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Abstract

For more than a decade, biometric moderation models have been used to examine whether genetic and environmental

influences on individual differences might vary within the population. These quantitative Gene 3 Environment interaction

models have the potential to elucidate not only when genetic and environmental influences on a phenotype might differ, but

also why, as they provide an empirical test of several theoretical paradigms that serve as useful heuristics to explain etiology—

diathesis-stress, bioecological, differential susceptibility, and social control. In the current article, we review how these devel-

opmental theories align with different patterns of findings from statistical models of gene-environment interplay. We then

describe the extant empirical evidence, using work by our own research group and others, to lay out genetically informative

plausible accounts of how phenotypes related to social inequality—physical health and cognition—might relate to these theo-

retical models.

For decades, biometric modeling of genetically informative fam-
ily data was able to provide the relative magnitude of genetic
and environmental influences on variables related to social
inequality: constructs as diverse as mental health, physical
health, well-being, family functioning, and even income and
morbidity. We know that almost any psychologically important
variable related to social inequality that differs between people,
like mental health or well-being, has a significant, nonzero herit-
ability (i.e., proportion of variance in a phenotype that is due to
genetic differences between individuals; Turkheimer, 2000).
Interestingly, even putatively “environmental” variables, like
education, employment, and wealth, have genetic influences
(Kendler & Baker, 2007; Rowe, 1981). This explains why in
recent years researchers have begun to search for the molecular
genetic underpinnings of constructs like educational attainment
(Martin et al., 2011; Rietveld, Medland, et al., 2013), economic
and political preferences (Benjamin et al., 2012), and self-
employment (Van der Loos et al., 2013).

Potentially more interesting, however, than simply knowing
whether there are genetic influences on indicators of social
inequality would be to understand how the interplay between
genes and environment shapes individual differences in social
inequality over the life span. Biometric moderation models,

introduced more than a decade ago, are able to provide estimates
of genetic and environmental influences that are personalized to
(i.e., dependent on) an individual’s standing on a variable other
than the phenotype (i.e., observed trait or behavior) of interest.
Take, for example, findings from our recent work on health: If
we average across the population, we estimate the genetic influ-
ences on self-reported physical health at 16%; however, if we
look at physical health as a function of marital relationship qual-
ity, we see that genetic influences are much higher among those
with either very happy or very distressed relationships (South &
Krueger, 2013). In the current article, we review how these sta-
tistical models of gene-environment interplay align with existing
theoretical models of development to lay out genetically inform-
ative plausible accounts of how social inequality develops. We
then describe how the existing evidence, including but not lim-
ited to work by our own research group, lines up with those
accounts. We argue in this article that these quantitative models
provide a tool for testing long-standing theories about the devel-
opment of individual differences. We conclude our review by
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summarizing what these findings imply about determining risk
for indicators of social inequality based on a person’s relative
standing on important risk factors in the population, and we
posit ways in which future research can build on this work to
move toward investigating the interplay between measured
genes and environments in the development of social inequality.

BEHAVIOR GENETIC METHODS:

CLASSIC APPROACHES AND MODELS
FOR GENE 3 ENVIRONMENT

INTERPLAY

Behavior genetic approaches were vital in demonstrating that
almost every psychologically important individual difference
variable, particularly personality and mental health, was a func-
tion of both genes and environment (i.e., nature and nurture at
play). An unexpected and important further contribution of this
family of methods was to demonstrate that even putatively envi-
ronmental or sociocultural variables that are generally included
under the larger umbrella of “social inequality” had a heritable
component; in other words, the variance in things like income,
wealth, education, and well-being could be explained, at least in
part, by genetic differences within the population (Kendler &
Baker, 2007). In this section, we first describe the classic behav-
ior genetic approaches before moving on to newer models that
allow for examination of quantitative Gene 3 Environment
interaction (quantG3E).

Classic Approaches

Behavior genetic methods utilize genetically informative data
sets (e.g., twins, adopted children, and parents) to estimate
genetic and environmental variance in a phenotype. In essence,
these methods are able to estimate the contributions of nature
and nurture to variance in the population. The well-known and
frequently discussed heritability statistic is often used as evi-
dence of “genes” determining a variable; however, the true defi-
nition of this quantity requires some precision. Heritability, by
definition, is the proportion of total variance in a variable, in a
specific sample drawn from a larger population, that is due to
genetic variance in that sample. In other words, an individual
difference variable differs along a spectrum in the population,
from more to less, and heritability is an estimate of how much of
that variance is due to genetic differences between people.

Rough estimates of heritability can be calculated using the
difference in twin correlations between identical (monozygotic
[MZ]) and fraternal (dizygotic [DZ]) twins (i.e., h2 5 2*(rMZ –
rDZ); Falconer, 1965). It is also possible to decompose the total
phenotypic variance of a phenotype using structural equation
models. There are three sources of variance: additive genetic
influences, usually abbreviated “A”; influences siblings in the
same family share in common and that make them more similar,
abbreviated “C”; and the unique environment, influences that
siblings do not share and that make them different from other

family members, abbreviated “E”. Thus, ACE model is often
used to describe biometric modeling of twin data.

Findings from classic biometric modeling had important
implications for theoretical understandings of etiology; for
instance, knowing that a phenotype has a significant nonzero
heritability led to a large investment in the search for the molecu-
lar genetic underpinnings of social science constructs, including
subjective well-being (Rietveld, Cesarini, et al., 2013), self-
employment (Van der Loos et al., 2013), and educational attain-
ment (Rietveld, Medland, et al., 2013). The limitation of the
basic univariate ACE model is that it says nothing about (a)
what, specifically, those nonshared environmental influences
were (Turkheimer & Waldron, 2000), or (b) how genetic influ-
ences and environmental influences mediated relationships
between variables. One attempt to answer these questions was to
use extended ACE models that included multiple variables. The
advantage of these multivariate models is that in addition to esti-
mating genetic and environmental influences on each variable, it
is possible to estimate the genetic and environmental overlap
between two or more variables. For instance, the bivariate (Cho-
lesky) decomposition can determine how much of the pheno-
typic correlation between two variables (e.g., well-being and
education) is due to genetic influences shared in common
between the two variables (i.e., bivariate heritability). Another
way of looking at overlap is to estimate a genetic correlation.
Like a phenotypic correlation, a genetic correlation (and com-
mensurate estimates for shared and nonshared environmental
correlations) range from 21 to 11 and indicate how much the
genetic influences on one phenotype (e.g., well-being) overlap
with the genetic influences on another phenotype (e.g., educa-
tion). In this vein, Weiss, Bates, and Luciano (2008) examined
the relationships among subjective well-being and domains of
the Five-Factor Model/Big Five Model of personality using a
Cholesky decomposition. They concluded that all of the genetic
variance in subjective well-being was shared in common with
genetic influences on Neuroticism, Agreeableness, Extraversion,
Conscientiousness, and Openness.

