Review

Risk factors for multimorbidity in adulthood: A systematic review ${ }^{\text {T}}$

Clare Tazzeo ${ }^{\text {a, } 1}$, Alberto Zucchelli ${ }^{\text {a b, }, 1, *}$, Davide Liborio Vetrano ${ }^{\text {a }}$, Jacopo Demurtas ${ }^{\text {c }}$, Lee Smith ${ }^{\mathrm{d}}$, Daniel Schoene ${ }^{\mathrm{e}, \mathrm{f}, \mathrm{g}}$, Dolores Sanchez-Rodriguez ${ }^{\mathrm{h}, \mathrm{i}, \mathrm{j}}$, Graziano Onder ${ }^{\mathrm{k}}$, Cafer Balci ${ }^{1}$, Silvia Bonetti ${ }^{\mathrm{b}}$, Giulia Grande ${ }^{\mathrm{a}}$, Gabriel Torbahn ${ }^{\mathrm{m}, \mathrm{n}, \mathrm{o}}$, Nicola Veronese ${ }^{\mathrm{p}}$, Alessandra Marengoni ${ }^{\mathrm{a}, \mathrm{b}}$
${ }^{\text {a }}$ Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
${ }^{\mathrm{b}}$ Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
${ }^{\text {c }}$ Primary Care Department USL Toscana Sud Est, AFT Orbetello, Italy
${ }^{\mathrm{d}}$ Centre for Health, Performance and Wellbeing, Anglia Ruskin University, Cambridge, UK
${ }^{\mathrm{e}}$ Friedrich-Alexander University Erlangen-Nürnberg, Institute of Medical Physics, Erlangen, Germany
${ }^{\mathrm{f}}$ Leipzig University, Institute of Exercise and Public Health, Leipzig, Germany
${ }^{g}$ Robert-Bosch-Hospital, Department of Clinical Gerontology, Stuttgart, Germany
${ }^{\mathrm{h}}$ Geriatrics Department, Brugmann university hospital, Université Libre de Bruxelles, Brussels, Belgium
${ }^{i}$ WHO Collaborating Centre for Public Health Aspects of Musculo-Skeletal Health and Ageing, Division of Public Health, Epidemiology and Health Economics, University of Liège, Liège, Belgium
${ }^{j}$ Geriatrics Department, Parc Salut Mar, Rehabilitation Research Group, Hospital Del Mar Medical Research Institute (IMIM), Barcelona, Spain
${ }^{\mathrm{k}}$ Department of Geriatric and Orthopedic sciences, Università Cattolica del Sacro Cuore, Roma, Italy
${ }^{1}$ Hacettepe University Faculty of Medicine Division of Geriatric Medicine, Turkey
${ }^{m}$ Department of Pediatrics, Paracelsus Medical University, Klinikum Nürnberg, Universitätsklinik der Paracelsus Medizinischen Privatuniversität Nürnberg, Nuremberg, Germany
${ }^{\mathrm{n}}$ Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
${ }^{\text {o }}$ Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany
${ }^{\mathrm{p}}$ Department of Internal Medicine, Geriatrics Section, University of Palermo, Palermo, Italy

ARTICLE INFO

Keywords:

Multimorbidity
Multiple chronic diseases
Risk factors

Abstract

Background: Multimorbidity, the coexistence of multiple chronic diseases in an individual, is highly prevalent and challenging for healthcare systems. However, its risk factors remain poorly understood. Objective: To systematically review studies reporting multimorbidity risk factors. Methods: A PRISMA-compliant systematic review was conducted, searching electronic databases (MEDLINE, EMBASE, Web of Science, Scopus). Inclusion criteria were studies addressing multimorbidity transitions, trajectories, continuous disease counts, and specific patterns. Non-human studies and participants under 18 were excluded. Associations between risk factors and multimorbidity onset were reported. Results: Of 20,806 identified studies, 68 were included, with participants aged 18-105 from 23 countries. Nine risk factor categories were identified, including demographic, socioeconomic, and behavioral factors. Older age, low education, obesity, hypertension, depression, low pysical function were generally positively associated with multimorbidity. Results for factors like smoking, alcohol consumption, and dietary patterns were inconsistent. Study quality was moderate, with 16.2% having low risk of bias. Conclusions: Several risk factors seem to be consistently associated with an increased risk of accumulating chronic diseases over time. However, heterogeneity in settings, exposure and outcome, and baseline health of participants hampers robust conclusions.

[^0]
1. Background

Research on multimorbidity, the coexistence of two or more chronic diseases in the same individual, is growing exponentially, with 80% of papers on the subject being published post 2010^{1}. Investigations into the epidemiology of multimorbidity have included its prevalence in different settings and populations, patterns of multimorbidity, clinical guidelines, and associated outcomes (Xu et al., 2017). Although the prevalence of multimorbidity varies across studies depending on the number of diseases evaluated, there is consensus that most community-dwelling older persons are affected by multiple chronic diseases (Calderon-Larranaga et al., 2017). Multimorbidity threatens healthcare systems sustainability; it has been associated with many adverse outcomes such as functional dependence (Rizzuto et al., 2017), poor quality of life (Makovski et al., 2019), and shorter life expectancy (Rizzuto et al., 2017). In terms of health inequities, multimorbidity is problematic; it is premature and overrepresented in younger adults living in areas with socio-economic deprivation, with some evidence of an expansion over time (Head et al., 2021). Multimorbidity is frequently associated with polypharmacy, drug-drug interactions, drug-disease interactions and, consequently, adverse drug reactions (Marengoni and Onder, 2015), making multimorbidity care and management a complex task for healthcare systems and professionals.

Identifying risk factors for multimorbidity is crucial to effectively tailor targeted interventions and management strategies. A diverse array of potential risk factors exists, spanning demographic elements, biological aging, socio-economic factors, and lifestyle aspects, among others.

The overall objective of this systematic review is to identify observational studies reporting data on risk factors for multimorbidity. The specific aims are: 1) to identify the association between risk factors and incident multimorbidity in adult persons affected by no or one chronic disease at baseline; 2) to identify the association between risk factors and an increase in the number of chronic conditions during follow-up in persons with baseline multimorbidity; and 3) to identify the association between risk factors and specific multimorbidity patterns.

2. Methods

We performed a systematic review according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for reporting systematic reviews and meta-analyses (Liberati et al., 2009). The protocol of this review has been recorded in the International Prospective Register of Systematic Reviews (PROSPERO) (protocol number CRD42019123304).

2.1. Search strategy and selection criteria

We searched the following electronic bibliographic databases (until March 3rd 2022): MEDLINE, EMBASE, Web of Science, and Scopus, using the search string in Appendix A. Additional sources (i.e., references, supplementary files, and appendices) from selected articles were also considered for inclusion. Covidence (Veritas Health Innovation, 2022) was used for data management, and titles and/or abstracts of studies retrieved from the systematic literature search, and those from additional sources, were screened independently by two review authors to identify potentially eligible studies. The full texts of these studies were retrieved and independently assessed for eligibility by two review team members. Any disagreement regarding the inclusion of specific studies was resolved via discussion with a third senior reviewer.

2.2. Inclusion and exclusion criteria

Only longitudinal studies, either cohort or case-control, were included. Studies evaluating community-dwelling or institutionalized individuals were included.

Given that several definitions of multimorbidity have been proposed, we searched for multimorbidity, defined as the simultaneous presence of multiple chronic diseases in the same individual - irrespective of the cutoff used in the study (Calderon-Larranaga and Fratiglioni, 2019). Studies with one disease as an outcome were included if the participants already had at least one disease at baseline. Studies investigating specific multimorbidity patterns, continuous disease count, multimorbidity trajectories, and transitions from zero or one to two or more diseases were included.

Exclusion criteria were: non-human studies, those involving participants aged less than 18 years, experimental studies, randomized controlled trials, literature reviews, meta-analyses, case reports, editorials, abstracts, commentaries, and book chapters.

3. Data extraction and analysis

A standardized, pre-piloted form was used to extract data from the included studies. Two review authors independently extracted data and discrepancies were identified and resolved through discussion (with a third author where necessary).

Extracted information included:

- General information on the study (authors, year of publication, country, study design, analytical sample size, baseline health status inclusion and exclusion criteria)
- Information about participants (age and sex)
- Information about any possible risk factors (e.g., demographic, behavioural, socioeconomic, health status, mental health, cardiovascular risk factors, family history, childhood experiences etc.)
- Primary outcome
- Brief summary of study findings
- Information for assessing the risk of bias using the Newcastle-Ottawa Scale (NOS) (Stang, 2010)

3.1. Evaluation of the quality of the studies

The NOS was used to assess the quality of the included studies. The evaluation was carried out by two reviewers, independently. Any discrepancies were resolved by a third reviewer. The NOS consists of two different checklists: one for the evaluation of cohort studies, and one for case-control studies. Each of the two checklists includes scores for selection (maximum score 4), comparability (maximum score 2), and the outcome (maximum score 3), resulting in a total maximum score of 9 . Scores >7 were considered low risk, 5-7 moderate risk, and <5 high risk of bias (Luchini et al., 2017; Wells et al., 2023).

4. Results

4.1. General description of the included studies

Fig. 1 displays a PRISMA flow chart of studies included in this systematic review, including the number of papers identified in PubMed, Web of Science, and Embase, as well as the number of, and reason for, study exclusion. Of the 20806 abstracts identified in the search, 275 were selected for full-text reading. Reapplication of the eligibility criteria for full-text review resulted in 68 studies (Almas et al., 2019; Aminisani et al., 2019; Arias-de la Torre et al., 2021; Balogun et al., 2021; Bisquera et al., 2022; Blümel et al., 2020; Calderón-Larrañaga et al., 2019, 2020, 2021; Chau et al., 2021; Demirchyan et al., 2013; Dhalwani et al., 2016; Dibato et al., 2021; Fabbri et al., 2015a, 2015b, 2015c; Freisling et al., 2020; Gondek et al., 2021; Han et al., 2021; Henchoz et al., 2019; Hlaing-Hlaing et al., 2021; Humphreys et al., 2018; Hussin et al., 2019; Irshad and Dash, 2022; Jackson et al., 2015, 2016; Katikireddi et al., 2017; Khanolkar et al., 2021; Ki et al., 2017; Kivimäki et al., 2017; Li et al., 2021, 2022; Lin et al., 2021; Liu et al.,

Fig. 1. PRISMA 2020 flow diagram.

2022; Lu et al., 2021; Melis et al., 2014; Moin et al., 2021; Mounce et al., 2018; Pérez et al., 2020; Petermann-Rocha et al., 2021; Peterson et al., 2021; Poole and Steptoe, 2018; Qiao et al., 2021, 2022; Quiñones et al., 2019; Rocca et al., 2017; Ryan et al., 2018; Schäfer et al., 2019; Schramm et al., 2022; Seo, 2019; Shang et al., 2020a, 2020b; Singh-Manoux et al., 2018; Sutin et al., 2013; Tajik et al., 2022; Tomasdottir et al., 2016; Vall Castelló and Tubianosa, 2020; van den Akker et al., 2000, 2001; Waller et al., 2010; Wikström et al., 2015; Willroth et al., 2021; Xu et al., 2018, 2019a, 2019b, 2020; Zhang et al., 2022; Zou et al., 2022) being included in this systematic review. Table 1 reports a summary of the associations (positive, negative, inconsistent, or no association) between the risk factors and multimorbidity. Detailed summaries of the results for each individual study are reported in Table S1.

4.2. Characteristics of the included studies

The studies were published between the years 2000 and 2022 in 23 different countries, 13 European and ten outside Europe. The number of study participants varied from 190 to 826,936 . The age of the participants included in the studies ranged from 18 to 105 years. Nine studies only included women (Blümel et al., 2020; Hlaing-Hlaing et al., 2021; Jackson et al., 2015, 2016; Rocca et al., 2017; Xu et al., 2018, 2019a, 2019b, 2020). The included studies, beyond those looking at early-life exposures, had a maximum follow-up ranging from one point five to 33 years; in total, 34 studies had a follow-up ≥ 10 years.

4.3. Synthesis of the results

The majority of the articles included in this review took into consideration, either directly or indirectly, age as one of the possible risk factors for the development of multimorbidity. Bisquera et al (Bisquera et al., 2022). showed that persons aged 60-79 had almost 8 the hazard of developing multimorbidity in comparison with those aged 18-39. Similar results were also reported by others (Chau et al., 2021; Fabbri et al., 2015b; Irshad and Dash, 2022; Li et al., 2021; Moin et al., 2021; Mounce et al., 2018; Ryan et al., 2018; Schäfer et al., 2019; Seo, 2019; Vall Castelló and Tubianosa, 2020). Lu et al (Lu et al., 2021). reported that age was associated with an increased risk of developing another chronic condition among participant with one condition at baseline, but such association disappeared when considering persons without any chronic condition at the first assessment. The association between older age and multimorbidity was similarly inconsistent in the study by Peterson et al (Peterson et al., 2021).: age was consistently associated with an higher risk of the development of multiple chronic conditions in women, but not in men. Van den Akker et al (van den Akker et al., 2001). also found that only advanced age ($70+$), in comparison with age 20-29, was associated with an increased risk of developing multimorbidity: no association was found for other age groups. A similar result was reported in another study by the same authors (van den Akker et al., 2001). However, other authors did not find any association between age and incident multimorbidity (Aminisani et al., 2019; Hussin et al., 2019). Finally, some authors used age or age groups to adjust or isolate the effect of other risk factors on the development of

Table 1
Characteristics and summary of main findings of the studies.

