full sample

Equation 2 provides a detailed framework for the econometric relationship between smoking
and earnings. Ideally, the outcome variable log earnings (in real 2006 dollars) denoted by E for
individual i at time ¢ is regressed upon smoking status denoted by S and demographic charac-
teristics X, which includes age, race, and gender, along with characteristics such as ability, tastes,
and preferences denoted by Z. Both demographic and nondemographic characteristics influ-
ence earnings and the decision to smoke. Attempting to control for these attributes, especially
for tastes and preferences, is often challenging. Consequently, estimating the effect of smoking
on earnings poses empirical challenges: if smoking is correlated with unobserved attributes
such as productivity that positively affect earnings, then the failure to account for these omitted
variables biases the smoking coefficient in typical cross-section models. The direction of the
bias is unclear and depends on which unobserved mechanisms have bigger impacts. For exam-
ple, the omission of ability from the regression estimation would produce a downward bias
because it is positively correlated with earnings and negatively correlated with smoking. The
omission of other attributes such as tastes and preferences that could be positively correlated

with smoking and earnings would produce an upward bias on the effect of smoking.

Table4 Aresmokers different than nonsmokers?

Non-smoker Smoker
Difference P-value
Mean STD Mean STD

Age 48.11 12.10 45.24 10.91 2.87 <0.01***
Female 0.50 0.50 0.51 0.50 0.01 0.72
Employer insurance 0.57 0.50 0.53 0.50 0.04 <0.01***
Schooling 14.60 2.46 13.19 2.24 141 <0.01***
High school 0.96 0.20 0.89 0.32 0.07 <0.01***
Some college 0.72 0.45 0.52 0.50 0.20 <0.01***
College graduate 0.48 0.50 0.21 0.41 0.27 <0.01***
Non-white 0.10 0.30 0.10 0.31 0.00 0.98
Earnings 55,221 45,972 41,744 35,082 13,477  <0.01***
Log earnings 10.47 1.14 10.24 1.05 0.23 <0.01***
Body mass index 30.38 16.54 28.99 16.65 1.39 0.01**
n 8,998 2,308

Source: National Survey of Midlife Development (1996, 2006, and 2014).

Notes: The columns containing STDs are next to the mean values. P-values are from Two
sample t-test for equality of means between smokers and nonsmokers. Statistical signifi-
cance is denoted by the following: **P < 0.05 and ***P < 0.01.

Abbreviation: STD, standard deviation.
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E, =a+7,+fS, +yX, +nZ, +¢, @

To overcome the empirical challenges, I begin with Equation 3 as the baseline specifica-
tion. First, I pool data across all three waves of the survey and I regress earnings on smoking
status and demographic characteristics. The key parameter of interest b is a binary indicator for
whether the respondent smokes. Essentially, this regression compares the earnings of smokers
to nonsmokers conditional on covariates. Alternatively, I reestimate the model given in equa-
tion 3 for former smokers. By using former-smokers, I compare the earnings of former-smok-
ers to never-smokers. In all specifications, I include survey year fixed effects and a vector of X
that includes covariates for age, age squared, gender, and whether the respondent is non-white.
In additional specifications, I control for differences in education.®

The use of log earnings parametrizes the coefficient on smoking or the smoking penalty as
a percent of earnings. For all regressions involving log earnings as a dependent variable with a
binary variable as a regressor, I use the approach of Kennedy (1981) to approximate the effects
of smoking on earnings. I cluster standard errors at the individual level to reflect repeated per-

son-level observations and to address heteroscedasticity and autocorrelation over time.
E,=a+71,+BS,+7X, +¢&, 3

Nevertheless, equation 3 does not include characteristics such as ability, preferences, and
tastes, which might jointly determine smoking status and earnings. To address concerns of
omitted variables, I exploit the longitudinal component of MIDUS to estimate an individ-
ual fixed-effects model given by equation 4. Estimates from the fixed-effects model compare
within-person changes of smoking status and its effect on earnings. They address the concern
of unobserved time-invariant characteristics that are omitted such as tastes and preferences.
While the estimates from the individual fixed-effects model are causal under an assumption of
time-invariant unobservables, they capture the local average treatment effect (LATE) of quit-
ters because during this study’s time period, most of the smokers are quitting and not initiating
as would be expected based on smoking patterns in midlife. The LATE for quitters is an inter-
esting parameter but does not capture the effects of smoking on earnings. Since a non-negligi-
ble number of individuals report transitioning from nonsmokers to smokers, I reestimate the
fixed-effects model comparing former-smokers to never-smokers as an alternative measure of

the effect of quitting smoking on earnings.

