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Abstract 

Background Previous research has demonstrated a correlation between chronic stress and chronic pain (CP). 
However, there have been few studies examining the prospective association of allostatic load (AL)—the biological 
processes related to stress—with CP.

Methods We firstly conducted latent class analysis to identify phenotypes of AL using a community-dwelling 
sample, the Midlife in the United States. Multinomial logistic regression models were used to examine the prospec-
tive association between phenotypes of AL at MIDUS 2 biomarker project and the presence of CP, CP interference 
and the number of CP sites at MIDUS 3.

Results Three phenotypes of AL, low biological dysregulation, parasympathetic dysregulation and metabolic dys-
regulation, were identified. Compared to low biological dysregulation group, participants experiencing metabolic 
dysregulation phenotype of AL at MIDUS 2 had higher risks of having high-interference CP (RRR = 2.00, 95% CI: 1.06, 
3.79, P < 0.05) and 3 or more CP sites (RRR = 2.03, 95% CI: 1.08, 3.83, P < 0.05) at MIDUS 3.

Conclusion The findings indicate that focusing on mitigating the metabolic dysfunction phenotype of AL 
has the potential to be an efficacious strategy for alleviating future CP bodily widespreadness and high CP 
interference.
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Introduction
Chronic pain (CP) is pain that lasts or recurs for more 
than 3 months [1]. CP is becoming a major health issue 
worldwide. In the US, an estimated 20.5% of adults suf-
fer from CP each year, causing significant burden to the 
healthcare system and costing over $296  billion in lost 

productivity [2]. The pathological progression of CP 
has been linked to chronic stress-related physiological 
dysregulation across multiple systems [3–5]. Such dys-
regulation has been well described by the framework 
of allostatic load (AL). AL is defined as the physiologi-
cal ‘wear and tear’ resulting from repeated adaptations 
to chronic stressors [6]. Long-term response to chronic 
stress leads to prolonged activation of the hypothalamus-
pituitary-adrenal (HPA) axis and sympathetic nervous 
system, resulting in elevated levels of glucocorticoids 
and catecholamines [7, 8]. Over time, over-accumulation 
of these substances can have downstream consequences 
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and contribute to subclinical conditions across cardio-
vascular, metabolic, and immune systems.

In the past few decades, there has been substantial evi-
dence indicating the association between AL and various 
chronic diseases and symptoms [9], however, the exami-
nation of the association between AL and CP is still in its 
preliminary stage. CP is closely associated with chronic 
stress and may involve abnormalities in several biologi-
cal systems. Notably, CP patients commonly present 
dysregulations in the HPA axis, the autonomic nervous 
system, and the immune system [5, 10]. Furthermore, 
CP patients often exhibit a range of maladaptive stress 
responses, including an inability to habituate to repeated 
similar stressors, a failure to turn off stress responses, 
and altered or inefficient responses to stress [3, 7]. These 
dysregulations significantly align with the conditions of 
the AL. Therefore, some scholars suggest that CP may 
represent an AL disease [3].

Mixed results regarding the association between AL 
and CP were found among clinical samples. Research 
indicates that pediatric patients with pain exhibit a 
greater risk of experiencing AL, and AL is associated with 
pain-related functional impairments [11]. A prospective 
association between AL and CP has been suggested. A 
one-year longitudinal study reported a  mild correlation 
between the AL index and pain severity among chronic 
low back pain patients [12]. Specifically, a set of biomark-
ers encompassing norepinephrine, interleukin-6, triglyc-
erides, waist-to-hip ratio, and resting pulse rate, that 
demonstrated significant predictive value for chronic low 
back pain. However, another 6-year longitudinal study 
reported no association between stress response systems 
and chronic widespread pain (CWP) improvement [13]. 
While the use of validated CP assessments helped to con-
trol measurement errors, the paradoxical results may be 
due to inconsistencies in operationalizing chronic stress 
response dysregulation and in measuring CP outcomes. 
Additionally, the clinical samples limits the applicability 
of these findings to the general population.