Author and year	Study design	Country	Analytical sample size	Age (mean or range)	Sex female (\%)	Baseline health status criteria	Time of follow-up	Outcome	Findings	NOS score
Almas et al. 2019	Cohort	Sweden	10,074	20-64	56	No MI, angina, or stroke	13 years	Incident CVD in those with $1+$ diseases at baseline	Concurrent depression and non-CVD morbidity ($\mathrm{HR}=2.0$; $95 \% \mathrm{CI}=1.1-3.3$), as well as depression ($\mathrm{HR}=1.3 ; 95 \% \mathrm{CI}$ $=1.0-2.0$) and non-CVD morbidity ($\mathrm{HR}=1.4 ; 95 \% \mathrm{CI}=$ 1.0-2.0), alone, were associated with incident CVD.	8
$\begin{aligned} & \text { (Aminisani et al., } \\ & \text { 2019) } \end{aligned}$	Cohort	New Zealand	1673	55-70	52	No multimorbidity at baseline	10 years	$2+\text { chronic }$ diseases	Being separated/divorced/single/widowed ($O R=1.18$; $95 \% \mathrm{CI}=1.01-1.37$), having hypertension ($\mathrm{OR}=1.23$; 95\% $\mathrm{CI}=1.02-1.48$), and having a chronic condition at baseline ($\mathrm{OR}=2.92$; $95 \% \mathrm{CI}=2.33-3.67$) were significant risk factors for multimorbidity. The following variables were not found to be significant predictors of multimorbidity, and the results were not reported: age, sex, Māori ethnicity, education, income, smoking, alcohol consumption, physical activity, and body mass index.	6
Arias-de la Torre. 2021	Cohort	United Kingdom	15,845	$23+$	49	Excluded those with current/past physical multimorbidity	3 decades	Physical multimorbidity (2 + self-reported long-term physical conditions)	Depressive symptoms were associated with physical multimorbidity development across adulthood, at ages: 34 years $(\mathrm{RRR}=1.67 ; 95 \% \mathrm{CI}=1.50-1.87), 42$ years $(\mathrm{RRR}=$ $1.63 ; 95 \% \mathrm{CI}=1.48-1.79$), and 46 years $(\mathrm{RRR}=1.58 ; 95 \%$ $\mathrm{CI}=1.43-1.73$). Analyses where multimorbidity was categorized as 2 , 3 , and $4+$ diseases were also performed.	8
Balogun et al. 2021	Cohort	Australia	373	$\begin{aligned} & 50+\text {, mean } \\ & =61 \end{aligned}$	46	Excluded those with multimorbidity at baseline	10 years	$2+\text { chronic }$ diseases	BMI per $\mathrm{kg} / \mathrm{m}^{2}(\mathrm{RR}=1.05 ; 95 \% \mathrm{CI}=1.02-1.08)$ and total body fat mass per $\mathrm{kg}(\mathrm{RR}=1.03 ; 95 \% \mathrm{CI}=1.01-1.04)$ were associated with multimorbidity. Increases in 1000 steps/day in those with less than 10000 steps/day ($R R=0.91$; 95\% CI $=0.85-0.97$), relative lean muscle mass per $0.1 \mathrm{~kg} / \mathrm{kg} / \mathrm{m} 2$ ($\mathrm{RR}=0.93$; 95\% CI $=0.88-0.98$), and relative handgrip strength per $0.1 \mathrm{psi} / \mathrm{kg} / \mathrm{m} 2(\mathrm{RR}=0.85$; $95 \% \mathrm{CI}=$ $0.77-0.94$) were protective against multimorbidity. The following were not statistically significantly associated with multimorbidity: absolute lean muscle mass per $\mathrm{kg}(\mathrm{RR}=$ $1.00 ; 95 \% \mathrm{CI}=0.98-1.02$); increases in 1000 steps/day in those with $10,000+$ steps/day $(\mathrm{RR}=1.04 ; 95 \% \mathrm{CI}=$ $0.93-1.09$; and absolute handgrip strength per $\mathrm{psi}(\mathrm{RR}=$ 0.97; 95\% CI = 0.93-1.01).	7
(Bisquera et al.,	Cohort	United	826,936	$18+$, mean	52	N/A	Median	Transitioning from	Risk factors for transitioning from 1 to 2 conditions	8

included age 40-59 yoars (ref 1 to 2 conditions included: age $40-59$ years (ref. $=18-39$ years; $\mathrm{HR}=1.87$ $95 \% \mathrm{CI}=1.81-1.94$); age $60-79$ years (ref $=18-39$ years $\mathrm{HR}=7.88$; 95\% CI = 6.72-9.24); female sex ($\mathrm{HR}=1.17$; $95 \% \mathrm{CI}=1.13-1.20$); black ethnicity (ref = white ethnicity $\mathrm{HR}=1.25 ; 95 \% \mathrm{CI}=1.20-1.30$); Asian ethnicity (ref white ethnicity; $\mathrm{HR}=1.2$; $95 \% \mathrm{CI}=1.13-1.28$); most
socially/materially deprived (ref = least deprived; HR socially/materially deprived (ref = least deprived;
$1.46 ; 95 \% \mathrm{CI}=1.30-1.64$); at least one risk factor 1.46 ; $95 \% \mathrm{CI}=1.30-1.64$); at least one risk factor (hypertension, moderate obesity, high cholesterol, smoking,
high alcohol consumption, psychoactive substance use; ref high alcohol consumption, psychoactive substance use; re $=$ no risk factors; $\mathrm{HR}=1.69 ; 95 \% \mathrm{CI}=1.63-1.74$); ever alcohol use ($\mathrm{HR}=1.43$; $95 \% \mathrm{CI}=1.23-1.68$); ever moderate obesity ($\mathrm{HR}=1.75$; $95 \% \mathrm{CI}=1.69-1.81$); resolved moderate obesity ($\mathrm{HR}=1.16$; ref $=1.09-1.23$); ever smoking ($\mathrm{HR}=1.40$; $95 \% \mathrm{CI}=1.35-1.44$); and resolved smoking ($\mathrm{HR}=1.22$; $95 \% \mathrm{CI}=1.17-1.26$). Ever having high cholesterol ($\mathrm{HR}=0.81 ; 95 \% \mathrm{CI}=0.79-0.84$) was protective against transitions from 1 to 2 conditions. No wignificant association was found between resolved alcoho

Author and year	Study design	Country	Analytical sample size	Age (mean or range)	Sex female (\%)	Baseline health status criteria	Time of follow-up	Outcome	Findings	NOS score

Calderón-Larrañaga Cohort Sweden 2293
et al. 2019

Cohort Chile
1066

Excluded those with CVD at baseline

Included those with 1 chronic

disease at
 disease at

consumption ($\mathrm{HR}=2.00$; $95 \% \mathrm{CI}=0.67-5.98$) and transitioning from 1 to 2 conditions.
Obesity ($\mathrm{OR}=2.48 ; 95 \% \mathrm{CI}=1.71-3.61$), low-wage labor 7 ($\mathrm{OR}=2.18 ; 95 \% \mathrm{CI}=1.67-2.83$), and high-density ($\mathrm{OR}=2.18,9 \% \mathrm{CI}=1.67-2.83$), and high-density lipoprotein cholesterol ($\mathrm{HDL}-\mathrm{C}$) $<50 \mathrm{mg} / \mathrm{dL}(\mathrm{OR}=1.31$; $95 \% \mathrm{CI}=1.02-1.68$) were predictors of multimorbidity
Only significant predictors were reported. Correlations Only significant predictors were reported. Corre
between pairwise combinations of diseases and between pairwise combinations of
multimorbidity were also reported. multimorbidity were also reported.
Among those without multimorbidity at baseline, high life 8 satisfaction ($\beta=-0.064$; 95\% CI $=-0.116,-0.011$) was protective against annual increases in the number of chronic diseases. The following factors showed non-statistically significant results in terms of annual increase in disease number: positive perceptions of future health ($\beta=-0.065$; $95 \% \mathrm{CI}=-0.121,-0.008)$; high sense of resistance to illness ($=0.005$; 95\% CI $=-0.055,0.065$); low tendency to accept sickness as a part of life: ($\beta=-0.027 ; 95 \% \mathrm{CI}=$ $-0.079,0.024$); and low health worry ($\beta=0.014 ; 95 \% \mathrm{CI}=$ $-0.040,0.068)$. The same analyses were also conducted and reported among the total sample, including those with multimorbidity at baseline.
The following rate of CVD accumulation was found according to baseline homocysteine: $\beta=0.023$ per year ($0.015,0.030$); baseline methionine: $\beta=-0.007$ per year ($-0.013,-0.001$); and baseline Methionine:homocysteine ratio: $\beta=-0.017$ per year $(-0.023,-0.011)$. Methionine, homocysteine, and their ratio were also analysed as tertiles, and analyses stratified by MTHFR were also reported/ performed.
Those with a fast-declining BMI trajectory (ref $=$ stable BMI trajectory; $\beta=0.221 ; 95 \% \mathrm{CI}=0.221 ; 95 \% \mathrm{CI}=0.090$, 0.352) had a significantly greater yearly rate of disease accumulation over the 12 -year follow-up. No significant association was found for those with a slow-declining BMI trajectory (ref = stable BMI trajectory; $\beta=0.022 ; 95 \% \mathrm{CI}=$ $-0.024,0.067$). The authors also investigated and reported associations for yearly rate of CVD accumulation and neuropsychiatric disease accumulation. The analyses were repeated and reported using a joint model.
Those with a high continuity of care ($\mathrm{HR}=0.92$; $95 \% \mathrm{CI}=7$
$0.91-0.93$) and those with little contact with physicians (HR $=0.73 ; 95 \% \mathrm{CI}=0.72-0.75$) had lower hazards of transitioning from 1 to 2 diseases. Compared to those aged $18-24$, those aged $25-29$ years ($\mathrm{HR}=1.09 ; 95 \% \mathrm{CI}=$ 1.04-1.13) had increased hazards of transitioning from 1 to 2 diseases; the hazards increased with old age categories, as reported in the paper. Moreover, compared to those in the lowest income quintiles, those in the second lowest income quintile ($\mathrm{HR}=0.96 ; 95 \% \mathrm{CI}=0.94-0.98$) had reduced hazards of transitioning from 1 to 2 diseases; the hazards reduced more with increasing income quintile, as reported in the paper. In addition, those living in an urban residence ($\mathrm{HR}=1.07 ; 95 \% \mathrm{CI}=1.05-1.09$) had increased hazards of transitioning from 1 to 2 diseases. Compared to those not

Author and year	Study design	Country	Analytical sample size	Age (mean or range)	Sex female (\%)	Baseline health status criteria	Time of follow-up	Outcome	Findings	NOS score

Demirchyan et al. 2013	Cohort	Armenia	725	$39-90$, mean $=58$

の

39-90, ean $=58$

$50+$,
median $=$
61

Exc with
multimorbidity at
baseline from
analyses on
incident
multimorbidity Excluded those with multimorbidity at baseline
All participants
had type 2
diabetes
had type 2
diabetes
$2+$ non communicable health conditions
enrolled in a primary care model, those enrolled in a family health group ($\mathrm{HR}=1.12$; $95 \% \mathrm{CI}=1.10-1.13$) had increased hazards of transitioning from 1 to 2 diseases; no significant association was found for those in a family health network/organization (HR $=1.02 .95 \% \mathrm{CI}=1.00-1.04$) network/ family health team ($\mathrm{HR}=0.99$; 95\% CI $=0.96-1.02$), and those in any other model ($\mathrm{HR}=1.11 ; 95 \% \mathrm{CI}=1.06-1.16$) had increased hazards of transitioning from 1 to 2 disease For every 5 outpatient general practice visits $(\mathrm{HR}=1.02$; $95 \% \mathrm{CI}=1.02-1.02$) and every 5 outpatient specialist visit ($\mathrm{HR}=1.02 ; 95 \% \mathrm{CI}=1.02-1.02$), there was increased hazards of transitioning from 1 to 2 diseases; no association was found for every five inpatient general practice visits (HR $=1.01 ; 95 \% \mathrm{CI}=1.00-1.01$) or every 5 inpatient specialis visits ($\mathrm{HR}=1.00 ; 95 \% \mathrm{CI}=0.99-1.01$). No association wa found between female sex ($\mathrm{HR}=1.01 ; 95 \% \mathrm{CI}=0.99-1.08$) and transitioning from 1 to 2 diseases. The analyses were also repeated for the transition between 2 and 3 and 3-4 conditions. Analyses were also repeated, restricted to outpatient family physician and specialist visits, as well as inpatient and outpatient family physician and specialist visits excluding visits to anaesthesiologists, diagnostic radiologists, and pathologists.
Perceived poor living standards in the 10 years post earthquake ($\mathrm{RR}=1.12$; $95 \% \mathrm{CI}=1.03-1.22$) and each additional stressful life event ($\mathrm{RR}=1.03 ; 95 \% \mathrm{CI}=$ 1.02-1.04) were associated with multimorbidity. No statistically significant association was found between each additional unit of baseline BMI $(\mathrm{RR}=1.01 ; 95 \% \mathrm{CI}=$ 1.00-1.02) and multimorbidity.