E,=0;+7, +ﬂsit +YX; +E; 4)

4.2 Sibling by year identification strategy

The sibling and twin analysis is motivated by the fact that individuals within families share
similar genetics, environments, and possibly the same factors that influence smoking deci-
sions. Because individuals raised in the same family share similar environments and genetics
that influence the production of hard skills like ability and soft skills such as personality, the use
of within-family models would mitigate the bias from traditional comparisons of smokers to

nonsmokers. This research design is useful especially since a recent work on smoking initiation

6 In Table Al I show that smoking does not influence labor supply, thereby excluding one possible pathway through
which smoking might influence labor market outcomes.
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suggests that peers might play a role (Nikaj, 2017). More specifically, the use of within-family
variation addresses these concerns of omitted variable bias because unobservable attributes are
smaller within families than outside of families. Thus, a family fixed-effects analysis can pro-
duce improved estimates over traditional cross-section Ordinary Least Squares (OLS) (Card,
2001). The correlates on smoking behavior, namely, why people initiate and continue to smoke,
are factors ranging from family attitudes, peer pressure, sociodemographic factors, personal-
ity/social skills, stress, and availability (Center for Substance Abuse, 1997). Since many of these
causal factors that influence smoking decisions occur when individuals are young, this pro-
vides auxiliary evidence that within-family estimates might ameliorate the bias in estimating
the effect of smoking on earnings.

MIDUS contains both monozygotic and dizygotic twins, and I pool both types to form
the twin sample.” Monozygotic (identical) twins share the same genetic makeup, whereas
dizygotic (fraternal) twins share half the genetic makeup and are siblings born at the same
time. Analysis of the twin siblings imposes stricter restrictions compared to singleton siblings
because twins are more similar than non-twin siblings, as they are raised together and share
a greater proportion of genetic material. More specifically, the twin design reduces threats of
potential confounders from the sibling design, such as differences in spacing, birth order, and
family size, in addition to differential parental endowments because twins have parents who
are of the same age.

In the family design, I identify the effect of smoking by comparing the earnings of a sibling
(or twin) smoker to the earnings of a sibling (or twin) nonsmoker. Equation 5 shows the base-
line specification for the within-family models. Again, I examine how earnings for individuals
are influenced by smoking status. Here, I replace the individual fixed effects with twin-by-year,
sibling-by-year, or family fixed effects where f indexes family. In subsequent specifications, I
introduce controls for schooling to examine how schooling differences influence the effect of

smoking on earnings.
Ej =0 +7,+BS; +yXy +&5 (5)

Using variation from within-family models has some of its own limitations. The first
concern arises with the disparate smoking decisions within twin and sibling sets. If the same
unobserved factors that induce people to smoke in the traditional cross-sectional models also
cause disparate smoking decisions within siblings and twins, then estimates from within-fam-
ily models suffer from the same bias. If unobservable attributes are smaller within families, a
plausible assumption because individuals within families tend to be more similar than indi-
viduals between families, then the within-family estimates are still useful because they provide
a bound on the upward bias compared to the traditional estimates on the effect of smoking
on earnings. Second, the within-family estimates are likely to exacerbate measurement error
in response on smoking status, and this would introduce a downward bias and attenuate the
coefficient on the smoking if the measurement error is classical.

Other concern deals with generalizability of results from twin-based analyses to the gen-

eral population. Since twinning rates vary with maternal age and different ethnicities, this

7  Table A2 contains the effect of smoking on earnings by zygosity. The estimates for the effects of smoking are statistically
similar across zygosity, which implies that the genetic influences on the effect of smoking on earnings are small. In fact,
the results are very much in line with Lang and Nystedt (2018), who used Swedish twins in finding negative effects of
smoking on earnings, but the estimates for smoking are statistically similar across zygosity.
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might mean that twins might be different from singletons. I conservatively interpret estimates
from the twin by year fixed-effects models as LATEs, because twin-sibling dynamics might
differ from singleton siblings. For estimates from the sibling by year fixed-effects models, I
interpret them as a form of average treatment effect (ATE) that could be generalizable to the
representative population.