These extended multivariate models did answer some ques-
tions. First, they were able to determine whether two variables
that are phenotypically correlated share the same underlying
genetic basis. For instance, finding that, among boys, intelli-
gence was etiologically related to antisocial behavior through
genetic overlap (Koenen, Caspi, Moffitt, Rijsdijk, & Taylor,
2006) suggests the same genes may affect both IQ and delin-
quent behavior. Second, these models also pointed toward possi-
ble sources of the nonshared environment, which are
anonymous latent constructs in biometric modeling. The fact
that the nonshared environmental influences on marital satisfac-
tion overlap with wives’ positive mental health implicates the
husband as that very source of nonshared environment (Spotts
et al., 2005). What this work could not inform, however, are the
ways in which genetic influences and environmental contexts
worked in tandem to produce a phenotypic outcome. For that,
new statistical models were needed.
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Quantitative Models for Gene 3 Environment
Interplay

The heritability statistic and commensurate estimates of environ-
mental influences (both between-family E influences and
within-family C influences) are limited in two important ways.
First, these estimates are presumed to be independent—that is,
obtaining the relative magnitude of genetic versus environmen-
tal influences on social inequality presumes that these two influ-
ences do not interact. These models say nothing about the
interplay between genes and environment. Second, these esti-
mates average across the entire (sample-specific) population.
Many people, particularly lay individuals, misunderstand the
concept of heritability, interpreting a 50% estimate to mean that
50% of their depressive tendency, for instance, is attributed to
genetics. In fact, this type of individual-level heritability is not
possible with quantitative modeling of twin data. The correct
interpretation of heritability, in that case, is to say that 50% of
the variation in depression, in a specific sample drawn from one
population, is due to genetic differences between individuals in
that sample. But, again, this heritability value tells us nothing
about how different environments may affect that 50% estimate.

For over a decade now, however, modeling of biometric
moderation in a structural modeling framework has made it pos-
sible to differentiate estimates of genetic and environmental
influences dependent on a person’s standing within the popula-
tion (Purcell, 2002; Rathouz, Van Hulle, Rodgers, Waldman, &
Lahey, 2008; Van der Sluis, Posthuma, & Dolan, 2012; Van
Hulle, Lahey, & Rathouz, 2013). Biometric moderation models
allow for different ACE estimates depending on a person’s
standing within the population on a “moderator” variable—
hence, the term moderation model. That is, instead of estimating
one heritability coefficient that averages across all differences
within a sample drawn from a population, biometric moderation
models allow heritability to differ within the population. This is
not a completely new concept; biometric sex limitation models,
for instance, provide for a statistical test of whether genetic and
environmental influences on a phenotype are the same for men
and women. While still not able to individualize to the etiology
of one specific person, we are now able to get closer and closer
to understanding how certain risk factors can change the etiol-
ogy of important outcomes for people within the population. To
use one illustrative example, would the heritability of health dif-
fer depending on a person’s socioeconomic status (SES)? The
short answer is yes—at low levels of income, genetic influences
on physical health are greater than at high levels of income
(Johnson & Krueger, 2005a).

A path model of the bivariate moderation model (Purcell,
2002) is shown in Figure 1. This model is an extension of a
bivariate decomposition in which the variance in two variables,
and the covariance between them, is partitioned into three sour-
ces, as noted above (i.e., genetic effects [A], common or shared
environmental effects [C], and nonshared environmental effects
[E]). In the moderation model, the six paths leading to the down-
stream variable include extra parameters (aC 1 bXacM) that

allow for estimation of genetic and environmental variance at
different levels of the moderator variable. This parameterization
of the model makes it possible to estimate ACE influences at
any possible level of the moderator (M). Another advantage of
the model in Figure 1 is that it is also possible to estimate the
genetic and environmental overlap between the two variables in
the form of genetic and environmental correlations, ranging
from 21 to 11 in the usual way, and these correlations will also
differ depending on the level of the moderator. To utilize this
model, however, the moderator must be a variable that is unique
to each twin (e.g., income as adults, marital status, relationship
satisfaction). If the moderator is a variable that is necessarily
shared between twins (e.g., neighborhood SES as children), then
it is necessary to use an alternative, univariate model that
“controls” for gene-environment correlation by regressing out
the effect of the moderator on the outcome but still allows for
separate ACE estimates at different levels of the moderator
(Purcell, 2002; Van der Sluis et al., 2012).

Because these models estimate whether the total latent
(unmeasured but assumed) genetic influences on a phenotype
differ depending on a person’s standing on a second, puta-
tively environmental variable, they are commonly referred to
as quantitative estimates of Gene 3 Environment interaction
(quantG3E, to distinguish from measured Gene 3 Measured
Environment interactions, discussed below). Theoretically, the
presence of G3E could mean that the genetic effects on a phe-
notype only become apparent in the right environment or, con-
versely, that environmental effects on a phenotype are
dependent on a person having the right genotype. Earlier

Figure 1 Bivariate moderation model. The model is shown for only one
member of a twin pair. Genetic and environmental influences on the out-

come variable vary by level of the moderator variable. A 5 additive genet-

ics; C 5 shared environmental influences; E 5 nonshared environmental
influences. AC, CC, and EC are variance components underlying the moder-

ator that also influence the outcome (i.e., “common components”), and
AU, CU, and EU represent residual (“unique”) variance in the outcome after

accounting for the variance in common with the moderator. b coefficients
index the direction and magnitude of moderation. When all b coefficients

are set to zero, this represents no moderation effects. Total phenotypic

variance in the outcome can be calculated by squaring and summing all of
the paths leading to it: Var(Outcome) 5 (aC 1 bacM)2 1 (aU 1 bauM)2 1

(cC 1 bccM)2 1 (cU 1 bcuM)2 1 (eC 1 becM)2 1 (eU 1 beuM)2.
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attempts to statistically model G3E using twin data would
stratify the sample by level of the moderator variable and
examine genetic and environmental influences as a function of
these subgroups (Cleveland, 2003). For instance Heath, Jar-
dine, and Martin (1989) found that genetic influences on alco-
hol consumption varied from 31% in young, married women
to 76% in older, unmarried women, demonstrating that an
important sociodemographic variable, marital status, can have
a moderating effect on the etiology of alcohol use. The newer
biometric moderation models have several advantages over
previous methods to examine G3E in genetically informative
family data (e.g., stratification of twin correlations). First, it is
possible to formally test the presence versus absence of moder-
ation using a variety of well-validated fit indices. Second, both
the univariate and bivariate versions model the main effect of
the moderator on the phenotype, either by including a direct
path or by decomposing the effect of the moderator on the out-
come (thus accounting for gene-environment correlation).
Finally, it is possible to obtain ACE estimates of the pheno-
type along the full spectrum of the moderator. For these rea-
sons, the popularity of this model has led to a growth in
quantG3E studies over the last decade. We next turn to dis-
cussing how these results fit with work on measured Gene 3

Measured Environment interactions.

GENE 3 ENVIRONMENT INTERACTION:
MEASURED VERSUS LATENT GENETIC

INFLUENCES

Gene 3 Environment interaction has long been theorized for
complex human behavioral phenotypes, including personality,
psychopathology, and cognition. If found, G3E would imply
that the effect of the environment on a phenotype would depend
on a person’s genotype or, alternatively, that the expression of a
genotype would depend on the right environmental context. The
idea of G3E lines up nicely with many developmental theories.
For instance, the diathesis-stress model of psychopathology pos-
its that a diathesis (possibly genetic) for mental illness will only
be triggered in the right environmental context (Monroe &
Simons, 1991), a topic we return to again below. Empirical stud-
ies of G3E, however, have only begun in earnest in this century,
following recent statistical and methodological advances. We
first discuss candidate molecular G3E before returning to con-
sider quantG3E.

Measured Gene 3 Measured Environment
Interaction

Candidate G3E (or cG3E) studies are distinguished from
quantG3E by the use of both a measured environment and a
measured gene. In the most common use of this technique, a
candidate gene is chosen based on a known or suspected mecha-
nism of action, and an environmental context is ideally selected
based on evidence that it elicits variable responses among differ-

ent individuals and affects a neurobiological system underlying
the trait of interest (Moffitt, Caspi, & Rutter, 2006). Genes are
specific protein-coding segments of DNA and can be anywhere
from a few hundred to thousands of base pairs in length. Genes
at the same location on the genome (locus) can differ in specific
physical ways between persons. For example, a cG3E interac-
tion could be posited such that an environmental risk factor only
has its effect on the phenotype in the presence of the greatest
genetic risk (e.g., in persons with two copies—homozygous—
of the risk allele).