Several population-based studies have consistently 
demonstrated a positive association between AL and CP 
in cross-sectional analyses. For example, higher levels of 
AL are correlated with an increased likelihood of report-
ing CP, especially widespread bodily pain, among adults 
in the U.S [14]. However, this study only computed AL 
based on metabolic, inflammatory, and cardiovascular 
biomarkers, disregarding primary mediators such as bio-
markers in the HPA axis and in sympathetic nervous sys-
tem [7]. Among a sample of adults over the age of 50 in 
England, severe CP has been associated with a high level 
of AL, which encompassed HPA axis biomarkers, after 
adjusting for sociodemographic factors, health behaviors, 
and chronic conditions [15]. However, the measurement 

of CP duration was vague, using the term ‘often’ without 
specific time frames. Furthermore, the cross-sectional 
nature limits the ability to establish causal direction 
between AL and CP or to account for baseline confound-
ers that might influence CP. Additionally, the AL index in 
previous research primarily relied on a summative score. 
This computation lacks the ability to discern AL differ-
ences within each biological system or across systems 
[16].

Our study aimed to investigate the prospective rela-
tionship between AL and CP using a community-dwell-
ing sample. We utilized latent class analysis (LCA) to 
capture the nuances of AL phenotypes [17, 18]. Addition-
ally, we used CP measures that adheres to the definition 
of CP in terms of pain duration [19], thereby enhancing 
the validity of our pain assessments. Our examination 
was also adjusted for a range of factors including soci-
odemographic characteristics, health-related behaviors, 
multiple chronic conditions, and detailed medication 
information. We hypothesized that AL phenotypes would 
be prospectively associated with increased risk of expe-
riencing CP, increased number of pain locations, and 
greater pain interference after seven years.

Methods
Data
This study used the Midlife in the United States (MIDUS) 
from 2004 to 2014, including two main survey waves 
(MIDUS 2 and MIDUS 3) and a Biomarker Project of 
MIDUS 2. MIDUS is a national longitudinal study focus-
ing on individual social status, psychological profiles, and 
biological processes of aging, initiated between 1995 and 
1996 and followed 7,108 non-institutionalized Ameri-
cans aged 25 to 74 in the contiguous United States. The 
main survey collected data by phone interviews and self-
administered questionnaires.

 Of the participants, 1,255 were involved in the Bio-
marker Project of MIDUS 2, conducted from 2004 to 
2009. Samples meeting the following criteria were incor-
porated into the analyses (see Fig.  1): (1) samples that 
participated in the biomarker program and the MIDUS 
3 follow-up survey, (2) samples that provided com-
plete information on the major variables (AL and CP). 
The MIDUS is publicly accessible secondary data. More 
details of the study are available on the MIDUS website 
(Available at: http:// midus. wisc. edu/).

Measures
Allostatic load
AL biomarkers were collected from the Biomarker Pro-
ject of MIDUS 2. The project collected 12-hour urine 
samples, fasting blood samples, as well as nervous system 
function data from respondents during a one-day stay 
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at a General Clinical Research Center (GCRC) of either 
UCLA, University of Wisconsin, or Georgetown Univer-
sity, depending on the residence of respondents [20].

Following previous studies [7, 16, 21], AL was con-
structed into seven physiological systems from 27 bio-
markers (shown in Table  1). A high-risk quartile of 
biomarkers were used [22]. Dehydroepiandrosterone 
sulfate (DHEA-S) and cortisol in the upper or lower 
25th quartile were regarded as at high risk. When high-
frequency heart rate variability (HFHRV), low-frequency 
heart rate variability (LFHRV), root mean square of suc-
cessive differences (RMSSD), standard deviation of heart 
beat to heart beat intervals (SDRR), and high-density 
lipoprotein (HDL) cholesterol strength fell within their 
lower 25th quartile ranges, individuals were classified as 
high risk. Other biomarkers falling into their upper 25th 
quartile were assigned to the high-risk range. Then, bio-
markers in their high-risk quartile were coded as 1; oth-
erwise, 0. The high-risk thresholds are detailed in Table 1.

Then, LCA was used to capture the phenotypes of AL 
(package “poLCA” in R). The binary biomarkers were 
fitted into 1–7 clusters, and the selection of the opti-
mum number of cluster was based on log-likelihood, 
Akaike Information Criterion (AIC), Bayesian Infor-
mation Criterion (BIC), entropy, and interpretability of 

classification. Regarding entropy, an ideal value is close 
to 1, and above 0.8 is acceptable [23]. As for AIC and 
BIC, lower values indicate a better fit [24]. However, BIC 
tends to favor simpler models in larger samples due to its 
complexity penalty, while AIC may lean towards more 
complex models. Given these considerations, seeking 
points of inflection or plateauing for BIC and AIC can 
balance model complexity against the risk of overfitting 
[24]. Also, the classification should be meaningful from a 
clinical or a biological perspective [24]. Additionally, each 
cluster should have at least 10% of the sample [23, 24]. 
5000 iterations were set to generate convergent estima-
tion for each LCA model.