Finally, to attempt to evaluate the mechanisms that influence the earning differences
between smokers and nonsmokers, I estimate DiD models given by equation 6 for the family

samples of twins and siblings.
E; =o;+7,+0(S*ESHI),; + BS,, +0ESHIL, +yX, +&, 6)

I use variation from differences in smoking uptake in sibling sets (first difference) and the
difference between ESHI in sibling sets (second difference). The interaction between smoking
status with ESHI is the coefficient of interest denoted by 0, which is the DiD estimator. Esti-
mates from equation 6 provide bounds on how much health insurance-related costs adversely

affect earnings for smokers.

5 Results
5.1 Main results

Table 5 contains results for the full sample. In the first column of Panel A, I compare the
earnings of smokers to nonsmokers without including schooling, which serves as a proxy for
ability. I find that smoking produces an economically and statistically significant reduction in
earnings of approximately 24%. Controlling for schooling in the second column reduces the
earning penalty to less than 17%, a relative decline of 25%. The large sensitivity of the smok-
ing coeflicient to the schooling control suggests that smokers and nonsmokers differ on latent

ability. Next, in the third and fourth columns, I introduce individual fixed effects to examine

Table5 The earningsimpact of smoking for the full sample

Full sample
1 2 3 4

Panel A

Smoker

n=8,975 —0.235***(0.022) —0.168*** (0.024) 0.063 (0.089) 0.064 (0.090)
Panel B

Former-smoker

n=1,280 —0.061**(0.025)  —0.019 (0.025) —0.041 (0.072) —0.041 (0.072)
Covariates

Education Yes No Yes Yes

Individual No Yes No Yes

Source: National Survey of Midlife Development (1996, 2006, and 2014).

Notes: Huber-White clustered standard errors are in the parentheses. All individuals are
between 25 and 66 years, and all regressions include controls for race, gender, and age.
Panel A compares the earnings of smokers to nonsmokers, whereas Panel B compares
ever smokers or former-smokers to never-smokers. Statistical significance denoted by the
following: **P<0.05 and ***P < 0.01.
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the influence of (changing) smoking status on earnings. Both columns reveal a statistically
indistinguishable effect. The individual fixed-effects models capture the effect of quitting on
earnings because smoking initiation rates in adulthood are very low but quit rates are high.
Since a small portion of the sample switches smoking status between three waves and with the
reductions in sample size for later waves, it is likely that the study is underpowered to detect the
within-person effects of changing smoking status on earnings.

In Panel B of Table 5, for former-smokers, I compare the earnings of former-smokers
to never-smokers. In the first column, without controls for schooling, former-smokers earn
approximately 6% less than individuals who are never-smokers. Upon inclusion of controls for
schooling, the earnings of former-smokers are statistically indistinguishable from the earnings
of never-smokers. This indicates that the reduction in earnings reflects differential selection as
opposed to the long-lasting effects of smoking. The pattern is consistent with the general results
on the earnings of former-smokers. Approximately 2% of the sample returns to smoking regu-
larly between the survey waves. The comparison between former-smokers and never-smokers
measures the effect of quitting on earnings. Similar to the earlier specification that uses indi-
vidual fixed effects, the findings show no effect of being a former-smoker on earnings. Next,
in the analyses comparing former-smokers to non-smokers, I again find statistically indistin-
guishable effects in the individual fixed-effects specifications.

In Table 6, I present within-family estimates from siblings and twins. Beginning with
column 1 of Panel A in the pooled OLS sibling sample, I find large reductions in earnings of
sibling smokers of approximately 25%. By including controls for schooling, the reduction in
earnings declines to approximately 25%. In the third and fourth columns, I present estimates
from more rigorous models that include sibling by year fixed effects that likely minimize omit-
ted variable biases compared to the pooled regressions. In the third column, I find smokers

earn approximately 16% less, and controlling for schooling in the fourth column does not affect

Table 6 The earnings impact of smoking for the family sample

Family level

1 2 3 4

Panel A: Siblings (n = 4,080)

Smoker —0.270***(0.033) —0.199*** (0.037) —0.165** (0.072) —0.156** (0.073)

Former-smoker —0.023 (0.038) —0.024 (0.038) —-0.079(0.101) —0.062 (0.103)
Panel B: Twins (n =2,774)

Smoker —0.287*** (0.038) —0.182*** (0.045) —0.195** (0.078) —0.163** (0.080)

Former-smoker 0.014 (0.046) 0.045(0.047) —0.120(0.107) —0.112(0.112)
Covariates

Education No Yes No Yes

Family No No Yes Yes

Source: National Survey of Midlife Development (1996, 2006, and 2014).