Physical inactivity ($\mathrm{HR}=1.33$; $95 \% \mathrm{CI}=1.03-1.73$) was associated with multimorbidity development. Inadequate fruit and vegetable consumption was found to be associated with multimorbidity in in women ($\mathrm{HR}=1.65$; $95 \% \mathrm{CI}=$ 1.17-2.34), but protective against multimorbidity in men ($\mathrm{HR}=0.60 ; 0.43-0.86$). No association with multimorbidity was detected for the following factors: smoking ($\mathrm{HR}=1.21$ $95 \% \mathrm{CI}=0.65-2.27$); excess alcohol consumption ($\mathrm{HR}=$ $1.15 ; 95 \% \mathrm{CI}=0.92-1.43)$; and obesity ($\mathrm{HR}=1.28 ; 95 \% \mathrm{CI}$ $=0.85-1.91$). Specific numbers of unhealthy lifestyle factors and combinations of unhealthy lifestyle factors were also investigated/reported in relation to multimorbidity development.
Compared to those with white ethnicity, those with African 7 American ethnicity had increased risk of multimorbidity and involving atherosclerotic cardiovascular diseases in the $18-39$ years age group ($\mathrm{HR}=1.17$; $95 \% \mathrm{CI}=1.05-1.31$), with no significant association in the $40-49(\mathrm{HR}=1.02$; $95 \% \mathrm{CI}=0.96-1.08), 50-59(\mathrm{HR}=0.97 ; 95 \% \mathrm{CI}=$ $0.93-1.01$), and $60-70$ ($\mathrm{HR}=0.94 ; 95 \% \mathrm{CI}=0.90-1.01$) years age groups. Those with African American ethnicity had higher hazards of multimorbidity involving major adverse cardiovascular events across all age groups: 18-39 years ($\mathrm{HR}=1.63$; 95\% CI $=1.42-1.88$), $40-49$ years ($\mathrm{HR}=$ $1.48 ; 95 \% \mathrm{CI}=1.37-1.60$), $50-59$ years $(\mathrm{HR}=1.37 ; 95 \% \mathrm{CI}$

Author and year	Study design	Country	Analytical sample size	Age (mean or range)	Sex female (\%)	Baseline health status criteria	Time of follow-up	Outcome	Findings	NOS score

Fabbri et al. 2015
(A)
al. 2015
(B)

Fabbri et al. 2015
Cohort
Italy
(C)
$=1.31-1.44)$, and $60-70$ years ($\mathrm{HR}=1.11 ; 95 \% \mathrm{CI}=$ 1.06-1.15). These analyses were repeated stratified by depression and by ethnicity.
Higher resting metabolic rate was associated with increased future number of diseases ($\beta=0.015, p=0.034$). People with higher baseline age ($\beta=0.008$; p-value $<$ 0.001) and baseline interleukin- $6 \geq 3.5 \mathrm{pg} / \mathrm{mL}(\beta=0.06, \mathrm{p}$ value <0.001) had higher average increases in disease count. β-values were not reported, but steeper increase of interleukin-6 over time was associated with steeper increase in disease number over time ($p=0.003$)
Obesity was associated with faster accumulation of chronic 7 diseases compared to both normal weight $(\beta=0.044 ; p=$ 0.005) and overweight ($\beta=0.062$; $\mathrm{p}<0.001$). No significant association was found between overweight and disease accumulation ($\beta=-0.018 ; \mathrm{p}=0.18$), with normal weight as the reference group. Analyses were also conducted examining the interaction between obesity and rate of change of BMI.
BMI was a predictor of multimorbidity among those with 6 cancer ($\mathrm{HR}=1.63$; $95 \% \mathrm{CI}=1.51-1.76$), $\mathrm{CVD}(\mathrm{HR}=1.41$; $95 \% \mathrm{CI}=1.30-1.53$), and Type 2 DM (HR $=1.08 .95 \% \mathrm{CI}$ $95 \% \mathrm{CI}=1.30-1.53$), and Type 2 DM ($\mathrm{HR}=1.08 ; 95 \% \mathrm{CI}$ 1.01-1.16) at baseline. Smoking was also a risk factor among those with cancer ($\mathrm{HR}=1.62$; $95 \% \mathrm{CI}=1.36-1.92$) cardiovascular disease ($\mathrm{HR}=1.26$; $95 \% \mathrm{CI}=1.06-1.49$); and Type $2 \mathrm{DM}(\mathrm{HR}=1.70 ; 95 \% \mathrm{CI}=1.44-2.01)$. Increases in healthy lifestyle index were protective against multimorbidity in those with cancer ($\mathrm{HR}=0.75$; $95 \% \mathrm{CI}=$ $0.71-0.81$); cardiovascular disease ($\mathrm{HR}=0.84 ; 95 \% \mathrm{CI}=$ $0.79-0.90$); and Type $2 \mathrm{DM}(\mathrm{HR}=0.82 ; 95 \% \mathrm{CI}=$
$0.77-0.88$). Mediterranean diet was protective against multimorbidity in those with cancer ($\mathrm{HR}=0.89 ; 95 \% \mathrm{CI}=$ $0.81-0.97$), but no significant association was found in those with cardiovascular disease ($\mathrm{HR}=0.95 ; 95 \% \mathrm{CI}=$ $0.87-1.03$) or Type 2 DM ($\mathrm{HR}=0.96 ; 95 \% \mathrm{CI}=0.88-1.04$). The following factors were found to be associated with multimorbidity development: father's social class at birth (skilled non-manual/manual vs professional; $\mathrm{RR}=1.30$; $95 \% \mathrm{CI}=1.09-1.55$); father's social class at birth (partlyskilled vs professional; $\mathrm{RR}=1.43 ; 95 \% \mathrm{CI}=1.18-1.74$); fathers social class at birth (unskilled vs professional; RR $=$ 1.43 ; $95 \% \mathrm{CI}=1.15-1.77)$; higher BMI at age $10(\mathrm{RR}=$ $1.03 ; 95 \% \mathrm{CI}=1.01-1.05$); and externalizing problems at age $16(\mathrm{RR}=1.06 ; 95 \% \mathrm{CI}=1.03-1.09)$. An additional kg of birthweight ($\mathrm{RR}=0.90$; $95 \% \mathrm{CI}=0.84-0.96$) was protective against multimorbidity development. The following factors were investigated but not found to be significantly associated with multimorbidity development: father's social class at birth (managerial and technical vs professional; $\mathrm{RR}=1.14 ; 95 \% \mathrm{CI}=0.94-1.40$); higher cognitive ability at age $10(\mathrm{RR}=0.96 ; 95 \% \mathrm{CI}=0.91-1.00)$; and internalising problems at age $16(\mathrm{RR}=1.04 ; 95 \% \mathrm{CI}=$ $1.00-1.08$). Factors associated with mental health and hypertension, as well as mental health and arthritis, multimorbidity clusters were also reported/investigated.

Author and year	Study design	Country	Analytical sample size	Age (mean or range)	Sex female (\%)	Baseline health status criteria	Time of follow-up	Outcome	Findings	NOS score
Han et al. 2021	Cohort	China	461,047	$\begin{aligned} & 30-79, \\ & \text { mean }=51 \end{aligned}$	59	Excluded those with history of heart disease, stroke, cancer, or diabetes at baseline	Median 11.2 years	Cardiometabolic multimorbidity (2 + cardiometabolic diseases)	Smoking (HR $=1.16$; $95 \% \mathrm{CI}=1.11-1.22$); excessive alcohol consumption ($\mathrm{HR}=1.16 ; 95 \% \mathrm{CI}=1.09-1.22$); less healthy dietary habits, defined as infrequent vegetable/ fruits/egg consumption and daily or less than weekly red meat consumption ($\mathrm{HR}=1.18$; $95 \% \mathrm{CI}=1.06-1.30$); low physical activity ($\mathrm{HR}=1.14$; $95 \%=1.10-1.18$); and unhealthy body shape, defined as BMI <18.5 or $\geq 28.0 \mathrm{~kg} /$ m^{2} or waist circumference $\geq 90 \mathrm{~cm}$ in men or $\geq 85 \mathrm{~cm}$ in women ($\mathrm{HR}=1.63$; $95 \% \mathrm{CI}=1.57-1.68$) were associated with incident cardiometabolic multimorbidity. Numbers of unhealthy lifestyle factors were also examined; a 1-factor increase ($\mathrm{HR}=1.29 ; 95 \% \mathrm{CI}=1.27-1.32$) was associated with cardiometabolic multimorbidity. Analyses were also repeated using multi-state models.	7
Henchoz et al. 2019	Cohort	Switzerland	4731	$\begin{aligned} & 65-70, \\ & \text { mean }=68 \end{aligned}$	58	N/A	From childhood to adulthood	$2+$ chronic conditions	Serious illness or accident in childhood ($\mathrm{OR}=1.45$; $\mathrm{OR}=$ 1.18-1.79) and $2+$ stressful life events in childhood ($\mathrm{OR}=$ $1.42 ; 95 \% \mathrm{CI}=1.15-1.74$) were associated with multimorbidity incidence. The following childhood adversities were not significantly associated with multimorbidity incidence: premature birth ($\mathrm{OR}=1.02$; 95% $\mathrm{CI}=0.71-1.48$); food restrictions ($\mathrm{OR}=1.13 ; 95 \% \mathrm{CI}=$ $0.91-1.40$); child labour ($\mathrm{OR}=1.06 ; 95 \% \mathrm{CI}=0.86-1.30$); poor family economic environment ($\mathrm{OR}=0.94$; $\mathrm{OR}=$ $0.74-1.19$); and 1 stressful life event ($\mathrm{OR}=1.13$; $95 \% \mathrm{CI}=$ $0.93-1.38$). Multinomial logistic regression was also carried out examining the association between childhood adversity and 2,3 , and $4+$ diseases.	4
Hlaing-Hlaing et al. 2021	Cohort	Australia	5350	50-55	100	Excluded those with noncommunicable diseases	15 years	$2+$ noncommunicable diseases	Quintiles 5 versus 1 of three dietary indices (Healthy Eating Index for Australian Adults-2013 [HEIFA-2013], Mediterranean Diet Score [MDS], and Alternative Healthy Eating Index-2010 [AHEI-2010]) were examined in relation to multimorbidity development over $3,6,9,12$, and 15 years of follow-up. Those in the fifth versus 1st quintile of the HEIFA-2013 at 15 years ($\mathrm{OR}=0.73$; 95\% CI $=$ $0.55-0.96$), the AHEI-2010 at 12 years ($O R=0.70 ; 95 \%$ CI $=0.51-0.96$), and the AHEI-2010 at 15 years ($\mathrm{OR}=0.75$; HR $=0.57-0.99$) had significantly higher odds of multimorbidity incidence.	6
Humphreys et al. 2018	Cohort	United Kingdom	2299	66	49	N/A	From childhood to adulthood	Chronic disease count	Number of childhood illnesses ($\mathrm{OR}=1.15$; 95\% CI = 1.06-1.25) was significantly associated with number of chronic diseases in adulthood. The following childhood factors were not found to be significantly associated with chronic disease count in adulthood: Diphtheria immunized (OR $=0.96 ; 95 \% \mathrm{CI}=0.72-1.26$), paternal social class (OR $=1.15 ; 95 \% \mathrm{CI}=0.93-1.43$), maternal age at birth ($\mathrm{OR}=$ $1.00 ; 95 \% \mathrm{CI}=0.98-1.01$), bottle fed $(\mathrm{OR}=1.05 ; 95 \% \mathrm{CI}=$ $0.78-1.40$), bottle and breast fed ($\mathrm{OR}=0.95$; $95 \% \mathrm{CI}=$ $0.79-1.14)$, birth weight $(\mathrm{kg})(\mathrm{OR}=1.29 ; 95 \% \mathrm{CI}=$ $0.58-2.89)$, weight at 1 year $(\mathrm{kg})(\mathrm{OR}=0.52 ; 95 \% \mathrm{CI}=$ $0.17-1.63$), andconditional growth from 0 to 1 years ($\mathrm{OR}=$ 1.88; 95\% CI = 0.61-5.74).	6
Hussin et al. 2019	Cohort	Malaysia	729	$\begin{aligned} & 60+, \text { mean } \\ & =69 \end{aligned}$	50	Excluded those with multimorbidity at baseline	1,5 years	$2+$ diseases	Among those with no diseases at baseline, smoking ($\mathrm{OR}=$ 3.26; $95 \% \mathrm{CI}=1.49-7.12$) and irregular involvement in food preparation ($\mathrm{OR}=2.36$; $95 \% \mathrm{CI}=1.08-5.18$) were associated with multimorbidity incidence. Male sex ($O R=$ (continued on n	5 xt page)