Outcome: chronic pain
CP interference and the number of CP sites from MIDUS 
3 were utilized. Respondents were first asked “Do you 
have chronic pain, that is do you have pain that per-
sists beyond the time of normal healing and has lasted 
from anywhere from a few months to many years?” An 
affirmative response indicated the presence of CP and 
the respondents were then asked about CP interference. 
A pain interference index was generated by calculating a 
mean score of how much pain interfered with respond-
ents’ activity, mood, relations, sleep, and enjoyment, 

Fig. 1 Flow diagram for the study cohort
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ranging from 0 to 10 [25, 26]. Then, the pain interference 
index was further categorized into no pain, low interfer-
ence pain (≤ 4), and high interference pain (> 4) as cate-
gorical variable [25]. In addition, if respondents reported 
having CP, they were asked about the location of the pain, 
including head, neck, back, arms, legs, shoulders, hips, 
knees, and other sites. We summed up the pain sites into 
an index and then categorized it into no pain, 0–2 sites, 
or 3 or more sites as a categorical variable [26, 27].

Covariates
Covariates were selected by current knowledge about 
the association between AL and CP [14, 15, 28]. 

Sociodemographic covariates were obtained from the 
MIDUS 2 main survey and were coded as categorical 
variables except for the age variable, which was treated 
as continuous. Sociodemographic covariates included 
gender (ref: males), age, ethnicity (ref: White), educa-
tional attainment (i.e., the highest educational certifi-
cate a respondent had obtained, ref: high school or less), 
marital status (ref: Married), and the income-to-needs 
ratio (INR, ref: Affluent) [29] which was computed by 
dividing total household income by Federal Poverty 
Threshold [30]. Additionally, behavior factors from the 
MIDUS 2 Biomarker Project were considered. They 
were alcohol intake status (ref: Moderate + drinker), 
smoking status (ref: Current smokers), and categories 
of the metabolic equivalent of task (MET, ref: Between 
500 and 1000 min per week) minutes per week [26, 31]. 
Also, the time gap between the two data collections was 
controlled for. Finally, adverse childhood experiences 
(ACEs) also possibly confound the relationship between 
AL and CP [32, 33]. In this case, we considered emo-
tional abuse and physical abuse from parents. The ACE 
data were retrospectively collected in the MIDUS 1 and 
were treated as ordinal variables.

Multimorbidity was also adjusted for [28, 34]. The 
chronic condition index summed up a count of “Yes” 
responses to the chronic conditions-related questions 
[20]. Then, the index was coded as a binary variable (Ref: 
<2) and the index more than 2 was regarded as multimor-
bidity. Since mental health conditions were already incor-
porated in this variable, there were no extra adjustments 
for depression and anxiety.

MIDUS 2 Biomarker Project enhanced medication 
reports by linking medication names and IDs to Generic 
Names and Lexi-Data database and asking respondents 
for their reasons for taking medications [20]. A binary 
variable was created to represent whether a participant 
had taken any medication from a selection of antihyper-
lipidemic agents, beta adrenergic blocking agents, antihy-
pertensive combinations, analgesics, anxiolytics sedatives 
and hypnotics, antidiabetic agents, sex hormones, thy-
roid hormones, antidepressants, and analgesics, includ-
ing opioids and non-opioids.

Analysis
Statistical methods
Regression models were chosen according to types of CP 
variables. For a binary CP variable, logistic regressions 
were used. The number of pain location and pain inter-
ference were categorical variables, therefore, multino-
mial logistic regressions were utilized. All main analyses 
presented were fully adjusted for relevant confounders 
to reduce spurious associations and were generated from 
the complete cases.