Notes: Huber-White clustered standard errors are given in parentheses. All individuals are
between 25 and 66 years, and all regressions include controls for race, gender, and age. The
first two columns compare across siblings/twins, and the last two columns measure smok-
ing within siblings/twin sets. The coefficient on smoke compares the earnings of smok-
ers to nonsmokers, whereas the coefficient on former-smoker compares ever-smokers
or former-smokers to never-smokers. Statistical significance is denoted by the following:
**P<0.05and ***P< 0.01.
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the size or significance of the coefficient, and I continue to find a 16% reduction. The robustness
of the effect size after controlling for schooling suggests that family fixed effects appear to ade-
quately handle differences in the coefficient arising from measures of observed ability. Overall,
in all sibling models with and without family fixed effects, the effect of smoking remains large,
statistically significant, and negative, and former-smokers do not have statistical differences in
their earnings from never-smokers.

In Panel B of Table 6, I examine the effect of smoking on earnings both across and within
twin pairs. Beginning with the first column that contains pooled OLS for twins, I observe that
the effect of smoking has a large negative effect on earnings of approximately 28%, which is
significant at the conventional levels of significance. The second column includes controls for
schooling, which reduces the coefficients in a substantial and significant manner to approxi-
mately 18%. The results mirror the findings seen in the representative cross-section and sibling
samples. Estimates from models with twin by year fixed effects in the third column show a
significant reduction in earnings of 19%. Like estimates from the sibling models controlling for
schooling does not influence the magnitude of the earnings reduction as it remains consistent
around 18%. Lastly, in both sibling and twin samples, being a former-smoker has a statistically
indistinguishable effect on earnings.

On the whole, estimates from the family fixed-effects models are consistent with those
from Ling and Nystedt (2018) who use a twin by year fixed-effects research design with data
from the Swedish Twin Registry to examine the effect of smoking on earnings. They estimated
separate regressions by zygosity and found the effect of smoking on earnings to be negative,
but the confidence intervals for the effect of smoking tended to be large. Thus, while they found
the effect of smoking to be negative, zygosity did not appear to play a big role as estimates from
separate regressions were statistically similar to each other.

The main takeaway from Tables 5 and 6 is that the earnings reduction for smokers is
large and statistically significant. It theoretically consists of a multitude of factors (Table 1)
with healthcare costs and addiction-related productivity declines being the most important.
Another contributing explanation for the large earning disparity is that respondents in MIDUS
are middle aged and therefore have reached the flat portion of the earnings profile. The sec-
ondary takeaway pertains to the econometric analysis. The family fixed-effects models appear
robust to the controls for schooling and might be successful in controlling for other unob-
served variables such as character skills, tastes, and preferences. Consistent with the research
design, the point estimates on the effect of smoking on earnings from the family models are
smaller vis-a-vis the full sample. Yet, the confidence intervals overlap between the point esti-
mates from the family sample and the full sample, which suggests that genetic factors do not
have a large influence on the earnings reduction of smokers. Furthermore, the earning penalty

appears to dissipate for former-smokers both in the full and family samples.

5.2 The role of ESHI on the earnings of smokers

Separating the effect of higher health expenses from productivity changes poses a challenge
beyond addressing the selection problem without imposing additional assumptions. To dif-
ferentiate between the addiction-related productivity declines versus higher health insurance

explanations, I separate the sample into individuals with ESHI versus individuals without
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ESHI. Estimates from these models separate the effect of ESHI on earnings because both
smokers with ESHI and without ESHI should be afflicted with addiction-related productivity
declines under an assumption that firms do not discriminate in hiring smokers. Support for
plausibility of the anti-discrimination assumption is based on the fact that insurance is offered
at the firm level and not at the individual worker level (similar to Cowan and Schwab, 2011).
Furthermore, conditional comparisons between former-smokers and never-smokers provide
auxiliary evidence that current health costs and productivity, rather than past health costs or
addiction, influence the differences in earnings. Since twins and siblings abate selection con-
cerns, the estimates from Table 7, which compares across ESHI status, crudely function as a
test of whether worker productivity or health costs cause the reduction in earnings of smokers.