The increase in cG3E research followed from the rather dis-
appointing lack of significant and replicable main effects for
specific genetic polymorphisms on individual differences and
major mental disorders. Normative personality traits, for exam-
ple, have approximately 50% heritability (Bouchard & Loehlin,
2001), but candidate gene studies failed to find any significant,
replicable loci with an appreciable effect size (Munafo et al.,
2003). Explanations for the failure of candidate gene studies
include generally underpowered studies and the fact that many
relevant polymorphisms may not be in the protein-coding region
of the genome, but instead outside of well-characterized genes
that were hypothesized as potential candidates (Duncan, Pollas-
tri, & Smoller, 2014). A huge technological advance in gene-
hunting techniques, genome-wide association studies (GWAS)
were able to search across first thousands and currently millions
of single nucleotide polymorphisms (genetic variants). GWAS
led to much more successful replication, but the total percentage
of variance explained by this technique was still much lower
than the total heritability of phenotypes as estimated by twin and
family methods (Manolio et al., 2009). Several explanations
have been proposed to explain this “missing heritability” (for a
review, see Manuck & McCaffery, 2014). First, the molecular
genetic architecture of most studied phenotypes could be due to
a larger number of common variants of much smaller effect size
than previously thought, requiring larger than anticipated sam-
ples to identify these variants. Second, complex phenotypes
(e.g., psychiatric disorders) may be due to structural variants
(e.g., copy number variants, such as deletions or insertions) or
rare variants (e.g., alleles present in less than 1% of the popula-
tion) of large effect size that are not well captured by GWAS,
which tend to include DNA markers that are fairly common in
the population. Third, the accuracy of heritability estimates
could have been affected by nonadditive genetic effects (e.g.,
dominance or epistasis).

Another possibility is that genes influencing complex dis-
eases/disorders might only be expressed in the right environ-
mental circumstances. In a seminal paper, Caspi and colleagues
(2003) showed that the likelihood of depression and number of
depressive symptoms were greatest among those with both a
positive history of environmental risk and the risky (two copies
of the short version of the allele) version of the serotonin 5-
HTTLPR genotype. Since that study was published, the cost of
genotyping has decreased substantially, allowing researchers to
add molecular genetic data to everything from highly focal lab-
based studies (Burt, 2009) to larger, ongoing studies like the
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Health and Retirement Study (The Health and Retirement Study:
A Longitudinal Study of Health, n.d.). Over the past decade,
there has been a wealth of published cG3E articles examining
the likelihood of an outcome as a function of risk allele and envi-
ronmental risk factor (for recent reviews, see Duncan et al.,
2014; Manuck & McCaffery, 2014). Unfortunately, the prob-
lems with replicability found for candidate gene, linkage, and
association studies are also an issue for cG3E. Indeed, numer-
ous replication attempts have been made of the original Caspi
et al. (2003) findings on 5-HTTLPR and the effects of life stress
on depression; as reviewed elsewhere (Duncan et al., 2014), two
meta-analyses have failed to support the original finding
(Munaf�o, Durrant, Lewis, & Flint, 2009; Risch et al., 2009), and
the one meta-analysis in support of the interaction (Karg, Bur-
meister, Shedden, & Sen, 2011) has been criticized on methodo-
logical grounds (Duncan & Keller, 2011). A recent review
found 103 cG3E studies in the first decade of research; only 6
had two or more replication attempts, and of these, none had
unequivocal support for the initial finding (Duncan et al., 2014).
Like candidate gene studies, cG3E studies may be underpow-
ered. Further, one report suggests publication bias in favor of
positive cG3E for reports of novel findings as compared to
much lower rates for replication attempts (Duncan & Keller,
2011). The replication failures of both candidate gene and
cG3E studies led the editor of Behavior Genetics to establish
strict new guidelines for consideration of publication, including
submission of a well-powered replication study, or a novel find-
ing with adequate power; exploratory or novel finding meeting
statistical criteria for genome-wide significance; or meta-
analysis of the same genetic variant and/or environmental vari-
able and behavioral outcome (Hewitt, 2012).

Quantitative Gene 3 Measured Environment
Interaction

Like measured G3E, quantG3E work also includes an environ-
mental “moderator” but estimates genetic risk from known
degrees of similarity among different types of relatives. As with
classic behavior genetic approaches, quantG3E does not iden-
tify which genes are involved at a molecular level. Instead, bio-
metric modeling suggests the presence of quantG3E when
genetic influences differ as a function of the moderator; we then
infer that the effect of additive genetic influence across all genes
that directly impact the phenotype (most likely many loci of
very small effect size) will depend on the level of the moderator.
Even though quantG3E is not testing the moderating influence
of a specific gene, however, there are advantages to quantG3E
over cG3E.

First, quantG3E allows for estimation of aggregate genetic
and environmental effects, instead of focusing on the environ-
mental interaction with a specific candidate gene that may turn
out to be spurious. Findings from GWAS suggest that the
genetic architecture of complex human behavioral phenotypes,
from mental illness to educational attainment, consists of hun-

dreds if not thousands of genes of very small effect size (Chabris
et al., 2013). If the main effects of genetic influences are the
result of so many different individual genes, it stands to reason
that when G3E occurs, it is the expression of many genes that is
being moderated by the environmental context. Thus,
quantG3E, which identifies aggregate moderation of all addi-
tive genetic influences, has a statistical and methodological
advantage over cG3E, which by definition will only examine
the interaction at one gene.

Second, quantG3E tests for variation not only in heritability
but in environmental influences as well. For example, some
quantG3E studies have found nonzero estimates of shared envi-
ronment at extreme ends of the moderator variable (e.g.,
Krueger, South, Johnson, & Iacono, 2008; South & Krueger,
2008), and shared environmental influences are notoriously dif-
ficult to find in “classic” twin modeling. Identifying contexts in
which the shared or unique environmental influences on a phe-
notype are notable influences on etiology has important implica-
tions for designing and implementing new forms of prevention
or intervention.

Third, there are many existing twin databases that have many
nuanced and careful measures of the environment, have very
large sample sizes, and could be used to conduct quantG3E
studies; cG3E studies are often underpowered (Duncan & Kel-
ler, 2011), make use of existing genetic information in a data-
base instead of collecting genes based on a priori hypotheses of
biological mechanisms (Young-Wolff, Enoch, & Prescott,
2011), or require returning to an existing sample to collect new
genetic data. That is not to say that issues of power and sample
size are straightforward when it comes to quantG3E. For
instance, there has been a healthy debate in the literature sur-
rounding the different quantG3E models and how they relate to
false positives (Van der Sluis et al., 2012; Van Hulle et al.,
2013). Van der Sluis and colleagues suggest that the extended
univariate moderation model has greater power to detect signifi-
cant moderation compared to the bivariate moderation model, as
long as the moderation is not on the covariance common to the
moderator and the outcome. Further, some warn that what looks
like significant moderation may actually be masking nonlinear
effects of the moderator on the outcome (Van Hulle et al.,
2013). Van Hulle et al. articulated procedures for formally test-
ing quantG3E moderation against nonlinear main effects and
conducted simulations with samples of 500 pairs and 2,000
pairs. For example, rejecting a quantG3E model with nonlinear
main effects in favor of the bivariate moderation model with
moderation only on A would take a sample of up to 910 twin
pairs for 90% power; much smaller sample sizes were required
for omnibus tests of moderation on A, C, and E, which is what is
often done and reported in the literature. They reported that with
samples of 2,000 twin pairs, it was generally possible to reject a
model that was not the “true” model (whether it was the Purcell
moderation model or not), but they concluded that tests for
G3M are generally underpowered. The model simulations
reported by Van Hulle et al. are complex, as they considered
several competing models (e.g., with or without G3E, with or
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without nonlinear main effects) and moderation on all, some, or
none of the ACE parameters. We agree with their recommenda-
tion to always report parameter estimates from quantG3E stud-
ies as part of any research report; the size of the moderation
effect in different samples drawn from different populations will
aid in issues such as determining power and sample size for
model fit indices (e.g., likelihood ratio tests and Bayesian infor-
mation criterion).