with chronic diseases at baseline

Excluded those
with chronic diseases at baseline
$0.30 ; 95 \% \mathrm{CI}=0.12-0.72$) was protective against multimorbidity incidence. No significant association was found for the following factors: age $(\mathrm{OR}=0.97 ; 95 \% \mathrm{CI}=$ $0.92-1.02$); having 6 or less years of education ($\mathrm{OR}=1.40$ $95 \% \mathrm{CI}=0.56-3.03$) and cognitive function ($\mathrm{OR}=$ $95 \% \mathrm{CI}=0.56-3.03$), and cognitive function assesse through visual reproduction ($\mathrm{OR}=0.99 ; 95 \% \mathrm{CI}=$
$0.99-1.00$). Analyses were also carried out and reporte 0.99-1.00). Analyses were also carried out and reported
looking at multimorbidity incidence among those with one looking at multimorbidity incidence among those with one
disease at baseline. disease at baseline.
There was an association between being aged $80+$ years
$(\mathrm{OR}=3.23 ; 95 \% \mathrm{CI}=1.63-6.41)$ and ($\mathrm{OR}=3.23 ; 95 \% \mathrm{CI}=1.63-6.41$) and developing multimorbidity, with a reference age of 60-69 years; no significant association was found for those 70-79 years old ($\mathrm{OR}=1.21 ; 95 \% \mathrm{CI}=0.93-1.56$). Compared to the richest the rich ($\mathrm{OR}=0.65$; 95\% CI $=0.49-0.86$) middle ($\mathrm{OR}=$ $0.57 ; 95 \% \mathrm{CI}=0.40-0.80)$, poor ($\mathrm{OR}=0.36 ; 95 \% \mathrm{CI}=$ $0.24-0.52$) and poorest ($\mathrm{OR}=0.48$; $95 \% \mathrm{CI}=0.29-0.81$) had reduced odds for multimorbidity development. Compared to those practicing Hinduism, those practicing Islam ($\mathrm{OR}=0.29 ; 95 \% \mathrm{CI}=0.13-0.65$) and other religions ($\mathrm{OR}=0.24 ; 95 \% \mathrm{CI}=0.11-0.55$) had reduced odds of multimorbidity; no association was found for Christianity ($\mathrm{OR}=0.84 ; 95 \% \mathrm{CI}=0.39-1.82$). There were mixed results for alcohol consumption, living arrangement, and caste, and non-significant results for sex, urban residence, education, marital status, smoking status, and chewing habits.
Five multimorbidity trajectories emerged: 1) no morbidity, 6 constant; 2) low morbidity, constant; 3) moderate morbidity, constant; 4) no morbidity, increasing; and 5) low morbidity, increasing. One unit increases in BMI (RRR $=$ 1.10; $95 \% \mathrm{CI}=1.07-1.16$) were associated with increased risk of being in the low morbidity, increasing trajectory compared to the no morbidity, constant trajectory. Overweight ($\mathrm{RRR}=2.57 ; 95 \% \mathrm{CI}=1.56-4.24$) and obesity ($\mathrm{RRR}=4.28 ; 95 \% \mathrm{CI}=2.41-7.60$) were also associated with greater risk of being in this trajectory; no such association was found for underweight. Having middle (RRR $=2.20 ; 95 \% \mathrm{CI}=1.21-4.01$) and low $(\mathrm{RRR}=2.37 ; 95 \% \mathrm{CI}$ = 1.12 5.04) education, compared to high education wer $=1.12$. ducation, compared to high education wer ater risk of belonging to the low morbidity, increasing trajectory. Physical activity, smoking alcohol itake, occupation, and income management did confer significat increasing trajectory. Analyses were also conducted and reported assessing these factors in relation to the other three trajectories with no morbidity as the reference trajectory. Five multimorbidity patterns were identified:
psychosomatic, musculoskeletal, cardiometabolic, cancer, and respiratory. Unit increases in BMI were significantly associated with the musculoskeletal ($\mathrm{OR}=1.07 ; 95 \% \mathrm{CI}=$ $1.06-1.09$) and cardiometabolic ($\mathrm{OR}=1.07 ; 95 \% \mathrm{CI}=$ $1.06-1.09$) patterns, but not the cancer ($\mathrm{OR}=0.95 ; 95 \% \mathrm{Cl}$ $=0.93-0.96$) pattern, with no significant association to the psychosomatic or respiratory patterns. Analyses were also presented with BMI as a categorical variable showing
similar trends in significance. Compared to those with high physical activity, those with low physical activity were only more likely to belong to the musculoskeletal ($\mathrm{OR}=1.23$; 95% CI $=1.02-1.48$) pattern, and those with no physical 95% 1.02-1. activity were only more likely to belong to the psychosomatic ($\mathrm{OR}=1.41$; $95 \% \mathrm{CI}=1.13-1.76$), musculoskeletal ($\mathrm{OR}=1.39 ; 95 \% \mathrm{CI}=1.11-1.74$), and cancer ($\mathrm{OR}=1.35$; $95 \% \mathrm{CI}=1.08-1.69$) patterns. No significant association was found for those with moderate physical activity compared to high physical activity. Exsmokers were only more likely to belong to the respiratory pattern ($\mathrm{OR}=1.23$; $95 \% \mathrm{CI}=1.04-1.45$) and current smokers were more likely to belong to the musculoskeletal ($\mathrm{OR}=1.24 ; 95 \% \mathrm{CI}=1.01-1.54$) and respiratory $(\mathrm{OR}=$ $1.74 ; 95 \% \mathrm{CI}=1.42-2.13$) patterns. Non-drinkers were only significantly associated with the cardiometabolic ($\mathrm{OR}=$ $1.18 ; 95 \% \mathrm{CI}=1.02-1.37$) pattern and no association was found for risky/high risk alcohol intake. No association wa found for middle compared to high education, and low compared to high education was significantly associated with the psychosomatic ($\mathrm{OR}=1.34$; 95\% CI $=1.03-1.75$) wit musculoskeletal (OR $=1.43$; 95% CI 1.10 -1.87) and musculoskeletal ($\mathrm{OR}=1.43$; $95 \% \mathrm{CI}=1.10-1.87$) patterns. Sometimes difficult compared to easy inc management was significantly associated with the psychosomatic ($\mathrm{OR}=1.31 ; 95 \% \mathrm{CI}=1.11-1.54$) pattern and impossible/always difficult income management was associated with the psychosomatic ($O R=1.73$; $95 \% \mathrm{Cl}$ 1.37-2.18) and musculoskeletal ($\mathrm{OR}=1.38 ; 95 \% \mathrm{CI}=$ 1.09-1.75) patterns. Occupation showed no significant associations to any pattern.
Most ($\mathrm{OR}=1.46$; $95 \% \mathrm{CI}=1.26-1.68$) and intermediate ($\mathrm{OR}=1.28 ; 95 \% \mathrm{CI}=1.12-1.47$), compared to low, area based deprivation; former ($\mathrm{OR}=1.35$; $95 \% \mathrm{CI}=1.18-1.55$) and current ($\mathrm{OR}=1.57 ; 95 \% \mathrm{CI}=1.37-1.80$) smoking; no alcohol consumption ($\mathrm{OR}=1.49$; $95 \% \mathrm{CI}=1.26-1.76$), no fruit or vegetable consumption ($\mathrm{OR}=1.45 ; 95 \% \mathrm{CI}=$ 1.24-1.71); and being overweight ($\mathrm{OR}=1.26$; $95 \% \mathrm{CI}=$ $1.12-1.41)$, obese ($\mathrm{OR}=1.43 ; 95 \% \mathrm{CI}=1.21-1.68$) and morbidly obese ($\mathrm{OR}=1.98 .95 \% \mathrm{CI}=1.50-2.62$) were associated with increased odds of developing multimorbidity. No significant associations were found for multimorbidity. No significant associations were found for consumption, eating fruit some days versus eating fruit every day, physical activity, or being underweight. Increased risk factors conferred greater odds of developing multimorbidity
At age 69, there was an increased accumulation of chronic conditions in skilled manual ($\beta=0.39 ; 95 \% \mathrm{CI}=0.10-0.68$) and partly skilled/unskilled ($\beta=0.39 ; 95 \% \mathrm{CI}=0.06,0.72$), compared to professional/intermediate, childhood social classes; a similar association was found at age 63, with no significant associations at age 36,43 , or 53 . Similar associations were found for adulthood social classes at age 69 (skilled manual: $\beta=0.33 ; 95 \% \mathrm{CI}=0.03,0.63$, partly skilled/unskilled: $\beta=0.83 ; 95 \% \mathrm{CI}=0.45,1.20$) and age

Author and year	Study design	Country	Analytical sample size	Age (mean or range)	Sex female (\%)	Baseline health status criteria	Time of follow-up	Outcome	Findings	NOS score

United States, $\quad 120,813$ Europe

63, with significant positive association for partly skilled/ unskilled also at ages 36,43 , and 53 . Compared to those with a university degree, no educational attainment ($\beta=$ with a university degree, no educational attainment (β 1.08 , $95 \% \mathrm{Cl}=0.67,1.49$) and having a GCE/eaving certificate ($\beta=0.35$; $95 \% \mathrm{CI}=0.03,0.67$) were associated with accelerated multimorbidity accumulation; not having an education was also associated with accelerated multimorbidity accumulation at age 53 and 63 , but no association were found at any other ages for the GCE/ leaving certificate. Women ($\beta=-0.24 ; 95 \% \mathrm{CI}=-0.46$, -0.03) had lower rates of multimorbidity accumulation at age 69, higher rates at age $36(\beta=0.09 ; 95 \% \mathrm{CI}=$ $0.02-0.15)$ and age $43(\beta=0.15 ; 95 \% \mathrm{CI}=0.06-0.24)$, and no significant association at ages 53 and 63 .
Interactions between age ($30 \mathrm{~s}, 40 \mathrm{~s}, 50 \mathrm{~s}, 60 \mathrm{~s}, 70 \mathrm{~s}, 80 \mathrm{~s}$) and poverty, employment status, and educational attainment were examined in association with disease count. No risk factor was significantly associated across all ages. Significant increased risk of 2 diseases was found for poverty in one's 60 s ($\mathrm{OR}=1.85$; 95\% CI = 1.08-3.17); no being employed in one's $40 \mathrm{~s}(\mathrm{OR}=1.82 ; 95 \% \mathrm{CI}=$ $1.16-2.86)$ to $70 \mathrm{~s}(\mathrm{OR}=2.80 ; 95 \% \mathrm{CI}=1.27-6.17)$; and low education in one's $40 \mathrm{~s}(\mathrm{OR}=1.71 ; 95 \% \mathrm{CI}=$
$1.03-2.84)$ to $60 \mathrm{~s}(\mathrm{OR}=1.90 ; 95 \% \mathrm{CI}=1.09-3.32$), Analyses were also conducted with $3+$ diseases and different disease groups as outcomes.
Being overweight ($\mathrm{OR}=2.0$; $95 \% \mathrm{CI}=1.7-2.4$), mildly obese ($\mathrm{OR}=4.5 ; 95 \% \mathrm{CI}=3.5-5.8$), and severely obese (OR $=14.5 ; 95 \% \mathrm{CI}=10.1-21.0$) were each associated with increased cardiometabolic risk; being underweight was not a significant factor. Additional results by assessment of multimorbidity and assessment of BMI, as well as stratified by sex, age, and ethnicity, were reported.
Older age was associated with increased risk of multimorbidity development among women (i.e., $65+$ vs $18-34$ years: $\mathrm{HR}=4.05$; $95 \% \mathrm{CI}=3.45-4.76$) and men (i.e., $65+$ vs $18-34$ years: $\mathrm{HR}=5.93 ; 95 \% \mathrm{CI}=4.72-7.44$) Compared to those with $<\$ 30,000$ income, income between $\$ 50,000-\$ 79,999(\mathrm{HR}=0.87 ; 95 \% \mathrm{CI}=0.78-0.97)$ or \geq $\$ 80,000$ (HR $0.88 ; 95 \% \mathrm{CI}=0.78-0.99$) $\$ 80,000$ ($\mathrm{HR}=0.88$, $930 \mathrm{CI}=0.78-0.9$) a mong women and income between $\$ 30,000-\$ 49,999(\mathrm{HR}=0.87$; $95 \% \mathrm{C}$ ang protective agains multimorbidity development. Compared to normal weight, overweight (women: $\mathrm{HR}=1.22 ; 95 \% \mathrm{CI}=1.12-1.34$, men $\mathrm{HR}=1.24 ; 95 \% \mathrm{CI}=1.12-1.37$) and obesity (women: HR $1.37 ; 95 \% \mathrm{CI}=1.22-1.53$, men: $\mathrm{HR}=1.62$; $95 \% \mathrm{CI}=$ 1.44-1.83) were associated with multimorbidity development among men and women, but underweight was not. Underlying health status was associated with
multimorbidity among men ($\mathrm{HR}=1.27$; 95\% CI \equiv
$1.14-1.43$) and women ($\mathrm{HR}=1.43$; $95 \% \mathrm{CI}=1.29-1.58$). Among men, being an immigrant ($\mathrm{HR}=1.15$; $95 \% \mathrm{CI}=$ $1.05-1.27$) and smoking ($\mathrm{HR}=1.25$; 95\% CI $=1.14-1.36$) were associated with multimorbidity; this was not found among women.Depression was associated with
(continued on next page)

Author and year	Study design	Country	Analytical sample size	Age (mean or range)	Sex female (\%)	Baseline health status criteria	Time of follow-up	Outcome	Findings	NOS score

State 1 (no cardiometabolic diseases at
baseline): 357
433; stage 2 (one cardiometaboli disease at baseline): 35034

Stage 1: 56; stage 2: 38

Excl
with
cardiometabolic multimorbidity, emphysema, asthma, or other chronic lung disease at baseline.