Table 1 Values for high-risk quartiles

Biomarkers Simple High 
Risk Quartile

Hypothalamic Pituitary Adrenal Axis

    DHEA-s (ug/dL) ≤ 51 or ≥ 141

    Urine cortisol (µg/g) ≤ 6.7 or ≥ 19

Sympathetic Nervous System

    Urine epinephrine (µg/g) ≥ 2.464

    Urine norepinephrine (µg/g) ≥ 32.964

    Urine Dopamine (µg/g) ≥ 182.964

Parasympathetic Nervous System

    HFHRV ≤ 55.9

    LFHRV ≤ 103.4

    RMSSD ≤ 12.02

    SDRR (ms) ≤ 23.27

Cardiovascular

    Resting heart rate (bpm) ≥ 79.8

    Resting systolic blood pressure (SBP) (mmHg) ≥ 144

    Resting diastolic blood pressure (mmHg) ≥ 82

Metabolic-glucose

    Fasting glucose ≥ 105

    Hemoglobin A1c (HbA1c) (%) ≥ 6.242

    Homeostasis model of insulin resistance (HOMA-IR) ≥ 4.36

Metabolic-lipids

    Triglycerides (mg/dL) ≥ 156

    Waist-to-hip ratio (WHR) ≥ 0.965

    Body mass index (BMI) (kg/m2) ≥ 33.028

    Low-density lipoprotein (LDL) cholesterol (mg/dL) ≥ 127

    High-density lipoprotein (HDL) cholesterol (mg/dL) ≤ 43

Inflammation

    C-reactive protein (CRP) (mg/L) ≥ 3.655

    Interleukin-6 (IL6) (pg/mL) ≥ 1.23

    Tumor necrosis factor-α (TNF-α) (pg/mL) ≥ 2.51

    Fibrinogen (mg/dL) ≥ 399

    Soluble endothelial leukocyte adhesion molecule-1 (sE-
Selectin) (ng/mL)

≥ 51.88

    Soluble intercellular adhesion molecule-1 (ICAM-1) (ng/mL) ≥ 335.185

    Blood fasting insulin-like growth factor 1 (IGF1) (ng/mL) ≥ 157
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Three sensitivity analyses were applied. Firstly, data 
missingness can lead to biased estimation [35, 36]. Mul-
tiple imputation (MI) using the R package “MICE” [37] 
was employed to address item nonresponse, based on 
the assumption of missing at random (MAR). Missing 
covariates were imputed in accordance with the spe-
cific distribution of each item, as recommended [36]. 
Twenty imputed datasets were generated, and the coef-
ficients from all statistical models were combined using 
Rubin’s rules. ANOVA tests and chi-squared tests were 
performed respectively for continuous variables and 
categorical variables to check the similarity of imputed 
datasets and the observed dataset. Secondly, bootstrap-
ping method was used to estimate the variability and 
robustness of coefficients [38]. A total of 5000 bootstrap 
samples were generated with replacement, each with 
the same sample size as the original dataset. The boot-
strapping process was conducted by R. Finally, CP status 
at MIDUS 2 was incorporated into the model and the 
binary measure of medication intake at MIDUS 2 was 
substituted with specific individual medications.

Results
Descriptive statistics
Table  2 displays the descriptive statistics of the ana-
lytic sample (N = 781). 62.7% of participants reported 
no CP  and 37.3% of participants reported the presence 
of CP. 24.6% of participants had low-interference pain, 
and 12.7% of participants had high-interference pain. In 
terms of the number of pain locations, 23.8% of partici-
pants reported 0–2 pain sites and 13.4% of participants 
reported 3 or more pain sites. The majority of respond-
ents were females, non-Hispanic whites, affluent, and 
married, with over 48% of respondents being highly 
educated (above high school degree). Additionally, there 
were no significant differences between observed data-
set and imputed datasets, supporting the validity of the 
imputation process.

Supplement Table 1 presents the fit statistics for latent 
class model with 1–7 clusters, the 3-cluster model was 
considered the optimal clustering. Despite the continu-
ous reduction in AIC and BIC, along with the progres-
sive improvement in log-likelihood, the enhancement in 
the fitness of the model with 4 and 5 clusters was rather 
moderate. On the other hand, the 3-cluster model exhib-
ited the best entropy, suggesting a good classification. 
Additionally, the 3-cluster model had an ample number 
of observations within each cluster and presented mean-
ingful separation. Therefore, the 3-cluster model was 
adopted.

According to Supplement Table 2, class 1 is designated 
as ‘Baseline’ due to its association with a low risk across 
most biomarkers. Class 2, termed ‘Parasympathetic 

Dysregulation,’ is distinguished by significantly lower val-
ues in HFHRV, LFHRV, RMSSD, and SDRR, suggesting 
potential impairments in parasympathetic system func-
tioning. Class 3 is characterized by marked increases in 
fasting glucose, HbA1c, HOMA-IR, triglycerides, WHR, 
and BMI, coupled with a notable decrease in HDL con-
centrations. These characteristics are consistent with the 
physiological patterns commonly observed in metabolic 
dysregulation. Figure  2  shows the phenotypes of AL. 
51.6% of the participants were classified as low AL risk 
group, 24.2% of participants were in the phenotype of 
parasympathetic dysregulation, and an additional 24.2% 
demonstrated signs of metabolic dysregulation.