Having elucidated the differences between quantG3E and
cG3E, we can now turn to describing how, instead of seeing
these methods as competing, they are really best thought of as
complementary. From a practical standpoint, quantG3E is a
way of determining where to direct the time and money neces-
sary for molecular genetic inquiry. Studies now show that the
heritability of alcohol use is greater among adolescents with
peers who use alcohol (Dick et al., 2007), in urban areas versus
rural ones (Legrand et al., 2008; Rose et al., 2001), among girls
with less parental closeness (Miles et al., 2005), in women with-
out a religious upbringing versus women with such an upbring-
ing (Koopmans et al., 1999), and in unmarried women versus
married women (Heath, Jardine, & Martin, 1989). Our own
work has shown that genetic influences on alcohol use are higher
among individuals with low levels of SES (Hamdi, Krueger, &
South, 2015) or with distressed marriages (Jarnecke & South,
2014). These studies of quantG3E point toward particular seg-
ments of the population that may prove to be more fruitful for
gene-finding efforts. Further, establishing a replicable effect
using quantG3E may then reduce the chances of obtaining a
null effect with cG3E. As noted above, cG3E studies are noto-
rious for difficulties with replication. To our knowledge, there
has been no comprehensive meta-analysis of all quantG3E
studies conducted since Purcell’s (2002) model was published.
A review of quantG3E for alcohol and related phenotypes
found significant quantG3E for almost all studies reviewed (14
of 16), and for all studies that used twin data to examine
quantG3E, the pattern was in the same direction (greater
genetic influences in more permissive environments). As we
review below, replication of one of the first studies in this area,
moderation of heritability for IQ by SES (Turkheimer, Haley,
Waldron, D’Onofrio, & Gottesman, 2003), has been less
straightforward. However, the existence of similar phenotypes
and environmental measures across different existing twin stud-
ies suggests that it would be feasible to attempt numerous repli-
cations using quantGxE before moving to the more expensive
step of molecular genetic work.

We use the example of physical activity and genetic influen-
ces on body mass index (BMI) to show how quantG3E can
effectively direct molecular genetics research. Classic biometric
modeling approaches have shown that BMI is robustly heritable,
with heritability estimates ranging from .45 to .84 in men and
.64 to .85 in women in a sample of 37,000 twin pairs ranging
from age 20 to 39 (Schousboe et al., 2003). Using biometric
moderation to examine quantG3E, studies have shown that her-
itability of BMI is moderated by certain environmental factors,
including physical activity (Mustelin, Silventoinen, Pietilainen,

Rissanen, & Kaprio, 2009). Recently, a new study demonstrated
that genetic risk for BMI, as measured by a risk score across 12
single nucleotide polymorphisms in obesity-susceptibility loci,
was moderated by physical activity, such that the association
between genetic risk score and BMI was greater in sedentary
individuals (Li et al., 2010). We see this as a blueprint for future
work that combines quantG3E and cG3E; the wealth of data
from existing twin and family studies alone on measured envi-
ronmental variables and phenotypes of interest to social scien-
tists could be used to help narrow the scope of focus for
molecular genetics researchers.

CONCEPTUAL MODELS AND

CORRESPONDING QUANTITATIVE G3E

MODEL

In this section, we describe four broad theoretical models that
have been posited to explain myriad phenotypes related to social
inequality (e.g., personality, psychopathology, health). For each,
we describe how such a theoretical model would be supported
empirically by biometric moderation modeling. We then illus-
trate how work to this point has, or has not, supported each
theory. We focus on variables of particular importance to social
inequality—cognition and physical health. Table 1 provides a
brief summary of each of the four theories as well as a theoretical
origin article and an empirical example of quantG3E. Note that
even though we present these models as distinct, it is entirely
possible that more than one model will be necessary to explain
the pattern of G3E found for a specific combination of modera-
tor and phenotype. That is, these models are best thought of as
useful heuristics that can be used to interpret the effects found in
these quantG3E studies, but the findings from any one specific
study may suggest the plausibility of more than one model.

Diathesis-Stress

The diathesis-stress model is particularly well known in the field
of psychopathology, but it has been broadened to include out-
comes as diverse as subjective well-being (Burns & Machin,
2013), academic achievement (Jaekel, Pluess, Belsky, & Wolke,
2015), and even chronic pain (Turk, 2002). This model posits
that a diathesis, or predisposition in the form of premorbid risk
factors, for the phenotype (generally an undesirable outcome)
lies dormant until it is triggered by some sort of stressor. The
diathesis can be genetic, biological, or even cognitive, and the
stressor can range from major, acute life event to minor, chronic
daily hassles (Monroe & Simons, 1991). This fits well within
the context of G3E, if we think of additive genetic influences as
a “distal” diathesis and a measured environment as a stressor
that triggers the expression of those genetic influences; indeed,
Shanahan and Hofer (2005) have referred to this as contextual
triggering. It is important to remember, however, that the diathe-
sis itself may have an effect on whether the environment is expe-
rienced at all. This is known as gene-environment correlation
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(rGE), of which there are three types: active rGE, in which a per-
son’s genetically influenced characteristics lead them to choose
certain environments; evocative rGE, in which those same traits
evoke a reaction from others in the environment; or passive
rGE, in which the genetically influenced characteristics of one’s
parents influence the environment that a person experiences
growing up, such that the family environment and the genotype
one inherits are correlated. Gene-environment correlation cannot
be directly tested in classic twin study approaches or the univari-
ate moderation model, although the extended Purcell (2002)
moderation model does estimate genetic and environmental
overlap between the moderator and outcome, which can be used
to infer rGE.

Diathesis-Stress in quantG3E Modeling. The diathesis-
stress model would be supported if biometric modeling demon-
strated that genetic influences were greater in the riskier environ-
ment. A possible hypothetical example is presented in Figure 2
(Panel A). As shown, our theoretical environmental moderator
is on the x-axis in standard deviation units, from a very risky
environment marked by high levels of stress (22 standard devi-
ations) to a very low risk environment with little or no stressors
(12 standard deviations). The environmental moderator vari-
able could range from a more global risk factor that sits more
distally in each individual’s ecosystem (e.g., socioeconomic sta-
tus) to a more proximal variable that affects the person’s micro-
system (e.g., relationships with romantic partners, friends,
parents). Following from the diathesis-stress model, additive
genetic influences are greatest in the environment marked by the
most stress (at 22 standard deviations from the mean) and
decrease from high to low levels of stress. Conversely, the non-

shared environment (E) and the shared environment (C) increase
from high to low levels of stress. Of note, these are standardized
proportions of variance, such that the total variance in the pheno-
type has to total to 1 at every level of the moderator. Purcell
(2002) recommended also plotting and presenting the results of
the unstandardized variance components. Shown in Figure 2
(Panel B) is one possible example of the raw ACE variance com-
ponents that lead to the standardized proportions of our imagi-
nary example in Panel A. The raw genetic variance still peaks at
the riskiest end of the moderator and decreases until it is lowest
at the “least stressful” levels of the moderator. Note, however,
that the total amount of variance in the phenotype is greatest in
the most stressful end of the population. This is found rather
commonly in quantG3E models that use a moderator specifi-
cally designed to assess maladaptive contexts, such as conflict
with parents or stressful life events (e.g., Hicks, South, DiRago,
Iacono, & McGue, 2009). It makes intuitive sense that there
would simply be more variation in the outcome variable when
the environment is marked by greater stress. Because there is
more variation at the highest levels of environmental stress,
even though the raw nonshared environmental variance
decreases from high to low levels of stress and the shared envi-
ronmental variance is essentially flat (Panel B), the standardized
proportions of variance for both increase (Panel A). Again, this
shows the importance of plotting and presenting both raw and
standardized variance components.