For individuals without ESHI, I present findings in Panel A of Table 7. In all specifications
for the full sample and within siblings and twins, I find the effect of smoking on earnings to be
largely negative but imprecisely estimated. It is still possible that smoking affects productivity
through smoking breaks and time off in terms of illness and sick days but that these nega-
tive effects of smoking are small and are undetected at the conventional levels of significance.
Two notable difficulties arise in this analysis for heterogeneity. First, this regression analysis by
ESHI suffers from the problem of limited sample size. Second, the conceptualization of earn-

ings with bins introduces measurement error for the dependent variable and thereby inflates

Table 7 The earnings impact of smoking by ESHI

ESHI
1 2 3 4 5 6
Full sample Siblings Twins
Panel A: no ESHI
Smoker —0.214*** —0.159*** -0.218 -0.202 -0.148 -0.141
(0.037) (0.039) (0.307) (0.311) (0.326) (0.327)
n 4,029 4,029 1,851 1,851 1,253 1,253
Panel B: ESHI
Smoker -0.211*** —0.154***  —-0.282*** -0.269*** —-0.209** -0.202**
(0.021) (0.023) (0.104) (0.102) (0.098) (0.098)
n 4,946 4,946 2,229 2,229 1,521 1,521
Panel C: DiD
Smoker*ESHI —-0.094 —-0.086 -0.092 -0.084
(0.163) (0.147) (0.157)  (0.0158)
n 4,368 4,368 3,062 3,062
Covariates
Education No Yes No Yes No Yes
Family Fixed No No Yes Yes Yes Yes
Effects (FE)

Source: National Survey of Midlife Development (1996, 2006, and 2014).

Notes: Huber-White clustered standard errors are given in parentheses. All individuals are
between 25 and 66 years, and all regressions include controls for race, gender, and age.
Panel A contains the effect of smoking for individuals without ESHI. Panel B contains the
effect of smoking for individuals with ESHI. Panel C contains the DiD estimates of individu-
als with ESHI who also smoke. Statistical significance is denoted by the following: **P < 0.05
and ***P < 0.01.

Abbreviations: ESHI, employer-supplied health insurance; FE, fixed effects; DiD, difference-in-
differences.
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standard errors. Both factors contribute to the large confidence intervals for the estimates on
the effect of smoking on earnings.

On the other hand, estimates for smoking on individuals who do have ESHI are large in
magnitude and statistically distinguishable from zero. In column 1 of Panel B, without controls
for schooling, ESHI smokers earn nearly 21% less than nonsmokers. Controlling for schooling
in the second column reduces this gap to approximately 15% of earnings. In columns 3 and 4
for siblings, the effects are large and negative at approximately 27%. For twins in columns 5 and
6, the effects are 20% respectively. The reduction in earnings for smokers with ESHI are large
and statistically different from zero, despite the modest sample size.

In Panel C of Table 7, I set up a DiD research design to rigorously estimate the health
insurance/expense effects of smoking on earnings. An advantage of the formal DiD research
design is that it does increase sample size because now twin and sibling sets where at least one
member has ESHI are also included. In both the twin and the sibling samples across columns
3 to 6, the coeflicient on the DiD estimator is negative but statistically significant. While the
negative point estimates are modest in size ranging between 7% and 10% due to the large con-
fidence intervals, inference is limited.

To provide a pattern of suggestive evidence in support of the hypothesis that healthcare
contributes to the earning penalty for smokers, I examine for heterogeneity with correlates of
disproportionate healthcare usage. I separate the sample by age and gender to examine for het-
erogeneity on the dimension of healthcare costs. Although a priori it is unknown whether the
effect of nicotine addiction varies with age and gender, it is a stylized fact that health insurance
costs do vary considerably on the dimensions of age and gender. I divide the sample into two

groups based on the midpoint age of 45 years, and I present these results in Table 8.

Table 8 Doesthe earningsimpact vary by age?

Age
1 2 3 4 5 6
Full sample Siblings Twins
Panel A: old
Smoker —0.273***  —0.218*** —0.283*** —0.275*** —0.253*** —0.320***
(0.031) (0.033) (0.095) (0.095) (0.097) (0.095)
n 5,255 5,255 2,431 2,431 1,582 1,582
Panel B: young
Smoker -0.192*** —-0.119*** —0.051 —0.049 —0.096 —0.090
(0.030) (0.031) (0.117) (0.117) (0.109) (0.110)
n 3,729 3,729 1649 1,649 1,192 1,192
Covariates
Education No Yes No Yes No Yes
Family Fixed No No Yes Yes Yes Yes
Effects (FE)

Source: National Survey of Midlife Development (1996, 2006, and 2014).