Model results
Table 3 presents regression results. In the fully adjusted 
binary logistic regression models, there was no statisti-
cally significant association between any AL dysregula-
tion phenotype and CP status compared to the low AL 
risk phenotype.

In the multinomial logistic regression models (Table 4), 
the prospective association between the metabolic dys-
regulation phenotype and high-interference CP was 
significant (RRR = 2.00, 95% CI: 1.06, 3.79, P < 0.05), 
compared to the baseline phenotype. In the prospective 
association between the number of pain sites and bio-
logical dysregulation phenotypes, metabolic dysregula-
tion was significantly associated with 3 or more CP sites 
(RRR = 2.03, 95% CI: 1.08, 3.83, P < 0.05). There were no 
other significant associations found. In the sensitivity 
analyses, the results remained similar. The similar results 
generated from the imputed datasets indicated that data 
missingness did not significantly biased the estimates. 
Also, the results generated from the bootstrapping sam-
ples were similar to the main analyses, indicating that the 
association was expected to persist even when account-
ing for potential uncertainties. Finally, after extra adjust-
ing for medication intakes as separate factors and CP 
status at MIDUS 2, the results remained stable. Supple-
ment Table 3 displays the full models for examining the 
relationship between AL phenotypes and CP status, CP 
interference, and the number of CP locations.

Predicted probabilities
Table  5 presents the adjusted prevalence for CP out-
comes grouped by AL phenotypes. Using the average 
adjusted predicted probabilities from the models, we 
calculated the probability of CP outcomes by AL pheno-
types. The metabolic dysregulation phenotype was sig-
nificantly associated with high-interference pain and 3 
or more CP sites as shown in Table 4. Respondents with 
the metabolic dysregulation phenotype were more likely 
to experience a higher degree of CP conditions than 



Page 6 of 12Liang and Booker  BMC Public Health          (2024) 24:416 

Table 2 Sample description

Observed dataset Imputed dataset

Variable Mean / N SD / Proportion Median Proportion 
of available 
value

Mean / N SD / Proportion Median Test

Pain interference at MIDUS 3 781 1.000 X2 = 0

    No pain 490 62.74% 62.74%

    Low interference pain 192 24.58% 24.58%

    High interference pain 99 12.68% 12.68%

Number of pain sites at MIDUS 3 781 1.000 X2 = 0

    No pain 490 62.74% 62.74%

    0–2 186 23.81% 23.81%

    3+ 105 13.44% 13.44%

Allostatic load phenotypes 781 1.000 X2 = 0

    Baseline 403 51.60% 51.60%

    Parasympathetic dysregulation 189 24.20% 24.20%

    Metabolic dysregulation 189 24.20% 24.20%

Sociodemographic
    Education 780 0.999 X2 = 0

        High school or less 397 50.90% 50.90%

        Bachelor’s degree 233 29.90% 29.90%

        Master’s degree and above 150 19.20% 19.20%

    Gender 781 1.000 X2 = 0

        Male 351 44.90% 44.90%

        Female 430 55.10% 55.10%

 Age 54 10.907 54 1.000 54 10.9 54 F = 0

Race/ethnicity 780 0.999 X2 = 0

    White 723 92.70% 92.70%

    Non-white 57 7.30% 7.30%

Marital Status 780 0.999 X2 = 0

    Married 570 73.10% 73.10%

    Divorced & Separated 113 14.50% 14.50%

    Never married & Widowed 97 12.40% 12.40%

Income-to-needs ratio 767 0.982 X2 = 0.008

    Affluent 437 57% 57%

    Adequate-income 211 27.50% 27.50%

    Low-income or below 119 15.50% 15.50%

Year gap between data collections
    MIDUS 2 Biomarker Project to MIDUS 3 6.7 1.249 6.833 1.000 6.7 1.249 6.833 F = 0