Illustrative Example: Body Mass Index. Much of the sup-
port for the diathesis-stress model in quantG3E comes from
work on an important indicator of physical health—body mass
index (BMI). In early work in this area, Johnson and Krueger

Table 1 Theories Guiding Quantitative Gene 3 Environment Interaction Studies

Name of the Theory Brief Description of the Theory

Article Describing the

Theoretical Background

Empirical Article

Demonstrating

Evidence of quantG3E

Diathesis-stress A predisposition for the phenotype (i.e., a diathesis), in

the form of premorbid risk factors that can be

genetic, cognitive, affective, etc., lies dormant until it

is triggered by some sort of stressor.

(Monroe & Simons,

1991)

(South & Krueger, 2008)

Bioecological

model

Genetic influences are maximized in stable and adaptive

environments that permit positive and enduring inter-

actions—proximal processes—between individuals and

their immediate surroundings, which enable them to

actualize their genetic potentials.

(Bronfenbrenner &

Ceci, 1994)

(Turkheimer et al., 2003)

Differential

susceptibility

Plasticity to the environment is an individual difference,

with some people being far more susceptible to (i.e.,

genetically influenced by) the effect of both positive

and negative environments.

(Belsky &

Pluess, 2009)

(South & Krueger, 2013)

Social control

and social

compensation

Genetic influences are dampened in certain environ-

mental contexts; for social control, structural pro-

cess/social norms impose constraints, and for social

compensation, the environment lacks stress or pos-

sesses enriching properties.

(Shanahan &

Hofer, 2005)

(Dick et al., 2007)
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(2005a,b) used the bivariate Purcell (2002) biometric modera-
tion model to examine whether body mass index and number of
chronic illnesses were affected differentially by genetic and
environmental influences dependent on income and perceived
life control. Analyses were conducted using the twin sample
from the Midlife in the United States Study (MIDUS; Kessler,
Gilman, Thornton, & Kendler, 2004), notable for being one of
the few nationally representative adult twin samples in the
United States. They found greater genetic variance in BMI at
lower levels of income (used as a proxy for socioeconomic sta-
tus), even after controlling for education level and presence ver-
esus absence of insurance coverage. When perceived control
was the moderator, genetic variance in BMI decreased from low
to high levels of perceived control and shared environment
increased slightly at higher levels of control. The authors con-
cluded that the risky environment (one marked by low income
and low control) is the stressor that ultimately changes a physio-
logical mechanism, leading to the expression of a genetic predis-
position to poor health. Of course, finding that genetic variance
is greater in “riskier” environments does not necessarily mean
that a stressful environmental context (e.g., low income) is trig-
gering genetic influences. Indeed, it is possible that the less risky

environment (e.g., high income) is acting to compress genetic
variance (Johnson & Krueger, 2005a; see also Social Control
and Social Compensation, below).

Subsequent work has largely acted to solidify these earlier
findings on BMI across a variety of moderators. For instance,
Mustelin and colleagues (2009), using the FinnTwinn16 sample
(age range 5 22–27), found that the genetic variance in BMI
decreased with increasing physical activity. In a study of adult
twins from the University of Washington Twin Registry,
researchers examined quantG3E for BMI as a function of sleep
duration (Watson et al., 2012). They found significant modera-
tion of genetic and shared environmental parameters, such that
the proportion of variation due to genetics was greatest at the
lowest levels of sleep duration and decreased as sleep duration
increased, whereas shared environmental influences increased
from low to high levels of sleep. Not all findings have replicated
perfectly, however; using the Danish Twin Registry, Johnson
and colleagues (Johnson, Kyvik, Skytthe, Deary, & Sorensen,
2011) examined education as a moderator of BMI. In partial rep-
lication of previous findings, they found that genetic variance
was greater for women, but not men, with lower levels of educa-
tion; in both genders, shared environmental variance decreased

Figure 2 Example of patterns of quantG3E for different theoretical models. Genetic (A), shared environmental (C), and nonshared environmental (E)
components of variance for an outcome are plotted as a function of an environmental moderator variable, shown on the x-axis at five different levels:

22, 21, 0, 1, and 2 standard deviations from the mean. Panel A: diathesis-stress model plotted with standardized variance components; Panel B:
diathesis-stress model plotted with raw variance components; Panel C: bioecological model; Panel D: differential susceptibility model. [Color figure can be

viewed at wileyonlinelibrary.com]
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from low to high levels of education, resulting in a heritability of
BMI that was greater at higher levels of education for both men
and women (a finding in contrast to what would be expected for
the diathesis-stress model). The authors suggested that partial
replication of previous work (particularly Johnson & Krueger,
2005a,b, using the MIDUS) could be due to several factors: lack
of power resulting from the smaller U.S. sample, cultural differ-
ences between the United States and Denmark, or differences in
the two moderators (income vs. education). An important take-
home message for researchers from this early work may be the
importance of combining data across samples, in order to
increase sample size and to take into account possible cultural
differences in the phenotypes (both moderator and outcome) of
interest. For instance, the Interplay of Genes and Environment
across Multiple Studies (IGEMS; Pedersen et al., 2013) consor-
tium was recently formed to combine data across eight longitu-
dinal twin studies. We look forward to the progress they make in
examining a multitude of outcomes as a function of various fac-
tors related to social inequality, including early life adversity.

Bioecological Model

The bioecological model predicts that genetic influences are
maximized in stable and adaptive environments (Bronfenbren-
ner & Ceci, 1994). Specifically, the model assumes that stable
environments permit positive and enduring interactions—
termed proximal processes—between individuals and their
immediate surroundings, which enable them to actualize their
genetic potentials. Two things should be noted about this theory.
First, the authors were most interested in the development of
effective physiological functioning, and what environments
would allow individuals to flourish. Indeed, Shanahan and Hofer
(2005) specifically refer to a G3E interaction in which the envi-
ronment leads to an adaptive or beneficial outcome as “social
context as enhancement.” Not surprisingly, many quantG3E
studies that operate from this paradigm are interested in adaptive
functioning (e.g., cognitive ability; see below), but many other
studies have appeared in the literature that examine how genetic
potential for maladaptive processes may be actualized under cer-
tain environmental contexts (e.g., genetic influences on psycho-
pathology based on SES; South & Krueger, 2011; Tuvblad,
Grann, & Lichtenstein, 2006). In this case, what researchers are
examining is the “genetic potential not for expressing dysfunc-
tional outcomes but for buffering against and thus reducing
them” (Bronfenbrenner & Ceci, 1994, p. 582). Second, the
authors approached this theory with a heavy emphasis on herit-
ability, and as such they had a very specific hypothesis about
how genetic influences would be affected by the environment.
In a low-risk, enriched environment, that is, one marked by
lower levels of social inequality (i.e., poverty, poor access to
health care and education), we would expect less variability in
the phenotype and greater genetic influences. This idea is also
consistent with the conceptually related “social push” model
(Raine, 2002), which posits that genetic influences on maladap-

tive behavior are more evident in the absence of environmental
risk factors that push individuals toward such behavior.