Excluded participants with multimorbidity at baseline
Kingdom

Excluded those	4 years	$2+$ cardiometabolic with $2+$ cardiometabolic diseases at baseline
Excluded thoses		
with $2+$ chronic conditions	3 years	$2+$ chronic conditions

multimorbidity development among women ($\mathrm{HR}=1.16$, $95 \% \mathrm{CI}=1.02-1.33$), but not men. No significant finding were detected among men or women for the association between marital status, alcohol use, physical activity, or having a regular medical doctor and incident multimorbidity.
In those without any cardiometabolic disease at baseline, compared to those with the lowest quartile of forced vital capacity (FVC), those with the highest quartile of FVC (HR = $0.541 ; 95 \%$ CI: 0.483-0.606) had protective hazards against cardiometabolic multimorbidity. Additional analyses fo incidence of cardiometabolic multimorbidity were also carried out using multistate models and multinomial logistic regression (also by sex and age) with diabetes, stroke, and coronary heart disease as additional outcomes. All analyse were repeated and reported among those with one cardiometabolic disease at baseline.
Those with 2 ($\mathrm{OR}=1.39$; 95\% CI = 1.19-1.62), 3 ($\mathrm{OR}=$ $1.71 ; 95 \% \mathrm{CI}=1.43-2.05)$, or $4+(\mathrm{OR}=2.03 ; 95 \% \mathrm{CI}=$ $1.70-2.41$) adverse childhood events (physical abuse emotional neglect, household substance abuse, household mental illness, domestic violence, incarcerated household member, parental separation or divorce, unsafe neighbourhood, bullying, parental death, sibling death, parental disability) had increased risk of multimorbidity; no significant association was found for 1 adverse childhood significant association was found for 1 adverse chilchood
event. Subgroup analyses by age, sex, childhood economic hardship, educational attainment, and household expenditure were reported associated with multimorbidity development; this was not found in those with one chronic disease at baseline. Among those with one chronic disease at baseline, higher age ($\mathrm{OR}=$ $1.09 ; 95 \% \mathrm{CI}=1.01-1.17$) was associated with
multimorbidity development; this was not found in those with no chronic diseases at baseline. No significant associations between no or one chronic disease at baseline

Low hand grip strength was associated with multimorbidity in women ($\mathrm{HR}=1.19 ; 95 \% \mathrm{CI}=1.03-1.38$) and men ($\mathrm{HR}=$ $1.20 ; 95 \% \mathrm{CI}=1.20 ; 1.03-1.40)$. Hand grip strength asymmetry was associated with multimorbidity in women ($\mathrm{HR}=1.23 ; 95 \% \mathrm{CI}=1.07-1.41$), but no statistically significant association was found in men ($\mathrm{HR}=0.94 ; 95 \%$ $\mathrm{CI}=0.81-1.09)$. Analyses were also carried out and reported with hand grip strength asymmetry dominance and categories of hand grip strength asymmetry as factors. For those with no diseases at baseline, high values of waistFor hose with (diseases at baseline, high values of waist to-height ratio ($\mathrm{OR}=1.76$; $95 \% \mathrm{CI}=1.05-2.97$), waist circumference ($\mathrm{OR}=2.06 ; 95 \% \mathrm{CI}=1.29-3.27$), and wais divided by height 0.5 ($\mathrm{OR}=1.81$, $95 \% \mathrm{CI}=1.16-2.83$), bu not body mass index ($\mathrm{OR}=1.48$; $95 \% \mathrm{CI}=0.98-2.24$) wa associated with cardiometabolic mutumorbidity incidence. Analyses were also conducted looking at cardiometabolic multimorbidity incidence in those with 1 disease at baseline. In those without chronic diseases at baseline, worse cognitive abilities ($\mathrm{OR}=1.22 ; 95 \% \mathrm{CI}=1.00-1.48$) were

Author and year	Study design	Country	Analytical sample size	Age (mean or range)	Sex female (\%)	Baseline health status criteria	Time of follow-up	Outcome	Findings	NOS score

with multimorbidity were found for the following factors: sex, education, number of disabilities, hemoglobin, erythrocyte sedimentation rate, white blood cell count, higher diastolic blood pressure, physical activity, depressive symptoms, smoking, alcohol consumption, and body mass index.

Excluded those with
multimorbidity at
baseline

Multimorbidity (2 + conditions in those with no diseases at baseline), $1+$ disease regardless of disease status at baseline

The following results were restricted to those aged 20-64 years. Female sex $(\mathrm{HR}=1.12 ; 95 \% \mathrm{CI}=1.05-1.20)$ and older age i.e. age $35-49$ vs $20-34$ years ($\mathrm{HR}=1.63$; $95 \% \mathrm{Cl}$ $=1.50-1.76$) were associated with increased hazards of multimorbidity. Compared to those with excellent selfperceived health, those with less than excellent i.e., poor ($\mathrm{HR}=1.82 ; 95 \% \mathrm{CI}=1.32-2.51$) self-perceived health had increased risk of multimorbidity. Compared to those in the most walkable neighbourhoods, those in the least walkable neighbourhoods ($\mathrm{HR}=1.14 ; 95 \% \mathrm{CI}=1.02-1.28$) had increased hazards of multimorbidity development. Higher education i.e. high school education ($\mathrm{HR}=0.82 ; 95 \% \mathrm{CI}=$ $0.69-0.98$) was associated with reduced risk of
multimorbidity compared to those with less than high school education. Those with income less than $\$ 20,000$ year ($\mathrm{HR}=0.85 ; 95 \% \mathrm{CI}=0.73-0.99$) had reduced risk of multimorbidity compared to those with an income of $\$ 80,000+/$ year, but no significant associations for the intermediate incomes. Non-significant results were obtained for marital status, smoking, physical activity, and life stress. Analyses were also conducted and reported for those aged 65-95 years, and stratified by neighborhood walkability quintiles and material deprivation.
The following results are for incident multimorbidity in those with no conditions at baseline. Compared to those aged $50-54$ years, those aged $55-59$ years ($\mathrm{HR}=1.44$; 95\% $\mathrm{CI}=1.05-1.99)$, $60-64$ years ($\mathrm{HR}=1.85$; $95 \% \mathrm{CI}=$ $1.31-2.61$), 65-69 years ($\mathrm{HR}=2.93$; $95 \% \mathrm{CI}=2.08-4.13$), and ≥ 70 years ($\mathrm{HR}=2.58 ; 95 \% \mathrm{CI}=1.83-3.64$) had a higher risk of incident multimorbidity. Those with an external locus of control ($\mathrm{HR}=1.41 ; 95 \% \mathrm{CI}=1.10-1.82)$ also had a higher risk for incident multimorbidity. Those in the lowest wealth quintile (ref = highest wealth quintile; HR $=2.19 ; 95 \% \mathrm{CI}=1.50-3.19$) had a higher risk for incident multimorbidity, with no significant associations found for the middle three wealth quintiles. Obesity ($\mathrm{HR}=1.92$; 95% $\mathrm{CI}=1.43-2.59$) was a risk factor for multimorbidity, but overweight (HR $=1.15$; $95 \% \mathrm{CI}=0.87-1.52$) was not. No association was found for the following factors: female sex $(H R=1.14 ; 95 \% C I=0.86-1.50)$, living alone ($\mathrm{HR}=0.93$ $95 \% \mathrm{CI}=0.71-1.21$), intermediate education (ref $=$ highe education; $\mathrm{HR}=0.95 ; 95 \% \mathrm{CI}=0.73-1.23$), no educationa qualification (ref $=$ higher education; $\mathrm{HR}=0.73 ; 95 \% \mathrm{CI}=$ $0.53-1.00$), past smoking ($\mathrm{HR}=1.12$; $95 \% \mathrm{CI}=0.88-1.43$) and current smoking ($\mathrm{HR}=1.22$; $95 \% \mathrm{CI}=0.87-1.70$), medium physical activity ($\mathrm{HR}=1.3 ; 95 \% \mathrm{CI}=1.00-1.70$) and low physical activity ($\mathrm{HR}=1.43$; $95 \% \mathrm{CI}=1.02-2.00$), and social isolation ($\mathrm{HR}=1.16 ; 95 \% \mathrm{CI}=0.77-1.72$). The same analyses were conducted and reported for those
(continued on next page)

Author and year	Study design	Country	Analytical sample size	Age (mean or range)	Sex female (\%)	Baseline health status criteria	Time of follow-up	Outcome	Findings	NOS score

N/A

6 years

Median
Median
10.9 years

Rate of

 multimorbidity development Sarcopenia + CVD, respiratory disease, or cancer respiratory disease at baseline| (Poole and Steptoe, 2018) | Cohort | England | 2472 | $\begin{aligned} & 50+\text {, mean } \\ & =63 \end{aligned}$ | 51 | Excluded those with certain physical illnesses at baseline | 10 years | Chronic disease count |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Qiao et al. 2021 | Cohort | China, Europe | CHARLS: 7883;
 SHARE: 20558 | CHARLS:
 $45+$, mean $=56$;
 SHARE: 50
 + , mean $=$
 62 | CHARLS:
 49; SHARE:
 55 | No multimorbidity at baseline | 4 years | $2+$ chronic physical conditions |
| Qiao et al. 2022 | Cohort | China | 7056 (part one of study) | $45+$ | 50 | No multimorbidity at baseline | 4 years | $2+\text { chronic }$ diseases |

starting with any number of conditions with an outcome of at least one new condition.
Increased levels of baseline total serum glutathionine ($\beta=7$ -0.144 ; p -value <0.001) were associated with a lower rate of multimorbidity development.
Sarcopenia and pre-frailty were significantly associated with cardiovascular disease ($\mathrm{HR}=1.45$; $95 \% \mathrm{CI}=$
$1.24-1.71)$, respiratory disease ($\mathrm{HR}=1.36 ; 95 \% \mathrm{CI}=$
1.20-1.54), and chronic obstructive pulmonary disease (HR
$=1.76 ; 95 \% \mathrm{CI}=1.40-2.20$), but not cancer. Sarcopenia and frailty were significantly associated with cardiovascular disease ($\mathrm{HR}=1.68 ; 95 \% \mathrm{CI}=1.22-2.30$), respiratory disease ($\mathrm{HR}=1.77$; $95 \% \mathrm{CI}=1.40-2.24$), and chronic obstructive pulmonary disease ($\mathrm{HR}=1.63$; $95 \% \mathrm{CI}=$ 1.10-2.43), but not cancer.

Lower grip strength (per 0.05 unit) was associated with increased multimorbidity risk in men ($\mathrm{OR}=1.14 ; 95 \% \mathrm{CI}=$ $1.08-1.20$) and women ($\mathrm{OR}=1.14 ; 95 \% \mathrm{CI}=1.07-1.21$). Compared to age <65 years, age 65-79 (OR $=1.55$; 95% C $=1.27-1.88$) and >80 years ($\mathrm{OR}=1.97 ; 95 \% \mathrm{CI}=$ 1.32-2.93) were more associated with developing multimorbidity in women; only age 65-79 years ($\mathrm{OR}=1.67$; $95 \% \mathrm{CI}=1.32-2.10$) was in men. Smoking was associated with multimorbidity in women $(\mathrm{OR}=1.33 ; 95 \% \mathrm{CI}=$ 1.01-1.75) but not men. Having a net worth in quartile 4 ($\mathrm{OR}=0.70 ; 95 \% \mathrm{CI}=0.51-0.96$) or quartile 3 ($\mathrm{OR}=0.73$ $95 \% \mathrm{CI}=0.54-0.99$), but not quartile 2 , compared to quartile 1 was protective against multimorbidity in women no income quartiles were found to be significantly associated with multimorbidity development in men. Elevated high sensitivity C-reactive protein was associated with increased multimorbidity risk in women ($\mathrm{OR}=1.60$, $95 \% \mathrm{CI}=1.26-2.02$), but not men. The following were no significant multimorbidity predictors in men or women: marital status, race, and education.
Age ($\mathrm{RR}=1.02 ; 95 \% \mathrm{CI}=1.01-1.02$), $\mathrm{BMI}(\mathrm{RR}=1.03 ; 95 \% 6$ $\mathrm{CI}=1.02-1.05)$, Hypertension ($\mathrm{RR}=1.18 ; 95 \% \mathrm{CI}=$ 1.06-1.32), and depressive symptoms ($\mathrm{RR}=1.05 \cdot 95 \% \mathrm{CI}$ 1.02-1.08) predicted greater incident chronic disease $1.02-1.08$) pre burden. sex, ethnicity, living arrangement, wealth, smoking, alcoh
consumption, physical activity, and cognitive function. consumption, physical activity, and cognitive function.
Those impaired in activities of daily living (CHARLS: $\mathrm{OR}=$ Those inpared 1.97 3.38, SHARE OR $3.72 ; 95 \%$ OR $=$ 2.58, 95 , 1.97 -3.38, SHARE. OR - 3.72 , 95\% 2.82-4.91) and instrumental activities of daily living (CHARLS: $\mathrm{OR}=1.46$; $95 \% \mathrm{CI}=1.19-1.80$, SHARE: $\mathrm{OR}=$ 2.44; $95 \% \mathrm{CI}=1.94-3.08$) had increased risk of developing 2 chronic physical diseases. Results were also shown for 3 and $4+$ diseases, and stratified by gender. Depression was associated with increased risk of 2 diseases 7 ($\mathrm{RR}=1.64 ; 95 \% \mathrm{CI}=1.36-1.99$). Analyses were also conducted looking at the incidence of 3 and $4+$ diseases. Subgroup analyses by gender, age, obesity, smoking, and living place were reported.