Childhood adversity
    Childhood parent emotional abuse 724 0.927 X2 = 0.1

        1 (Never) 225 31.10% 30.70%

        1.5 111 15.30% 15.40%

        2 200 27.60% 27.40%

        2.5 101 14% 14.20%

        3 (Most frequent) 87 12% 12.20%

    Childhood parent physical abuse 732 0.937 X2 = 0.147

        1 (Never) 309 42.20% 41.90%

        1.5 116 15.80% 16.20%

        2 184 25.10% 24.90%

        2.5 71 9.70% 10%

        3 (Most frequent) 52 7.10% 7.10%



Page 7 of 12Liang and Booker  BMC Public Health          (2024) 24:416  

those with a low AL risk profile. Specifically, those with 
metabolic dysregulation driven AL had a 4.88% adjusted 
probability of reporting high pain interference and had a 
4.58% adjusted probability of reporting more than 3 pain 
locations. In contrast, these probabilities were lower, at 
2.48% and 2.29% respectively, among respondents with a 
baseline AL profile.

Discussion
The present study identified three phenotypes of AL 
through LCA, encompassing low levels of biological dys-
regulation, AL driven by parasympathetic dysregulation, 
and AL driven by metabolic dysregulation. Also, consist-
ent with previous research [14, 15, 39, 40], we found that 
AL driven by metabolic dysregulation is associated with 
more severe CP interference and a greater number of 
CP sites. For instance, a cross-sectional study based on 
a sample of population aged over 50 in the UK revealed 
that, after controlling for sociodemographic factors and 
comorbid conditions, high-risk biomarker, defined by the 
upper quartile and including HDL, HBA1c, and WHR, 
are related to increased severity of CP [15]. Similarly, in 

American adults, higher BMI and triglyceride levels are 
associated with a higher prevalence of widespread bodily 
pain [14].

Compared to previous studies, our research offers sev-
eral advantages. Firstly, we employed a more compre-
hensive set of biomarkers, including those from the HPA 
axis, and the sympathetic and parasympathetic nervous 
systems, to construct a more valid AL measurement [7]. 
Moreover, our use of LCA to identify AL phenotypes 
captured the common variability of biomarkers, while 
previous studies that used single biomarkers for regres-
sion with CP  to examine the  AL driving systems of CP 
overlooked the interrelationships among biomarkers 
within the AL framework [14, 15]. On the other hand, 
prior operationalizations of AL, based on summative 
computation that assigns equal weight to each biomarker, 
may obscure the specific impacts of different AL compo-
nents on CP. In summary, LCA offers a nuanced method 
for exploring the specific components of AL that drive 
CP.

Furthermore, this study’s strengths include its prospec-
tive design, community-dwelling sample, adjustments 
for early confounders, and the substantial avoidance of 

Statistical significance markers: * p < 0.1; ** p < 0.05; *** p < 0.01

Table 2 (continued)

Observed dataset Imputed dataset

Variable Mean / N SD / Proportion Median Proportion 
of available 
value

Mean / N SD / Proportion Median Test

Health behavior
    Total number of Metabolic Equivalent 
of Task (MET) minutes per week

776 0.994 X2 = 0.001

        500–1000 151 19.50% 19.50%

        Greater than 1000 319 41.10% 41.10%

        Less than 500 306 39.40% 39.40%

    Smoking behavior 780 0.999 X2 = 0

        Current Smoker 87 11.20% 11.10%

        Ex-Smoker 247 31.70% 31.70%

        Non-Smoker 446 57.20% 57.20%

    Drinking behavior 781 1.000 X2 = 0

        Moderate + drinker 308 39.40% 39.40%

        Light drinker 228 29.20% 29.20%

        Non-drinker or rarely drink 245 31.40% 31.40%

Health conditions
    Multimorbidity 781 1.000 X2 = 0

        <2 168 21.50% 21.50%

        2+ 613 78.50% 78.50%

Medication
    Medication intake 781 1.000 X2 = 0

        Yes 204 26.10% 26.10%

        No 577 73.90% 73.90%
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trivial and recent pain in measurement by adhering to the 
definition of CP in terms of pain duration. Thus far, this 
research may be the first community-dwelling study to 
examine the prospective association between AL and CP.

However, this study also has limitations. Firstly, the 
measurement of pain is self-reported. Even when con-
trolling for potential reporting biases from relevant 
sociodemographic factors, unobserved factors can still 
introduce biases in pain assessment. Furthermore, the 
variability in CP measures across various surveys partly 
limits the comparability of findings. For instance, the 
MIDUS survey assesses pain interference, which dif-
fers from the pain severity measurements used in other 
studies. While pain interference is associated with pain 
severity, the association  is affected by patients’ beliefs 
about pain, their tendency towards catastrophizing, and 
their pain coping strategies. These factors can alter the 
relationship between pain interference and pain sever-
ity [41]. Therefore, there is a need for further prospective 
research to explore the link between AL and CP severity 
in more depth.