Notes: Huber-White clustered standard errors are given in parentheses. All individuals
are between 25 and 66 years, and all regressions include controls for race, gender, and
age. Panel A contains individuals who are between 25 and 45 years, and Panel B contains
individuals who are between 46 and 66 years. Statistical significance is denoted by the
following: ***P < 0.01.
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Evaluating the smokers’ wage penalty by differences in age shows that in the full sample,
older smokers are likely to have higher penalties than younger smokers. In fact, as column 2 of
Panels A and B shows, the earning penalty for older smokers is approximately twice as large as
the penalty for younger smokers. For the sibling sample, the earning penalty is approximately
28% in the older sample and nonexistent in the younger sample. The most perplexing findings
are for older twins as a similar pattern of results is seen with the twin sample. Unlike young twin
estimates, which are smaller than estimates from the full sample, the estimates for the earning
penalty are substantially larger in the twin sibling subsample. It is possible that twin-specific idio-
syncratic factors contribute to these estimates or that the subsample lacks variation in the data.

Since healthcare costs also vary by gender, I reestimate the models by gender in Table 9.
Panel A shows the outcomes for men. The full sample with controls for schooling in column 2
produces effect sizes that are similar to the impacts of smoking estimated from sibling by year
fixed-effects models both with and without controls for schooling at approximately 20%. Twin
by year fixed-effects estimates are also similar in magnitude at 17%, respectively, but they are
imprecisely estimated. Panel B presents the outcomes for women and the pattern of estimates
follows that of men. All columns of estimates for the effect of smoking on earnings are negative
for women smokers in the full sample and the family sample. Estimates for the earning penalty
range from 14% to 20%, and again, the within-family models produce larger estimates than the
full sample. Although the earning penalty appears smaller for female smokers than male smok-
ers, the effects are statistically similar due to large standard errors. A similar pattern follows in

the within-family and the cross-sectional analyses.

6 Conclusion

Using data from multiple survey years of the National Survey of Midlife Development, this

paper investigates the earning differences between smokers and nonsmokers. The main esti-

Table9 Doesthe earningsimpactvary by gender?

Gender
1 2 3 4 5 6
Full sample Siblings Twins
Panel A: men
Smoker —0.257*** —0.203***  —0.222** —0.198* -0.176  -0.162
(0.026) (0.031) (0.113) (0.114)  (0.124) (0.123)
n 4,417 4,417 1,894 1,894 1,282 1,282
Panel B: women
Smoker —0.219*** —0.140*** —-0.200 —-0.204 —-0.201 -0.204
(0.036) (0.036) (0.131) (0.130) (0.141) (0.142)
n 4,558 4,558 2,186 2,186 1,492 1,492
Covariates
Education No Yes No Yes No Yes
Family Fixed No No Yes Yes Yes Yes
Effects (FE)

Source: National Survey of Midlife Development (1996, 2006, and 2014).
Notes: Huber-White clustered standard errors are given in parentheses. All individuals are

between 25 and 66 years, and all regressions include controls for race and age. Statistical
significance is denoted by following: *P<0.10, **P < 0.05, and ***P < 0.01.
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mates from within-family models show that smokers earn approximately 15% to 16% less than
nonsmokers. The estimates from the family models are statistically similar to traditional mod-
els using cross-section data that show a reduction in earnings of smokers by 16% to 18%. Impor-
tantly, the earning difference is statistically nonexistent in jobs without ESHI, but instead the
difference seems to be driven by smokers who are in jobs with ESHI. Analysis by demographic
subgroups reveals that the earning differences for smokers vary with age and gender in a man-
ner consistent with variation in health costs across age and gender.® The earning differences
dissipate for former-smokers.

The ESHI-driven reductions in earnings for smokers have important policy implications
for both models of workers’ compensation and health insurance. If transactions costs are low,
then firms can adjust the price of health insurance to reflect the differential costs of providing
health benefits to smokers. In practice, transactions costs are high, and the practical provi-
sion of healthcare benefits preclude individualizing health insurance based on each person’s
healthcare costs. Despite the inability of firms to charge distinct prices to insure smokers, they
can and do differentiate how they compensate employees. Since addiction-related productivity
declines do not appear to significantly influence earnings of smokers and non-monetary ben-
efits besides health insurance are unlikely to be influenced by smoking, a plausible case exists
that the provision of health benefits causes a reduction in earnings for smokers. Such a finding
implies that firms adjust compensation on overall worker quality; thereby, firms adjust for fric-
tions from the insurance market on the labor market.