Author and year	Study design	Country	Analytical sample size	Age (mean or range)	Sex $(\%)$
Quiñones et al. 2019	Cohort	United States	8331	$51-55$, mean $=53$	57
Rocca et al. 2017	Cohort	United States	1547	Median $=$ 44	100

Included those

Progression of multimorbidity severity

Excluded those	8 years	Multimorbidity pith
putterns		
multimorbidity at		
baseline		

Black participants (IRR $=0.99 ; 95 \% \mathrm{CI}=0.98-1.00$) had 6 slower chronic disease accumulation and Hispanic participants (IRR $=1.02 ; 95 \%$ CI 1.00-1.03) had faster chronic disease accumulation than white participants. Higher BMI (IRR $=1.01 \cdot 95 \% \mathrm{CI}=1.01-1.01$) and female sex (IRR $=1.05 ; 95 \% \mathrm{CI}=1.00-1.09$) were associated with greater accumulation of chronic diseases; educational attainment (IRR $=0.96 ; 95 \% \mathrm{CI}=0.94-0.95$) was associated with slower chronic disease accumulation. Bilateral oophorectomy (HR $=1.18$; 95\% CI: 1.09-1.28) was 7 associated with increased risk of multimorbidity accumulation. Analyses were also conducted by age strata and for single-year incidence rates of multimorbidity after bilateral oophorectomy. Analyses stratified by age at oophorectomy, estrogen therapy, surgical indication, calendar year, and smoking status were also conducted and reported.
Compared to those aged 50-59, those of older ages, i.e. $60-69$ years ($\mathrm{RR}=1.30 ; 95 \% \mathrm{CI}=1.11-1.52$) had increased risk of multimorbidity. Compared to those with normal weight and underweight, obesity ($\mathrm{RR}=1.26 ; 95 \% \mathrm{CI}=$ 1.05-1.51) was associated with increased risk of multimorbidity, but no association was found for overweight. Stronger grip strength $(R R=0.98 ; 95 \% C I=$ $0.97-0.99$) and faster gait speed ($\mathrm{RR}=0.67$; $95 \% \mathrm{CI}=$ $0.49-0.90$) were associated with reduced risk of multimorbidity. No relation between the following factors and multimorbidity incidence was detected: education, smoking, state support, and physical activity. Analyses were also conducted looking at worsening multimorbidity in those with multimorbidity at baseline.
Age ($\beta=0.12 ; 95 \% \mathrm{CI}=0.09,0.15$) and smoking history in 7 pack years ($\beta=0.011$; 95\% CI $=0.003,0.018$) were risk factors for progression of multimorbidity severity. Female sex $(\beta=-0.92 ; 95 \% \mathrm{CI}=-1.31,-0.53)$, medium education (ref = low education; $\beta=-0.79 ; 95 \% \mathrm{CI}=-1.18,-0.40$), high education (ref = low education; $\beta=-1.10 ; 95 \% \mathrm{CI}=$ $-1.66,-0.53$), household disposable income ($\beta=-0.57$; $95 \% \mathrm{CI}=-0.97,-0.17$), physical activity ($\beta=-0.31$; 95\% CI $=0.38,0.24$) , $\mathrm{CI}=-0.38,-0.24$), alcohol consumption ($\beta=-0.19$; 95\% $\mathrm{CI}=-0.28,-0.10$), and perceived social support ($\beta=$ $-0.31 ; 95 \% \mathrm{CI}=-0.56,-0.07$) were protective factors
against development of multimorbidity severity. The same against development of multimorbidity severity. The same analyses were also conducted and reported for multimorbidity severity specific to a cardiovascular and metabolic disorders multimorbidity cluster as well as a cluster including anxiety, depression, somatoform disorders, and pain-related disorders.
Eight multimorbidity classes emerged: 1) few or no chronic 7 conditions; 2) heart diseases, hypertension, high cholesterol; 3) musculoskeletal conditions; 4) diabetes, hypertension, high cholesterol; 5) asthma, allergy; 6) psychiatric conditions, epilepsy; and 7) many chronic conditions. Risk factors for belonging to the many chronic conditions pattern included: medium ($\mathrm{OR}=2.02$; $95 \% \mathrm{CI}=$

Excluded those	Average of	$2+$ chronic
with $2+$ chronic	3.6 years	diseases
diseases		

with $2+$ chronic disease

Excluded those

with cancer
(except nonmelanoma skin cancer), heart disease, stroke, depression, anxiety, dementia, and Parkinson's disease, severe disease
1.69-2.41) or short ($\mathrm{OR}=3.52$; $95 \% \mathrm{CI}=2.93-4.22$) education, and medium ($\mathrm{OR}=1.72 ; 95 \% \mathrm{CI}=1.34-2.19$) or short ($\mathrm{OR}=2.12$; $95 \% \mathrm{CI}=1.65-2.70$) parental education. Results were also presented for parental education, adjusted for individual education.
Physical inactivity was associated with increased risk of multimorbidity in four different years (i.e. 2012) in men (OR $=2.66 ; 95 \% \mathrm{CI}=2.22-3.19$) and women $(\mathrm{OR}=2.31 ; 95 \%$ $\mathrm{CI}=1.93-2.77$). Compared to college or more, elementary (women: $\mathrm{OR}=2.95$; $95 \% \mathrm{CI}=2.12-4.12$, men: $\mathrm{OR}=1.69$ $95 \% \mathrm{CI}=1.35-2.12$) and high school education (women: $\mathrm{OR}=2.53 ; 95 \% \mathrm{CI}=1.88-3.43$, men: $\mathrm{OR}=1.48 ; 95 \% \mathrm{CI}=$ 1.26-2.38) were associated with higher multimorbidity incidence. Compared to those aged $55+$ years, being aged $45-55$ (women: $\mathrm{OR}=0.42 ; 95 \% \mathrm{CI}=0.34-0.51$, men: $\mathrm{OR}=$ $0.58 ; 95 \% \mathrm{CI}=0.49-0.68$) and <45 years (women: $\mathrm{OR}=$ $0.17 ; 95 \% \mathrm{CI}=0.13-0.22$, men: $\mathrm{OR}=0.30 ; 95 \% \mathrm{CI}=$ $0.24-0.37$) were associated with reduced multimorbidity incidence. Being in the mid 40% of income compared to the bottom 40% was protective against multimorbidity incidence in women ($\mathrm{OR}=0.84$; $95 \% \mathrm{CI}=0.74-0.97$); this was not significant in men, and being in the top 20% was not significant for either gender. Being married was associated with increased multimorbidity incidence ($O R=1.85$; 95% $\mathrm{CI}=1.43-4.11$), and currently smoking ($\mathrm{OR}=0.74 ; 95 \% \mathrm{CI}$ $=0.65-0.85$) was protective against multimorbidity in men no significant associations were found for either factor in women. Having unmet care needs ($\mathrm{OR}=1.20 ; 95 \% \mathrm{CI}=$ 1.06-1.40) was associated with multimorbidity incidence and not having health care needs $(\mathrm{OR}=0.51 ; 95 \% \mathrm{CI}=$ $0.30-0.84$) was protective against multimorbidity in women; no significant associations were found for either factor in men. The following were not significant factors for multimorbidity incidence in men or women: having a standard employment-based job, non-autonomy at work, occupation type, and having school age children. Higher income; for instance, those with income an of $70,000+$ AUD $(H R=0.71 ; 95 \% \mathrm{CI}=0.60-0.84)$ compared to those with $<20,000$ AUD were at lower risk of multimorbidity. Education was also protective; high schoo multimorbidity. Education was also protective; high scho
($\mathrm{HR}=0.82 ; 95 \% \mathrm{CI}=0.71-0.95$) and university ($\mathrm{HR}=$ ($\mathrm{HR}=0.82 ; 95 \% \mathrm{CI}=0.71-0.95$) and university ($\mathrm{HR}=$
$0.71 ; 95 \% \mathrm{CI}=0.60-0.84$) conferred lower multimorbidit $0.71 ; 95 \% \mathrm{CI}=0.60-0.84$) conferred lower multimorbidity
risk. Compared to excellent self-rated health and quality of life, lower levels, i.e. fair/poor self-rated health (HR $=1.99$ $95 \% \mathrm{CI}=1.64-2.41$) and fair/poor self-rated quality of life ($\mathrm{HR}=2.04 ; 95 \% \mathrm{CI}=1.68-2.49$) were associated with increased multimorbidity risk. Compared to low psychological distress, increased levels, for instance high psychological distress ($\mathrm{HR}=2.14 ; 95 \%$ CI: 1.77-2.59) were associated with increased multimorbidity risk.
Hypertension ($\mathrm{HR}=1.24 ; 95 \% \mathrm{CI}=1.12-1.37$), arthritis ($\mathrm{HR}=1.49 ; 95 \% \mathrm{CI}=1.25-1.77$), diabetes ($\mathrm{HR}=1.48 ; 95 \%$ $\mathrm{CI}=1.26-1.75)$, asthma ($\mathrm{HR}=1.29 ; 95 \% \mathrm{CI}=1.12-1.48$), and family history of cancer ($\mathrm{HR}=1.14 ; 95 \% \mathrm{CI}=$ $1.05-1.24$) and depression ($\mathrm{HR}=1.20 ; 95 \% \mathrm{CI}=$
(continued on next page)

Author and year	Study design	Country	Analytical sample size	Age (mean or range)	Sex female (\%)	Baseline health status criteria	Time of follow-up	Outcome	Findings	NOS score

Excluded those

19-96,

Excluded those with cardiometabolic disease before age 50

6

Cardiometabolic multimorbidity subgroups: 1) CHD + stroke; 2) CHD + Type 2 DM; 3) Stroke + Type 2 DM; 4) CHD + stroke + Type 2 DM
1.06-1.36) were also risk factors for multimorbidity. Forme ($\mathrm{HR}=1.29 ; 95 \% \mathrm{CI}=1.17-1.41$) and current $(\mathrm{HR}=1.69$; $95 \% \mathrm{CI}=1.47-1.95$) smoking, and obesity ($\mathrm{HR}=1.17$; 95\% $\mathrm{CI}=1.04-1.32$), but not overweight ($\mathrm{HR}=1.11 .95 \% \mathrm{CI}$ 1.00-1.24), were associated with increased multimorbidity 1.00-1.24), were associated win increased multimorbidit risk. No association was found for sleep duratite,
activity, or vegetable, fruit, or chicken intake.
activity, or vegetable, fruit, or chicken intake.
Overweight $(\mathrm{HR}=1.44 ; 95 \% \mathrm{CI}=1.35-1.53$) and obesity Overweight ($\mathrm{HR}=1.44 ; 95 \% \mathrm{CI}=1.35-1.53$) and obesity ($\mathrm{HR}=2.26 ; 95 \% \mathrm{CI}=2.10-2.43$) were associated with $2+$ diseases in men but not in women. An increasing number of health factors (including BMI between 18.5 and $24.9 \mathrm{~kg} / \mathrm{m}^{2}$, fruit intake ≥ 2 servings/day, vegetable intake ≥ 3 servings/ day, red meat intake ≤ 1 serving/week, chicken in- take ≤ 1 serving/week, physical activity ≥ 5 sessions/week, alcohol consumption between 1 and 4 drinks/week, never smoking, none-passive smoking, and sleep duration between 7 and 9 $\mathrm{h} /$ day) were protective against $2+$ diseases in both men (HR $=0.86 ; 95 \% \mathrm{CI}=0.85-0.87$) and women ($\mathrm{HR}=0.84 ; 95 \%$ $\mathrm{CI}=0.83-0.85)$. Factors associated with $3+$ and $4+$ diseases were also reported.
Alcohol abstention or heavy alcohol consumption (HR $=$ $1.30 ; 95 \% \mathrm{CI}=1.09-1.56$) and smoking ($\mathrm{HR}=1.57$; $95 \% \mathrm{CI}$ $=1.28-1.92$) were associated with increased risk of $=1.28-1.92$) were associated with increased risk of
transitioning from 1 to 2 cardiometabolic diseases; no transitioning from 1 to 2 cardiometabolic diseases, no
association was found for: physical inactivity,poor diet hypertension, overweight/obesity, total cholesterol > 55 $\mathrm{mmol} / \mathrm{L}$, and family history of diabetes or CVD. Risk factors were also explored as aggregated measures. Lower occupational position ($\mathrm{HR}=2.43$; $95 \% \mathrm{CI}=1.75-3.37$), unhealthy behaviour (smoking, alcohol abstention or heavy alcohol consumption, poor diet, physical inactivity; $\mathrm{HR}=$ $3.02 ; 95 \% \mathrm{CI}=2.13-4.29$), and unhealthy clinical profile (hypertension, overweight/obesity, hypercholesterolemia, family history; $\mathrm{HR}=3.68 ; 95 \% \mathrm{CI}=2.49-5.43$) were each associated with increased risk of cardiometabolic multimorbidity.
Among those living with disease at baseline, extraversion ($\mathrm{OR}=1.26 ; 95 \% \mathrm{CI}=1.03-1.55$), impulsivity ($\mathrm{OR}=1.36$ $95 \% \mathrm{CI}=1.08-1.71$), warmth ($\mathrm{OR}=1.29 ; 95 \% \mathrm{CI}=$ $1.05-1.60$), and positive emotions ($\mathrm{OR}=1.24 ; 95 \% \mathrm{CI}=$ $1.01-1.52$) were associated with getting more ill over 1.01-1.52) were associated with getting more ill ove $0.62-0.96$), order ($\mathrm{OR}=0.77$; $95 \% \mathrm{CI}=0.62-0.96$), selfdiscipline ($\mathrm{OR}=0.81 ; 95 \% \mathrm{CI}=0.67-0.98$), and deliberation ($\mathrm{OR}=0.78$; $95 \% \mathrm{CI}=0.63-0.97$) were associated with decreased risk of developing more disease Higher triglyceride ($\mathrm{HR}=1.99 ; 95 \% \mathrm{CI}=1.12-3.53$) and very-low-density lipoprotein-cholesterol (HR = 1.79; 95\% $\mathrm{CI}=1.04-3.11$) were associated with increased risk of developing the coronary heart disease and type 2 diabetes cardiometabolic multimorbidity subgroup; no significant association was found for total cholesterol, low-density lipoprotein-cholesterol, high-density lipoprotein-
cholesterol, non-high-density lipoprotein-cholesterol,
apolipoprotein A1, or apolipoprotein B. None of the above

Excluded those with a history of stroke, diabetes baseline

Author and year	Study design	Country	Analytical sample size	Age (mean or range)	Sex female (\%)	Baseline health status criteria	Time of follow-up	Outcome	Findings	NOS score