Bioecological Model in quantG3E Modeling. From
Bronfenbrenner and Ceci’s (1994) writings on the bioecological
model, we can derive explicit hypotheses about the pattern of
findings from quantG3E. As they hypothesized, when proximal
processes (e.g., parent-child relationship) are strong, heritability
will be greater. Figure 2 (Panel C) presents a hypothetical exam-
ple of findings from a quantG3E model supporting the bioeco-
logical theory. As shown, the genetic influences on the outcome
increase from an environment marked by risk to an environment
that is relatively more enriched, whereas nonshared environmen-
tal influences are greatest at the riskiest levels of the environ-
mental moderator. For illustrative purposes, we have plotted the
proportion of shared environmental variance such that it
increases somewhat from high to low levels of risk; it is possible
that shared environmental influences may not change as a func-
tion of the moderator (particularly in adult twins). One advant-
age of biometric moderation models is that they allow for an
empirical test of whether moderation is significant only for the
A and E variance components but not C. What we would expect
for the bioecological model is a crossing of A and E influences,
with E showing greater expression at the risky end of the moder-
ator and A showing greater expression in the enriched end of the
moderator.

Illustrative Example: Cognition. There is a long and exten-
sive history of research examining the genetic and environmen-
tal influences on cognitive ability, particularly intelligence.
Indeed, intelligence is one of the most consistently heritable
individual difference phenotypes that has ever been studied, rou-
tinely demonstrating heritability coefficients ranging from 60%
to 80% (Plomin, DeFries, Knopik, & Neiderhiser, 2012). More
than a decade ago, however, researchers made headlines for a
study that suggested the genetic influences on intelligence may
differ as a function of socioeconomic status (SES). Using a large
sample that was notable for including children from families at
the extreme low end of SES, the researchers (Turkheimer et al.,
2003) showed that the genetic influences on intelligence were
greatest among individuals in the highest SES (a linear combina-
tion of occupational status, parental education, and income),
whereas for individuals at the low end of SES, most of the var-
iance in intelligence could be explained by nonshared environ-
mental factors. The authors interpreted this finding as evidence
of Bronfenbrenner and Ceci’s (1994) bioecological sensitivity to
context model—that genetic influences on a phenotype will be
most expressed in an environment that allows for flourishing.
There had been previous studies that examined whether genetic
influences on cognitive ability varied as a function of aspects of
SES (as reviewed in Hanscombe et al., 2012), but the Tur-
kheimer et al. (2003) study was the first to use Purcell’s (2002)
moderation model.

Since Turkheimer and colleagues (2003) published their find-
ings, many research groups, including some of the original
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authors, have attempted to replicate these findings in different
samples that vary in age, assessment of “intelligence” or
“cognition,” and measure of SES.

For instance, successful replications of the moderation of
genetic variance have been found for cognitive ability in children
as young as age 2 (Tucker-Drob, Rhemtulla, Harden, Tur-
kheimer, & Fask, 2011), for math ability in 2- and 4-year-old
children (Rhemtulla & Tucker-Drob, 2012), and for cognitive
outcomes (from the National Merit Scholastic Qualifying Test) in
middle- to upper-class 17-year-old twins as a function of parental
income (but not necessarily parental education; Harden, Tur-
kheimer, & Loehlin, 2007). In a test of the moderation of ACE
influences in an adult sample (age range 5 24–84), researchers
found that childhood SES moderated total and genetic variance in
intelligence measured in adulthood, with the greatest phenotypic
and genetic variance in intelligence found at the highest levels of
childhood SES (Bates, Lewis, & Weiss, 2013).

There have also been failures to replicate Turkheimer and col-
leagues’ original (2003) findings. Using a large sample of twins
from the Twins Early Development Study based in the United
Kingdom (Hanscombe et al., 2012), researchers examined the
moderation of ACE influences on cognitive ability at eight differ-
ent ages (2, 3, 4, 7, 9, 10, 12, and 14) as a function of different
indices of SES (a variation of parent education, occupation, and
income). Out of 17 possible models (three SES indices at differ-
ent ages), only one showed evidence of genetic moderation (age
10), and it failed to replicate when alternative SES indices were
used. Instead, the greatest support across ages and indices of SES
was for moderation of shared environmental variance, with less
shared environmental variance found at the highest levels of SES.
Similarly, another study in an adult sample drawn from the Neth-
erlands Twin Registry also failed to find evidence of moderation
of genetic influences on IQ, using both more distal (parents’ edu-
cation level) and proximal (partner’s education level, urbanization
level, mean real estate price of residential area) indices of SES
(Van der Sluis, Willemsen, de Geus, Boomsma, & Posthuma,
2008); there was some evidence, however, that shared environ-
mental influences were greater at higher levels of SES for older
male twins. In a study using an all-male sample from the Vietnam
Era Twin Registry, there was no evidence of moderation of
genetic or environmental influences on an index of general cogni-
tive ability (the Armed Forces Qualification Test) as a function of
parental education (Grant et al., 2010).

In the most recent replication attempt, Kirkpatrick, McGue,
and Iacono (2014) used a combined sample of twins and non-
twin sibling pairs from the United States. They used rearing-
parent data from these offspring to determine family-level
SES variables (parents’ occupational status, educational attain-
ment, and annual household income) and examined all possi-
ble combinations of moderation on the A, C, and E paths to
IQ. They concluded that there was moderation on genetic
influences, there was no moderation of the shared environ-
ment, and moderation on the nonshared environment was
equivocal at best; genetic moderation was such that genetic
influences were greatest among those with highest family-of-

origin SES. Moderation effects were not age dependent, mean-
ing there was no evidence that moderation on certain parame-
ters might be present in children but disappear by adulthood.
They also suggested that differences in findings across the dif-
ferent studies to date could mean that the moderation of
genetic influences on IQ is a result specific to a certain nation-
ality (U.S.) and SES variable (income). We point to the simi-
larity in mixed findings for SES and BMI (see above), in
which significant genetic moderation found when income and
a U.S. sample were used (Johnson & Krueger, 2005a) was not
fully replicated when education and a European sample were
used (Johnson et al., 2011). This again cements the impor-
tance of synthesizing both the outcome and the environmental
measure in order to accurately compare and contrast results
across studies.

Differential Susceptibility

What if the diathesis-stress and bioecological models are both
right, for the same phenotype and environmental moderator? It
is possible that the risky end of an environment (e.g., very
low SES) allows for the expression of genetic vulnerability to
poor outcomes, and that the enriched end of the environment
(e.g., very high SES) also allows for the genes for good out-
comes to “will out.” Ellis and Boyce (2008) refer to this
model as the biological sensitivity to context model, or the
orchid hypothesis; like that very particular flower, some indi-
viduals may need just the right combination of variables in the
environment to flourish, whereas others, like a dandelion, will
do well in any environment. Belsky and Pluess (2009) have
described the differential susceptibility model as one in which
the same individual who may be genetically predisposed to
suffer the most from risky environments may also benefit the
most from environments without adversity. In other words,
human beings differ in their plasticity to environments, with
some being far more susceptible to the effect of both positive
and negative environments. As an example, they point to the
findings from the Caspi et al. (2003) study on depression, life
stress, and 5-HTTLPR. While the focus of the findings was on
greater depression in those with a combination of the risk
allele and life stress, the results also demonstrated that individ-
uals at lowest risk were those with the risk allele and no his-
tory of life stress. Belsky and Pluess (2009) suggest that these
crossover interactions, in which those who demonstrate the
greatest likelihood of the outcome when they have the pres-
ence of genetic risk and environmental stressor also have the
lowest likelihood of the outcome in the absence of either risk
or stressor, are demonstrative of the differential susceptibility
model. More recently, other researchers have laid out more
explicit criteria for distinguishing diathesis-stress from
differential susceptibility, with the concern that some findings
may be incorrectly interpreted as diathesis-stress because they
fail to evaluate for the crossover inflection point (Roisman
et al., 2012).
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Differential Susceptibility in quantG3E Modeling. To
our knowledge, there are no known guidelines for establishing
differential susceptibility in quantG3E models. Since genes
influence individuals’ plasticity, individuals with certain genetic
variants can have the worst outcomes in negative environments
yet enjoy the best outcomes in positive environments, compared
to individuals with other variants of the same gene. Extending
the plasticity model to predictions about the cumulative effect of
all genes, the model would predict that aggregate genetic influ-
ences are greatest at both ends of the environmental risk contin-
uum. As shown in Figure 2 (Panel D), we would expect that
genetic influences on the phenotype would be highest at the
most extreme ends of the moderator variable, forming a U-
shaped curve. In our example, we have artificially constrained C
to be essentially flat across all levels of the moderator; because
the total proportion of variance must add up to 100, nonshared
environmental influences would parallel genetic influences in
the opposite direction, increasing at the average levels of the
moderator but decreasing at the extreme ends.