In contrast, standard economic models for insurance (Rothschild and Stiglitz, 1976) have
assumed a distinct market for health insurance without spillovers into the labor market. In
such markets for health insurance, firms are inflexible because of asymmetric information
or high transaction costs that prevent adjustable premiums for unhealthy workers such as
smokers. Under such a framework, insurance markets might function inefficiently and con-
verge to a pooling equilibrium in which healthier workers such as nonsmokers end up paying
too much and under insure while unhealthier workers such as smokers over insure and end
up paying too little. Another possibility is that the entire market might cease to exist if the
market results in adverse selection and healthier workers exit the market. The findings in this
paper show that smoking-related earning differences, a type of compensating differentials for
health investments, mitigate inefficiencies that arise from asymmetric information in health-
care markets.

Lastly, the findings of this paper indicate that the incidence of smoking does fall on smok-
ers to an extent, as smokers appear to pay for their behavior by earning less than nonsmokers.
The pass-through of the incidence remains an empirical question. A possibility remains that
the shifting of healthcare costs onto smokers through lower earnings is not entirely complete,

and the possibility of negative spillovers on nonsmokers might still exist.
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Appendix

Table A1 Does smoking or ever-smoking influence labor market participation?

Labor supply
1 2 3 4 5 6

Full sample Siblings Twins

Panel A: full time

Smoker —0.001 0.018 0.060 0.059 0.054 0.052
(0.011) (0.011)  (0.045)  (0.045)  (0.056)  (0.056)

Former-smoker ~ —0.011(0.010) —0.004  —0.033 -0.032  -0.035 —0.034
(0.010)  (0.073)  (0.074)  (0.087)  (0.088)

Panel B: part time

Smoker —0.021** -0.017*  —-0.008 —0.008 0.006 0.007
(0.007) (0.007) (0.031) (0.031) (0.038) (0.038)

Former-smoker —-0.004 —0.001 0.054 0.055 0.040 0.041
(0.007) (0.007) (0.056) (0.056) (0.056) (0.056)

Covariates

Education No Yes No Yes No Yes

Family Fixed No No Yes Yes Yes Yes

Effects (FE)

Source: National Survey of Midlife Development (1996, 2006, and 2014).

Notes: Huber-White clustered standard errors are given in parentheses. All individuals are
between 25 and 66 years, and all regressions include controls for race, gender, and age.
Statistical significance is denoted by the following: *P < 0.10 and **P < 0.05.

Abbreviations: FE, fixed effects.

Table A2 The effect of smoking on earnings by zygosity

Twin sample

1 2 3 4
Panel A: monozygotic
Smoker —0.322*** (0.066) —0.280*** (0.074) —0.213* (0.111) —0.213* (0.111)
Panel B: dizygotic -
same
Smoker —0.262*** (0.063) —0.178**(0.069) —0.198* (0.117) —0.199* (0.117)
Panel B: dizygotic -
different
Smoker —0.232***(0.070) —0.138** (0.079) -0.223(0.150) —0.193(0.152)
Education No Yes No Yes
Twin Fixed No No Yes Yes
Effects (FE)

Source: National Survey of Midlife Development (1996, 2006, and 2014).

Notes: Huber-White clustered standard errors are given in parentheses. All individuals are
between 25 and 66 years, and all regressions include controls for race, gender, and age.
Statistical significance is denoted by the following: *P < 0.10, **P < 0.05, and ***P < 0.01.
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Table A3 The effect of smoking on earnings by gender and schooling

College No college
Male Female Male Female
Fullsample —0.220***(0.041) —0.134***(0.045) —0.190***(0.048) —0.144(0.059)
Siblings —0.271*** (0.049) —0.239*** (0.047) —0.234***(0.050) —0.249***(0.048)
Twins —0.313*** —0.252*** —0.239*** —-0.115
0.083 0.070 0.082 0.103

Source: National Survey of Midlife Development (1996, 2006, and 2014).

Notes: Huber-White clustered standard errors are given in parentheses. All individuals are
between 25 and 66 years, and all regressions include controls for race and age. Statistical
significance is denoted by the following: ***P < 0.01.