Tomasdottir et al. 2016	Cohort	Norway	20,365	$20-59$, mean $=41$

2016

20-59,
mean $=4$

Excluded pultimars years baseline

Vall Castelló et al.
2020

6 years
Chronic cardiometabolic disorder accumulation

New
multimorbidity: 2
nultimorbidity. + new diseases, diseases in selectio iseases in selection
factors were significantly associated with developing the coronary heart disease and stroke; stroke and type 2 diabetes; or coronary heart disease, stroke, and type 2 diabetes cardiometabolic multimorbidity subgroups. Analyses were also presented examining different combinations of risk factors.
Life satisfaction below satisfied, i.e. somewhat satisfied (RR $=1.16 ; 95 \% \mathrm{CI}=1.10-1.23$), compared to being satisfied, was associated with higher risk of multimorbidity. Not living a meaningful life ($\mathrm{RR}=1.15$; 95% C I $=1.06-1.25$); not having enough friends $(\mathrm{RR}=1.10 ; 95 \% \mathrm{CI}=$ 1.03-1.18); sleeping problems affecting work ($\mathrm{RR}=1.34$; $95 \% \mathrm{CI}=1.22-1.46$); not always feeling calm and good, i.e. never, ($\mathrm{RR}=1.47$; $95 \% \mathrm{CI}=1.06-2.05$); and less than very good self-rated health, i.e. poor self-rated health ($\mathrm{RR}=2.23$ $95 \% \mathrm{CI}=1.50-3.23$), were associated with multimorbidity development. Financial worries, i.e. often occurring ($\mathrm{RR}=$ $1.46 ; 95 \% \mathrm{CI}=1.25-1.70$), were associated with increased risk of multimorbidity. Mixed results were obtained for positive self-opinion, distrusting neighbours, and enjoying work. No association was found between boiling with anger and multimorbidity incidence.
Adherence to the Mediterranean $\operatorname{diet}(\beta=-0.0456 ; \mathrm{p}<$ 0.05), female sex ($\beta=-0.0862 ; \mathrm{p}<0.01$), tertiary education ($\beta=-0.2215$; $p<0.01$), secondary education (β education ($\beta=-0.2215 ; \mathrm{p}<0.01$), secondary education
$=-0.1197 ; \mathrm{p}<0.01$), active sports ($\beta=-0.1715 ; \mathrm{p}<$ 0.01), never having smoked daily ($\beta=-0.0537 ; \mathrm{p}<0.01$), and being employed ($\beta=-0.1303$; $\mathrm{p}<0.01$) were protective factors against chronic metabolic disorders incidence. Age ($\beta=0.0512 ; \mathrm{p}<0.01$) and Hispanic ethnicity ($\beta=0.1007$; $\mathrm{p}<0.05$) were risk factors for chronic metabolic disorders incidence. Not living with a partner (β $=-0.0051 ; p>0.1$) and household income ($\beta=-0.0000 ; \mathrm{p}$ >0.05) were not found to be significant factors. Age and household income were also explored as quadratic terms. Compared to those aged 20-29 years, those aged 70-79 (OR 7 $=1.79 ; 95 \% \mathrm{CI}=1.12-2.84)$ and $80+(\mathrm{OR}=1.87 ; 95 \% \mathrm{CI}$ $=1.04-3.36)$ years, had increased risk of multimorbidity development; no association was found for those aged 30-30-60-69 yeas. Those with $2+$ (OR 1.49 ; 95\% 1.18-1.88), but not 1 , baselin 2 (OR $=1.49,95 \% \mathrm{CI}=$ 1.18-1.87, 95 CI 1.04-1.79), but 2 , as $=1.37$; $9 \% \mathrm{Cl}=1.04-1.7$), but $n=$, long ter difficulties had increased multimorbidity risk. Negative life events 2 years before study start ($\mathrm{OR}=1.28 ; 95 \% \mathrm{CI}=$ 1.02-1.62) were associated with increased multimorbidity risk; no association was found for positive events. Having an external locus of control ($\mathrm{OR}=1.40$; $95 \% \mathrm{CI}=1.12-1.75$) was associated with increased multimorbidity risk. Compared to low blue collar, high white occupational clas ($\mathrm{OR}=1.48 ; 95 \% \mathrm{CI}=1.02-2.15$) was associated with increased multimorbidity risk; no association was found for high blue, low white, or other classes. Having an active coping style ($\mathrm{OR}=1.25$; $95 \% \mathrm{CI}=1.01-1.55$) was associated with increased multimorbidity risk. High (OR $=$ $0.60 ; 95 \% \mathrm{CI}=0.41-0.88$), but not secondary ($\mathrm{OR}=0.81$;
(continued on next page)

Author and year	Study design	Country	Analytical sample size	Age (mean or range)	Sex female (\%)	Baseline health status criteria	Time of follow-up	Outcome	Findings	NOS score

Waller et al. 2010	Cohort	Finland	95 twin pairs	$47-79$, mean $=58$	57
Wikström et al. 2015	Cohort	Finland	32,972	$25-64$	52

Willroth et al. 2021 Cohort

Japan, United 3 cohorts: 1 States Midlife in the U.S
(MIDUS) core sample ($\mathrm{n}=$ 2692), 2. MIDUS Milwaukee African American sample ($n=248$), 3. Midlife in Japan (MIDJA) sample ($n=644$)

11,941
$20+$, mean
$=53$

Wikström et al. 2015 Finland

32,972

25-64

Excluded those with chronic diseases (except hypertension) Excluded participants with multimorbidity at baseline
$95 \% \mathrm{CI}=0.64-1.03$) education, and positive occupationa status ($\mathrm{OR}=0.63$; $95 \% \mathrm{CI}=0.47-0.84$), were protective against multimorbidity. No significant association was found for gender, type of health insurance, religion, body mass index, smoking, sports, family disease history, or social network.
Compared to those aged 20-29 years, those aged $40+$ years had increased odds for multimorbidity development (i.e. OR for age $40-49=3.67 ; 95 \% \mathrm{CI}=1.21-11.2$), but no statistically significant association was found for those aged $30-39$ years. Women ($\mathrm{OR}=0.59 ; 95 \% \mathrm{CI}=0.45-0.77$) had lower odds of multimorbidity development. No significant association was found for education level, insurance type, or disease count at baseline. Having an internal locus of contro ($\mathrm{OR}=0.73 ; 95 \% \mathrm{CI}=0.54-0.99$) and a social network with 5 or more people ($\mathrm{OR}=0.41 ; 95 \% \mathrm{CI}=0.21-0.83$) were associated with reduced odds of multimorbidity development, and living alone ($\mathrm{OR}=1.48$; $95 \% \mathrm{CI}=$ 1.03-2.13) was associated with increased odds of multimorbidity development. No association was detected for the remaining psychological characteristics: coping styles, positive and negative life events, external and chance loci of control, long-term difficulties, living with others, and social network below five.
Physical activity was associated with reduced risk of multimorbidity amo pvalue $=0.031$), but monozygotic win pairs ($\mathrm{OR}=0.14$,

p-value $=0.19$).
Body mass index per $\mathrm{kg} / \mathrm{m} 2$ increase (men: $\mathrm{OR}=1.11$; 95% $\mathrm{CI}=1.08-1.14$, women: $\mathrm{OR}=1.08$; $95 \% \mathrm{CI}=1.05-1.11$), current smoking (men: $\mathrm{OR}=2.68 ; 95 \% \mathrm{CI}=2.10-3.41$, women: $\mathrm{OR}=2.55$; $95 \% \mathrm{CI}=1.76-3.71$), and low physical activity (men: $\mathrm{OR}=1.34 ; 95 \% \mathrm{CI}=1.03-1.73$, women: OR $=1.62 ; 95 \% \mathrm{CI}=1.14-2.30$) were associated with higher multimorbidity incidence. Blood pressure per 10 mm Hg increase ($\mathrm{OR}=1.14 ; 95 \% \mathrm{CI}=1.07-1.20$) and low education ($\mathrm{OR}=1.40 ; 95 \% \mathrm{CI}=1.02-1.91$) were only significant risk factors in men. Cholesterol and fruit and vegetable consumption were non-significant in both genders.
Higher sense of purpose levels and were associated with reduced hronipurpose levels and with $-0.10 ; 95 \% \mathrm{CI}=-0.13,-0.06$) and MIDJA sample ($\beta=$ $-0.13 ; 95 \% \mathrm{CI}=-0.20,-0.05$), as were higher change in $-0.13 ; 95 \% \mathrm{CI}=-0.20,-0.05$), as were higher change in
sense of purpose levels (MIDUS: $\beta=-0.10 ; 95 \% \mathrm{CI}=-0.13$, -0.06 ; MIDJA: $\beta=-0.08 ; 95 \% \mathrm{CI}=-0.15,-0.005$). Significant associations were not detected for the MIDUS Milwaukee African American sample.

Being born outside of Australia ($\mathrm{OR}=1.61$; $95 \% \mathrm{CI}=$ $1.26-2.05$) and having hypertension ($\mathrm{OR}=2.19 ; 95 \% \mathrm{CI}=$ 1.74-2.75) were associated with increased multimorbidity

Table 1 (continued)

Author and year	Study design	Country	Analytical sample size	Age (mean or range)	Sex female (\%)	Baseline health status criteria	Time of follow-up	Outcome	Findings	NOS score
Zou et al. 2022	Cohort	China	6037	$45+$	51	Excluded participants with multimorbidity at baseline	4 years	$2+\text { chronic }$ conditions	childhood: early maternal death, early paternal death, father being a farmer, economic hardship, loneliness, neighbourhood, poor family relations, abuse from mother, abuse from father, and poor self-rated health. Compared to 6-8 h per night, short sleep durations of $\leq 5 \mathrm{~h}$	7
									($\mathrm{RR}=1.33 ; 95 \% \mathrm{CI}=1.15-1.55$) or $5-6 \mathrm{~h} /$ night $(\mathrm{RR}=1.24$; $95 \% \mathrm{CI}=1.06-1.46$) were associated with increased risk of multimorbidity; no association was found for those sleeping $8-9 \mathrm{~h}$ or $>9 \mathrm{~h}$ per night. Sleep restlessness, i.e. 1-2 times per week ($\mathrm{RR}=1.46$; $95 \% \mathrm{CI}=1.24-1.73$), was also associated with multimorbidity development. Stratified analyses by age, sex, and presence of a baseline chronic condition were also conducted and reported.	

[^1] $\mathrm{mmol} / \mathrm{L}=$ millimoles/liter, $\mathrm{CHD}=$ coronary heart disease, $\mathrm{mm} \mathrm{Hg}=$ millimeter of mercury, $\mathrm{n}=$ number.
multimorbidity: for example, Ki et al (Ki et al., 2017). looked at the role of the interaction between age groups and different socio-economic variables on the development of multiple chronic conditions, without finding a factor that was consistently associated with multimorbidity.

Sex and gender were also evaluated in some of the included studies. Female sex was found to be associated with an increased risk of developing multimorbidity in 4 studies (Bisquera et al., 2022; Hussin et al., 2019; Moin et al., 2021; Quinones et al., 2016), whereas others (Schäfer et al., 2019; Vall Castelló and Tubianosa, 2020) found female sex was protective. No association between sex and multimorbidity was found by other authors (Chau et al., 2021; Irshad and Dash, 2022; Melis et al., 2014; Mounce et al., 2018; Poole and Steptoe, 2018; van den Akker et al., 2000).

Smoking and alcohol were also considered by some authors as potential risk factors. A form of association between these risk factors and incident multimorbidity was highlighted by some authors (Bisquera et al., 2022; Freisling et al., 2020; Han et al., 2021; Hussin et al., 2019; Jackson et al., 2016; Katikireddi et al., 2017; Li et al., 2021; Peterson et al., 2021; Schäfer et al., 2019; Shang et al., 2020a, 2020b; Singh-Manoux et al., 2018; Vall Castelló and Tubianosa, 2020; Wikström et al., 2015; Xu et al., 2018), whereas others did not found any or even found a protective association (Aminisani et al., 2019; Dhalwani et al., 2016; Irshad and Dash, 2022; Jackson et al., 2015; Melis et al., 2014; Mounce et al., 2018; Poole and Steptoe, 2018; Ryan et al., 2018; Seo, 2019; van den Akker et al., 2000). In particular, the association between small alcohol consumption or without taking into consideration the amount of alcohol consumed was mostly found inconsistent or found to be protective in most studies. Among risk factors for chronic conditions, hypertension (Bisquera et al., 2022; Poole and Steptoe, 2018; Shang et al., 2020b; Singh-Manoux et al., 2018; Wikström et al., 2015; Xu et al., 2018) and high cholesterol (Bisquera et al., 2022; Blümel et al., 2020; Singh-Manoux et al., 2018; Tajik et al., 2022; Wikström et al., 2015) were also evaluated by a number of studies. In the majority of these studies, hypertension and cholesterol were found to be associated with the risk of incident multimorbidity.

Nineteen studies (Aminisani et al., 2019; Hussin et al., 2019; Jackson et al., 2015, 2016; Katikireddi et al., 2017; Khanolkar et al., 2021; Ki et al., 2017; Li et al., 2021; Melis et al., 2014; Moin et al., 2021; Mounce et al., 2018; Ryan et al., 2018; Schäfer et al., 2019; Schramm et al., 2022; Seo, 2019; Shang et al., 2020b; Vall Castelló and Tubianosa, 2020; Wikström et al., 2015; Xu et al., 2018) investigated the relationship between education and the development of multiple chronic conditions: the majority of these studies found either a protective effect of higher education. Jackson e al (Jackson et al., 2016) found that low education, in comparison with high education was associated only with the development of psychosomatic or musculoskeletal multimorbidity, but the association disappeared when considering other multimorbidity patterns.

Income or other proxies of wealth were also evaluated by various authors: some authors (Bisquera et al., 2022; Chau et al., 2021; Ki et al., 2017; Mounce et al., 2018; Schäfer et al., 2019; Seo, 2019) found that higher socio-economic status was protective against the development of multimorbidity. On the contrary, van den Akker (van den Akker et al., 2000) et al. and Irshad et al (Irshad and Dash, 2022). found that being in the upper socio-economical class increased the risk of accruing chronic conditions.