Illustrative Example: Marital Satisfaction and Physical

Health. To date, there has been only one empirical example of
quantG3E that supports the differential susceptibility hypothe-
sis, along the guidelines we laid out above. Using the MIDUS
adult twin sample, South and Krueger (2013) demonstrated that
the etiological components of physical health differ depending
on a person’s marital relationship quality. The heritability of
physical health, as measured by subjective perceptions of health,
was greatest among those with very distressed marriages
(h2 5 .38) and with very satisfying marriages (h2 5 .30). Non-
shared environmental influences (as a proportion of total var-
iance) were most elevated at average levels of marriage quality,
and shared environmental influences actually increased from
low to high levels of marital quality. Increases in the shared
environment at the extremes of the moderator have also been
found for parent-child conflict and adolescent personality (i.e.,
positive emotionality; Krueger, South, Johnson, & Iacono,
2008), as well as marital quality moderating internalizing psy-
chopathology (South & Krueger, 2008), again suggesting that a
notable benefit of these quantG3E models is the ability to iden-
tify when aspects of the rearing environment have the greatest
impact on development.

Social Control and Social Compensation

So far, we have reviewed a model that focuses on genetic
expression in a risky environmental context (diathesis-stress),
genetic expression in an enriched environment (bioecological),
and genetic expression at the extremes of a moderator that
ranges from very bad to very good. Our final model focuses on
dampening of genetic expression in the presence of the right
environmental contexts. Here, we group together two types of
interaction posited by Shanahan and Hofer (2005), as they are
conceptually overlapping and result in similar quantG3E

results. Both involve the presence of a genetic diathesis and a
context that prevents the expression of that diathesis. In the case
of social control, the environment is one where constraints are
imposed by structural processes or social norms. For social com-
pensation, the environment is one that is notable either for the
absence of stress or the presence of enriching properties. In
essence, the control/compensation models result in the same pat-
tern as the diathesis-stress model, but focusing on the opposite
end of the interaction. Whereas the diathesis-stress model
emphasizes the combination of genetic predisposition and pres-
ence of stress, control/compensation focuses on the circumstan-
ces that inhibit or lower genetic influences on an undesirable
outcome. Thus, a quantG3E model supporting control/compen-
sation would look much like Panel A in Figure 2. But instead of
an environmental risk factor where the environment is a stressful
trigger (e.g., delinquent peers), we could substitute an environ-
mental context that constrains the possibility of the outcome for
any individual (e.g., parental monitoring). In the case of an out-
come like adolescent smoking, we would posit that at high levels
of parental monitoring (12 standard deviations of the x-axis),
fewer individuals in general would smoke, and any genetic
influences on smoking would be dampened by the constraints
imposed by the environment. In fact, this is exactly what hap-
pens; genetic influences on adolescent smoking decrease from
low to high levels of parental monitoring (Dick et al., 2007).
Again, there are many similarities between the diathesis-stress
and control/compensation models, and determining whether the
findings from a quantG3E study support one versus the other
may be dependent on the environmental measure, and whether it
assesses a putatively stressful or maladaptive risk factor or a pro-
tective factor that either constrains or possibly enriches individu-
als in that context.

IMPLICATIONS FOR THEORY AND

RESEARCH

In this review, we have argued for the continued relevance of
biometric modeling techniques, even in this age of increasingly
common molecular genetic studies, particularly as applied to
phenotypes related to social inequality. Specifically, we contend
that biometric moderation modeling of latent genetic and envi-
ronmental influences as a function of measured environmental
contexts has the potential not only to inform the search for meas-
ured genes for things like personality, psychopathology, well-
being, and other indicators of social inequality, but also to add to
our knowledge base of developmental phenotypes related to
social inequality through theory testing. In this section, we lay
out our final thoughts on how the study of social inequality can
incorporate quantG3E to test theory and ultimately develop
interventions that can be applied at multiple levels.

We have reviewed how early failures and mixed findings
from candidate gene studies led to the search for cG3E. There
are many practical advantages of quantG3E over cG3E, and
given the turn in the field toward much stricter scrutiny of
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cG3E, quantG3E might fit well as a first step for identifying
the presence of genetic moderation and the environmental con-
text of that moderation. We readily acknowledge that more
recent work in molecular genetics is faring much better than
early linkage, candidate, and association studies (Sullivan, Daly,
& O’Donovan, 2012). Unlike these earlier techniques, GWAS
search across the genome for differences in single nucleotide
polymorphisms (SNPs) and are unbound from a priori hypothe-
ses about candidate genes. GWAS have improved upon previ-
ous methods and have produced replicable results for physical
health (e.g., the FTO gene link to body mass index; Frayling
et al., 2007) and psychiatric disorders (Sullivan et al., 2012). For
instance, one of the most recent studies of schizophrenia used
genome-wide genotype data from 36,989 cases and 113,075
controls and identified 128 significant associations across 108
loci; of note, most (75%) were in protein-coding regions of the
genome, and many had strong expression in the brain or in tis-
sues with important roles in immunity (Schizophrenia Working
Group of the Psychiatric Genomics Consortium, 2014).

Finding individual genetic variants that contribute to the out-
come of interest remains challenging, but studies suggest the
importance of sets of polymorphisms that collectively contribute
to variance in the phenotype (e.g., Purcell et al., 2014). Earlier,
we briefly mentioned the use of polygenic risk scores—these
composite scores are a sum across a number of genetic markers
(i.e., risk alleles) that may not achieve significance on an individ-
ual basis in reasonably sized samples, but as a group are signifi-
cantly related to a trait or an outcome of interest (for a more
complete review of this method, see Wray et al., 2014). The
genetic markers for the polygenic score are often chosen based
on having the strongest p-values in a GWAS discovery sample
(and are often weighted according to effect size), so determining
the initial composite still requires the time and resources of large
discovery samples. Further, results will be limited by the size of
the sample (some may be underpowered to detect effects) and
the percentage of variance in the trait explained in that sample
(Dudbridge, 2013). The advantage of polygenic scores is that
once the composite is determined (possibly from markers identi-
fied from previous GWAS), that composite score can be tested
in a new target sample of individuals; further, the alleles chosen
for inclusion in the polygenic risk composite do not have to
meet the stringent criteria often required for GWAS significance
(and, in fact, risk scores at times include all SNP scores, some of
which may simply be noise). To date, polygenic scores have
been used to examine the variance explained in personality, psy-
chopathology, and cancer (Dudbridge, 2013; Wray et al., 2014).
Only very recently, researchers have begun to test whether the
effects of these “gene sets” on a phenotype are moderated by a
measured environmental variable (Li et al., 2010; Salvatore
et al., 2015). We see this as directly analogous to quantG3E;
both examine whether environmental contexts change the rela-
tive importance of a genetic composite and whether it is all
genes (quantG3E) or a subset of genes that may or may not
contribute to the phenotype under study (polygenic G3E).
Indeed, quantGE may serve as an important first step in a pro-

gram of research that aims to determine when and where to
direct molecular genetic efforts.