Additionally, the available data on AL was only col-
lected in MIDUS 2 during our research, however, the 
upcoming biomarker data present opportunities for 
future research on the association between AL tra-
jectories and the development of CP. Also, the sample 
composition is predominantly white people, and future 

Fig. 2 Identified phenotypes of allostatic load

Table 3 Results from the logistic regression for the association 
between AL at MIDUS 2 Biomarker Project and CP status at 
MIDUS  3†

The bold values denote statistically significant results
a Medications included antihyperlipidemic agents, beta adrenergic blocking 
agents, antihypertensive combinations, analgesics, anxiolytics sedatives and 
hypnotics, sex hormones, thyroid hormones, antihistamines, antidepressants, 
analgesic (both opioids and non-opioids)

Statistical significance markers: * p < 0.05; ** p < 0.01; *** p < 0.001  (No *, **, *** in 
the table indicates no statistical signficance)

 †Adjusted for gender, age at MIDUS 2, race/ethnicity, marital status at MIDUS 
2, INR at MIDUS 2, emotional/physical abuse from parents, multimorbidity 
at MIDUS 2 Biomarker Project, MET, drinking behavior, smoking behavior, 
medication intake (yes/no) and year gap between MIDUS 2 Biomarker Project 
and MIDUS 3 main surveys 

No CP vs. reporting CP 
in MIDUS 3

AL phenotypes Odds ratios (95% CI)

Baseline Ref

Parasympathetic dysregulation

    Main analysis 0.97 (0.64, 1.48)

    Sensitivity analysis

        Multiple Imputation 1.04 (0.7, 1.55)

        Bootstrapping Method (5000 iterations) 0.85 (0.51, 1.43)

        Adjustment for CP at MIDUS 2 and individual  medicationsa 1.01 (0.64, 1.6)

Metabolic dysregulation

    Main analysis 1.18 (0.76, 1.81)

    Sensitivity analysis

        Multiple Imputation 1.14 (0.77, 1.7)

        Bootstrapping Method (5000 iterations) 1.40 (0.8, 2.45)

        Adjustment for CP at MIDUS 2 and individual  medicationsa 1.18 (0.74, 1.89)
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studies focusing on ethnic minorities are encouraged. 
Moreover, our findings from the U.S. data may not gen-
eralize to other countries due to differences in health 
care systems, lifestyle choices, and the impact of soci-
ocultural variables on the reporting and perception of 
pain. Lastly, this study only examined the prospective 
association in one direction and future research on 
the reverse association may be beneficial elucidate the 
causal direction.

While the underlying mechanism remains undeter-
mined, several potential explanations could account 
for the prospective positive association between the 

metabolic dysregulation phenotype of allostatic load and 
both high-interference pain as well as an increased num-
ber of pain sites. The AL model proposes, when under-
going repeated stress adaptation, the prolonged secretion 
of stress hormones and inflammatory cytokines can dis-
rupt the normal regulation of downstream physiological 
systems, such as the metabolic system [7]. Dyslipidemia 
and high BMI may be associated with upregulation of 
cytokines, leading to low-grade inflammation, a con-
dition frequently observed in patients with fibromyal-
gia [42]. Additionally, a high waist-to-hip ratio may be 
related to structural changes in intervertebral discs and 

Table 4 Results from the multinomial logistic regression for the association between AL at MIDUS 2 Biomarker Project and CP 
interference and the number of CP sites at MIDUS  3†

The proportional odds assumption for ordinal logistic regression was violated. Therefore, multinomial logistic regression was opted for
a Medications included antihyperlipidemic agents, beta adrenergic blocking agents, antihypertensive combinations, analgesics, anxiolytics sedatives and hypnotics, 
sex hormones, thyroid hormones, antihistamines, antidepressants, analgesic (both opioids and non-opioids)

 †Adjusted for gender, age at MIDUS 2, race/ethnicity, marital status at MIDUS 2, INR at MIDUS 2, emotional/physical abuse from parents, multimorbidity at MIDUS 
2 Biomarker Project, MET, drinking behavior, smoking behavior, medication intake (yes/no) and year gap between MIDUS 2 Biomarker Project and MIDUS 3 main 
surveys