Ultimately, any gene-finding efforts directed to variables
related to social inequality are interested in identifying the bio-
logical pathways and mechanisms that lead to things like pov-
erty, poor physical and mental health, and subjective well-being,
among other outcomes. Studies of quantG3E can help with
this, not only as a step in identifying genetic variants, but also by
empirically testing theoretical models of gene-environment
interplay. In this article, we have reviewed four developmental
paradigms that lead to specific predictions about the pattern of
quantG3E that would be found for each model. Three
models—diathesis-stress, bioecological, and differential suscep-
tibility—each posit the expression of genetic influences (i.e.,
higher levels of heritability) as a function of the right environ-
mental contexts. The fourth, social control/compensation, shares
the same shape as the diathesis-stress model, but focuses on how
genetic influences might be dampened or diminished as a func-
tion of an environmental moderator. Thus, the pattern of moder-
ation found when examining a phenotype of interest and an
environmental context of interest can be matched to one of these
models as a direct test of how genetic influences exert an effect
on the outcome. We readily acknowledge two important caveats
to these theoretical models. First, most have explicit predictions
about how genetic influences would change as a function of an
environmental moderator, but are silent as to how or why envi-
ronmental influences would change depending on context. For
instance, we have found support for the diathesis-stress model
such that genetic influences on internalizing psychopathology
are diminished among those in high-quality marriages; instead,
the variance in internalizing among those with satisfying mar-
riages is mainly explained by individual differences in the fam-
ily and nonshared environment (South & Krueger, 2008). What
those particular environmental influences are has been a point of
contention among behavior geneticists for decades (Turkheimer
& Waldron, 2000), and we can only speculate as to what envi-
ronmental conditions might lead to depression and anxiety
among individuals in a happy marriage (e.g., work strain, physi-
cal health problems, caring for elderly parents). The second
caveat is that future work may find patterns of moderation that
are more complex than a simple linear increase or decrease of
genetic or environmental influences across the range of the mod-
erator. Briley, Harden, Bates, and Tucker-Drob (2015) recently
introduced a new nonparameteric approach to testing for nonlin-
ear G3E. As an example, they demonstrated that genetic var-
iance in kindergarten reading achievement peaked between 0
and 1 standard deviations above the mean of SES (on a z-score
scale), before dropping dramatically by 12 standard deviations.
Their local structural equation modeling (LOSEM) application
of nonparametric techniques is currently only available when
the moderator is shared between family members, but they rec-
ommend extension to situations where the moderator differs
between twins. To address these two important caveats, future
researchers in this field should test hypotheses about how
genetic and environmental influences are changing in these
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models of quantG3E. In doing so, it is worth being open-
minded about the possibility of complex (e.g., nonlinear) rela-
tions that may not be optimally captured by all G3E models.

As with any method, replication across different samples that
include different developmental periods will be paramount. To
date, most quantG3E studies have been cross-sectional or have
examined aspects of the childhood environment on now-adult
twins. An important next step will be to examine the pattern of
quantG3E over time, ideally using the same sample measured
for the same constructs over time. This would serve several pur-
poses: (a) Finding the same pattern of quantG3E in constructs
measured over time would be strong evidence that the effect is
not due to Type I error, (b) determining whether a pattern of
quantG3E persists throughout development or is only apparent
at certain stages would speak to the importance of sensitive devel-
opmental periods, and (c) testing G3E longitudinally would iden-
tify whether something that looks like a diathesis-stress effect at
one point might be differential susceptibility, for instance, at
another (Roisman et al., 2012). Key to determining the distinction
between the models will be measuring the entire spectrum of the
environment. Too many studies focus on evaluating the risk end
of the spectrum; a commensurate focus on positive aspects of
these relationships is necessary to capture all possible forms of
G3E. Going forward, researchers should also attempt to utilize
the same phenotype and environmental moderator across different
studies of quantG3E. It is important to determine, when there are
mixed findings across studies, whether the effect is not replicating
because it truly is not there or because it is specific to one type of
moderator (i.e., income instead of education as a proxy for SES).

The four models that we have outlined provide researchers
with theory with which to ground future predictions about spe-
cific combinations of phenotypes and outcomes. The difficulty,
however, is that the predictions of competing models may seem
equally plausible a priori. For instance, even though most of the
studies examining biometric moderation of BMI support a
diathesis-stress model, one could easily imagine predicting a pri-
ori that genetic predispositions for good health would be most
expressed in an enriched environment (i.e., a bioecological
model). To guide thinking on how environments may impact the
etiology of an outcome, it may be necessary to think about the
functionality of that trait, particularly from an evolutionary stand-
point. Johnson and Krueger (2005b) suggested that the direction
of effect found for a particular combination of moderator and trait
might be related to the relative adaptiveness of a trait. As they
posited, if the trait in question is relatively adaptive, like high IQ,
then favorable environments will allow for genetic expression of
that trait and unfavorable environments will suppress genetic
influences (our addition in italics). If the trait is not adaptive, like
mental illness or physical disability/disease, favorable environ-
ments will suppress genetic expression and unfavorable environ-
ments will allow genetic influences to will out. To their original
interpretation we would add the corollary that there may be times
when a genetic predisposition has the potential for being both
adaptive and maladaptive (see the arguments that mental illness
may have persisted evolutionarily because it brings certain

advantages; Keller & Miller, 2006), leading to genetic influences
being expressed in favorable and unfavorable environments.

Ultimately, we would hope that testing quantG3E would
lead to applied work that will reduce social inequality. The past
10 years have seen a surge in the use of these biometric modera-
tion models since they were first introduced, particularly for a
handful of phenotypes (e.g., cognition, BMI, behavioral and sub-
stance use disorders). The findings from some of this work have
direct practical applications; for instance, findings from
quantG3E for cognition and related phenotypes suggest that
environmental interventions are best aimed at those from the
lowest SES groups. We see the potential for an expansion of this
work into more phenotypes that have relevance to social inequal-
ity. Researchers could examine, for instance, what the pattern of
quantG3E is for education, income or career attainment, and
overall well-being. Many existing twin databases can provide a
wealth of resources for examining quantG3E for these pheno-
types and, more importantly, have excellent measures of the
environment from greatest risk to most positive enrichment. Fur-
ther, an exciting aspect of quantG3E models is the potential to
inform interventions at the individual level. Again, we empha-
size that quantG3E does not tell us how important genes are for
any one specific person, but it does get us closer and closer to
identifying, for specific subsets of individuals, the relative impor-
tance of genetics and environment. The administration of the
current president of the United States has recently announced an
investment in “precision” or “personalized” medicine, in which
interventions are tailored to a patient based on individual differ-
ences in lifestyles, genetics, and environment (https://www.
whitehouse.gov/the-press-office/2015/01/30/fact-sheet-president-
obama-s-precision-medicine-initiative). In this vein, we see
results from work using quantG3E leading to the identification
of certain “sensitive periods” during development (e.g., Roisman
et al., 2012), when genetic influences are most susceptible to life-
style and environmental contexts, and when interventions for the
most at-risk members of the population can do the most good.
We are still not at the point of being able to estimate an
“individual heritability,” but these models of G3E interplay are
getting us closer and closer to a form of personalized medicine
for social science phenotypes.
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