Statistical significance markers: * p < 0.05; ** p < 0.01; *** p < 0.001 (no **, *** in the table indicates no such statistical significance was found); the bold values denote 
statistically significant results

No pain vs. low-interference pain No pain vs. high-interference pain
AL phenotypes Relative risk ratios (95% CI) Relative risk ratios (95% CI)
Baseline Ref Ref

Parasympathetic dysregulation
    Main analysis 0.87 (0.54, 1.39) 1.24 (0.65, 2.39)

    Sensitivity analysis
        Multiple Imputation 0.96 (0.61, 1.49) 1.22 (0.66, 2.26)

        Bootstrapping Method (5000 iterations) 0.82 (0.49, 1.38) 0.99 (0.41, 2.38)

        Adjustment for CP at MIDUS 2 and individual  medicationsa 0.93 (0.56, 1.53) 1.23 (0.60, 2.55)

Metabolic dysregulation
    Main analysis 0.92 (0.56, 1.52) 2.00 (1.06, 3.79)*
    Sensitivity analysis
        Multiple Imputation 0.92 (0.58, 1.46) 1.82 (1.01, 3.28)*
        Bootstrapping Method (5000 iterations) 1.08 (0.58, 2.02) 2.46 (1.10, 5.47)*
        Adjustment for CP at MIDUS 2 and individual  medicationsa 0.94 (0.55, 1.59) 2.03 (1.01, 4.11)*

No pain vs. 0–2 pain locations No pain vs. 3 + pain locations
AL phenotypes Relative risk ratios (95% CI) Relative risk ratios (95% CI)
Baseline Ref Ref

Parasympathetic dysregulation
    Main analysis 0.84 (0.51, 1.36) 1.30 (0.69, 2.44)

    Sensitivity analysis
        Multiple Imputation 0.91 (0.58, 1.45) 1.33 (0.73, 2.39)

        Bootstrapping Method (5000 iterations) 0.85 (0.50, 1.46) 0.83 (0.27, 2.62)

        Adjustment for CP at MIDUS 2 and individual  medicationsa 0.90 (0.54, 1.51) 1.22 (0.61, 2.42)

Metabolic dysregulation
    Main analysis 0.89 (0.54, 1.47) 2.03 (1.08, 3.83)*
    Sensitivity analysis
        Multiple Imputation 0.91 (0.57, 1.44) 1.85 (1.03, 3.34)*
        Bootstrapping Method (5000 iterations) 1.00 (0.55, 1.81) 2.57 (1.15, 5.76)*
        Adjustment for CP at MIDUS 2 and individual  medicationsa 0.89 (0.52, 1.52) 2.09 (1.06, 4.11)*
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being consistently subjected to high biomechanical loads 
[43]. This highlights the significant role that metabolic 
dysregulation related to adiposity may play in low back 
pain. Meanwhile, elevated blood glucose is associated 
with peripheral neuropathy or synergistically interacts 
with high BMI and the sequential inflammation, thereby 
potentially increasing the likelihood of experiencing daily 
pain [44]. Also, metabolic dysregulation could potentially 
reduce the pain activation threshold via its interplay with 
inflammatory mechanisms. This interaction may inten-
sify pain response by increasing synaptic strength and 
reducing inhibition, allowing even low-threshold stimuli 
to activate pain pathways [45, 46].

Nevertheless, we did not find any prospective asso-
ciations between AL driven by the parasympathetic 
nervous system and CP. Low parasympathetic nervous 
system activity may represent low capacity to respond 
to chronic stress. A meta-analysis, which thoughtfully 
sieved through 26 moderate-high-quality studies from a 
pool of 17,350 publications, uncovered that biomarkers 
relating to the parasympathetic nervous system (LFHRV, 
HFHRV, RMSSD, R-R interval, and SDRR) exhibited 
an association with CP [47]. However, the association 
appears to be predominantly influenced fibromyalgia 
and its significance may vary across CP conditions [5]. 
CP may also maladapt parasympathetic nervous system 
directly. Therefore, future research is encouraged to focus 
on exploring the potential links between the parasym-
pathetic nervous system and different subtypes of CP to 
clarify these relationships.

Conclusion
In conclusion, our findings indicate that metabolic dys-
regulation as a phenotype of AL is prospectively associ-
ated with high-interference CP and 3 or more CP sites. 
Differentiating nuances of biological dysregulation of AL 
could facilitate the development of precise clinical inter-
ventions aimed at specific biological mechanisms, which 
may alleviate the impacts of AL on the conditions of CP.
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