Few studies (Balogun et al., 2021; Liu et al., 2022; Peterson et al., 2021; Qiao et al., 2021; Ryan et al., 2018; Petermann-Rocha et al., 2020) evaluated physical performance measures (hand grip strength, walking speed), disability (in basic and/or instrumental activities of daily living), or frailty/sarcopenia as risk factors and for incident multimorbidity or the accumulation of chronic conditions: in these studies, low physical function was consistently associated with an increased risk of developing chronic diseases.

Obesity or high body mass index (BMI) were found as risk factors for incident multimorbidity in a significant number of studies (Balogun
et al., 2021; Bisquera et al., 2022; Blümel et al., 2020; Fabbri et al., 2015c; Freisling et al., 2020; Gondek et al., 2021; Han et al., 2021; Jackson et al., 2015, 2016; Katikireddi et al., 2017; Kivimäki et al., 2017; Li et al., 2021; Lu et al., 2021; Mounce et al., 2018; Poole and Steptoe, 2018; Shang et al., 2020a, 2020b; Wikström et al., 2015; Xu et al., 2018, 2019a; Quinones et al., 2016). The association was generally stronger for obesity rather than for simple overweight. However, Calderón-Larrañaga et al (Calderón-Larrañaga et al., 2021). found an association between the loss of body weight and malnutrition and the incident accrual of chronic conditions.

Physical activity, evaluated by several authors (Aminisani et al., 2019; Balogun et al., 2021; Dhalwani et al., 2016; Fabbri et al., 2015a; Han et al., 2021; Jackson et al., 2015, 2016; Katikireddi et al., 2017; Moin et al., 2021; Mounce et al., 2018; Poole and Steptoe, 2018; Ryan et al., 2018; Schäfer et al., 2019; Seo, 2019; Vall Castelló and Tubianosa, 2020; van den Akker et al., 2000; Waller et al., 2010; Wikström et al., 2015; Xu et al., 2018), was identified as a protective factor for incident multimorbidity in the majority of the studies, although some authors found no- or inconsistent associations. Some other authors (Dhalwani et al., 2016; Freisling et al., 2020; Han et al., 2021; Hlaing-Hlaing et al., 2021; Hussin et al., 2019; Katikireddi et al., 2017; Shang et al., 2020b; Vall Castelló and Tubianosa, 2020) also evaluated the association between diet and the risk of developing multimorbidity: in general poor diet, low adherence to the Mediterranean diet, or a low Healthy eating index were found to be associated with an increased risk of chronic conditions accrual.

Mental health and depression were also found to be strong risk factors for incident multimorbidity as shown by some of the studies included (Arias-de la Torre et al., 2021; Calderón-Larrañaga et al., 2019; Demirchyan et al., 2013; Poole and Steptoe, 2018; Qiao et al., 2022; Sutin et al., 2013; Tomasdottir et al., 2016; Willroth et al., 2021; Xu et al., 2019b), although a high degree of variability in the definition of mental health was found among the studies.

Lastly, some authors (Gondek et al., 2021; Henchoz et al., 2019; Lin et al., 2021; Zhang et al., 2022) evaluated the possible impact of childhood traumatic events or stress on the risk of developing multiple chronic conditions lather in life. Although the majority of studies reported some possible associations, the variability in the definition of childhood events from abuse to economic difficulties, to hunger) was found to be high.

Table 1 reports the main characteristics and findings of the 68 included studies, including baseline health status of the participants as well as outcome measures. Only results from the most adjusted models are reported.

4.4. Quality of the included studies

On average, the risk of bias in the included studies was moderate (mean NOS score $=6.75$). The risk of bias was low (NOS score >7) in 11 (16.2%) studies, moderate ($5<$ NOS score <7) in 56 (82.3%) studies, and high (NOS score <5) in $1(1.5 \%)$ study.

5. Discussion

This systematic review of the literature shows that a wide range of risk factors for multimorbidity have been identified to date, with different level of evidence on their actual role. A previous systematic review on multimorbidity identified very few prospective studies evaluating the incidence of risk or protective factors for multimorbidity defined as the co-occurrence of two or more chronic diseases (Marengoni et al., 2011). Although we included more studies in the present review, they are extremely heterogeneous in terms of setting, demographic and clinical characteristics of the participants, outcomes, and measurement of specific risk factors.

Participants exhibited various health statuses at baseline in the included studies, from no existing chronic disease to having one or more
chronic diseases. However, it has been shown that the accumulation of chronic diseases over time depends on the presence of baseline conditions (Melis et al., 2014). In our systematic review, several baseline conditions, such as diabetes, hypertension, and depression, were found to be associated with a higher risk of developing other diseases over time. This association may occur through a variety of mechanisms, including direct pathophysiological links (e.g., hypertension and ischemic heart disease), shared risk factors (e.g., obesity and low physical activity among those with diabetes and stroke), or the development of new risk factors (e.g., depression leading to reduced physical activity and social isolation, which increase the risk of dementia). The complex interplay of these mechanisms contributes to the grouping of chronic diseases and highlights the importance of studying them as clusters or patterns of diseases rather than isolated conditions. This approach is thought to offer new insights into patient-centered prevention, diagnoses, and treatment strategies (Prados-Torres et al., 2014).

Our systematic review not only confirms the well-known heterogeneity in the operationalization of multimorbidity, but also a significant variation in the way certain risk factors are assessed. For instance, physical activity has been evaluated in various ways, ranging from a single question on the frequency of vigorous activity in the previous week (Aminisani et al., 2019) to comprehensive (Dhalwani et al., 2016; Han et al., 2021) or validated (Freisling et al., 2020; Singh-Manoux et al., 2018) questionnaires. Moreover, evaluating certain risk factors through self-reported information can result in low-to-moderate reproducibility and under- or over-estimation (when compared with an objective measurement); this is the case for diet (Rimm et al., 1992; Poppitt et al., 1998) and physical, itself. Diet and, in particular, physical activity may be targeted by clinical interventions and policies (Kettle et al., 2022) that greatly reduce the risk of developing chronic conditions and multimorbidity. As such, increasing the uniformity and reproducibility of their assessments ought to be considered pivotal goals for future research (Arvidsson et al., 2019; England et al., 2015).

Our study also shows that among the evaluated risk factors related to childhood, only a few (i.e.: low parental education and serious illness or accident in childhood) were consistently associated with developing multimorbidity in adulthood. It is worth noting, however, that the assessment of such risk factors may be hindered by recall bias, lack of trustworthy sources, and survival bias.

Most of the included studies evaluated risk factors using a single-time assessment, typically at baseline. It is likely, however, that risk factors, as well as their impact on the accrual of multiple chronic conditions, change over time. For example, a recent metanalysis focused on overweight and obesity and the risk of multimorbidity; overall, the authors observed an increased risk of multimorbidity among subjects with overweight and obesity compared to normal weight (Delpino et al., 2023). Similarly, in our review, several studies (Balogun et al., 2021; Blümel et al., 2020; Fabbri et al., 2015c; Freisling et al., 2020; Jackson et al., 2015, 2016; Kivimäki et al., 2017; Xu et al., 2018, 2019a) confirmed that being overweight or obese is associated with an increased risk of accumulating chronic diseases. On the other hand, the work of Calderón-Larrañaga A et al (Calderón-Larrañaga et al., 2021). shows that the rate of accumulation of chronic conditions is considerably faster among participants presenting with a rapidly decreasing BMI, compared to those with a mildly decreasing BMI trajectory. These results are important, as unintentional weight loss has been shown to be strongly associated with poor health-related outcomes in older persons (Alharbi et al., 2021) differently from elevated BMI, which is a well-known risk factor for cardiovascular diseases in early- and mid-adulthood (Flegal et al., 2013). It is likely that, among selected populations (e.g., older adults), investigating risk factors as dynamic elements that change over time may promote the implementation of preventive measures based on follow-ups and trajectory descriptions, which more closely resembles the actual experience of care-seeking persons, rather than static and generalized cut-offs.

Special attention needs the association between socioeconomic factors and multimorbidity. Social determinats of health (SDH) have gained increasing attention by the World Health Organization because of their important influence on health inequities (Braveman et al., 2011). SDH are the non-medical factors that influence health outcomes, such as income, education, unemployment, early childhood development, and others. A systematic review investigating social determinants of patterns of multimorbidity showed that cardiometabolic multimorbidity profiles were common among men with low SES (Álvarez-Gálvez et al., 2023). In our review, the majority of studies evaluating SDH reported a positive association between deprivation and multimorbidity. SES may have a direct influence on health, for example it is well-known that low education increases the risk of dementia (Wang et al., 2022). However, the association between SES and multimorbidity may also be mediated by unhealthy lifestyles frequent in persons with low SES, such as smoking, sedentarism, and low quality of diet. Finally, upstreaming controls may also have a role, such as policies on environment and pollution. Interestingly, several studies on childhood adversities and future development of multimorbidity reported no or inconsistent associations, probably due to recall biases or uncontrolled confounders during the lifespan.

The etiology of multimorbidity is complex and involves multiple contributing factors, making it challenging to isolate individual factors. To address this issue, some authors (Dhalwani et al., 2016; Freisling et al., 2020; Singh-Manoux et al., 2018) have created composite scores to evaluate the combined impact of several risk factors, such as diet, smoking, alcohol consumption, physical activity, and anthropometric measures. Dhalwani et al (Dhalwani et al., 2016). found that the combination of multiple factors increases the risk of developing multimorbidity beyond that of the sum of the risks of individual factors considered in isolation (although the confidence intervals for these analyses were large). Freisling et al (Freisling et al., 2020). showed that the magnitude of risk associated with individual factors varies depending on the first disease developed, but this heterogeneity was reduced when using a composite score of unhealthy lifestyles as the exposure variable. These studies suggest that risk factors tend to co-occur and interact with each other and are also likely to be associated with broader social, cultural, and psychological elements. Multimorbidity prevention likely requires a comprehensive evaluation of multiple risk factors and specific interventions targeting those that can be modified. This approach aligns with the comprehensive management strategy suggested for individuals affected by multiple chronic conditions (Onder et al., 2022; Palmer et al., 2018).

Management of the risk factors identified in this systematic review is highly variable in both public health and clinical settings. While smoking is widely recognized as a risk factor for cardiovascular diseases and has been the target of numerous public health policies (Hopkins et al., 2010), the identification and management of other risk factors, such as low physical activity or poor dietary patterns, are less standardized and may vary among health professionals (Thornton et al., 2016; Little et al., 2022). Furthermore, mental health, specifically depression, is often overlooked in the prevention of somatic diseases, despite findings on their link with multimorbidity, as highlighted by several studies (Proper and van Oostrom, 2019; Sarris et al., 2014) in our systematic review. Given the high incidence of multimorbidity, it is crucial to develop an approach that comprehensively addresses the
majority of its risk factors, involving collaboration between healthcare professionals and public health policymakers.

5.1. Strengths, limitations, and future directions

This systematic review aimed to assess many risk factors for multimorbidity; however, the comprehensiveness of the review depends on that of the primary research conducted in this field. For instance, studies on biomarkers, metabolomics, epigenetics and multimorbidity onset are still lacking.

This work should be interpreted with its limitations in consideration. First, owing to the significant heterogeneity across studies, it was not possible to run a meta-analysis of the results. In addition, most studies implemented definitions of chronic diseases based on pre-defined lists of conditions - a method that is likely to underestimate the real prevalence or incidence of the diseases. Lastly, some studies only reported significant results and, therefore, some information regarding inconsistent or absent associations between risk factors and multimorbidity may be missing.

6. Conclusion

Several risk factors (i.e., age, obesity, depression, low education) seem to be consistently associated with an increased risk of accumulating chronic conditions over time. The current literature, however, is characterized by a significant heterogeneity in both the definition of multimorbidity, and in the assessment of its risk factors hampering robust conclusions.

Authors' contribution

Conception and design of the study: CT, AM, GT, NV; Literature search strategy conception: GT, DS, JD; Article screening: CT, JD, LS, DS, DSR, CB, SB, GG; Conflict resolution: AZ, AM; Quality assessment: AZ, AM; Data extraction and synthesis: CT, DLV; Drafting of the manuscript: CT, AZ, DLV, AM; Critical revision and approval of the manuscript: all authors.

Declaration of Competing Interest

All authors declare that there are no conflicts of interest.

Data Availability

Data will be made available on request.

Acknowledgements

This study was developed as a European collaboration among different academic institutions and is as a product of the Special Interest Group of systematic reviews and meta-analyses of the European Union Geriatric Medicine Society (EuGMS).

Declaration of source of funding

This review was not supported by external funding.

Appendix A. : Search strategy

TITLE-ABS-KEY ((multimorbidity OR multi-morbidity OR "multiple. diseases" OR "multiple morbidities" OR "multiple chronic.
conditions") AND (risk OR prognos* OR determin* OR predict* OR pattern*)).
(TS=((multimorbidity OR multi-morbidity OR "multiple diseases" OR "multiple.
morbidities" OR "multiple chronic conditions") AND (risk OR prognos* OR determin*.

OR predict* OR pattern*))) OR (TI=((multimorbidity OR multi-morbidity OR "multiple.
diseases" OR "multiple morbidities" OR "multiple chronic conditions") AND (risk OR.
prognos* OR determin* OR predict* OR pattern*)).
TS: Topic; TI: Title.
MESH terms: Comorbidity; Comorbidity[Trends]; Multimorbidity; Multiple chronic conditions.

| First author(s)
 surname | Year of
 publication | Country | Study
 design | Total
 sample | Age (mean and
 SD) | Sex (\%
 Female) | Baseline
 status | Outome |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | Summary of main |
| :--- |
| results |

Appendix B. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.arr.2023.102039.

References

Alharbi, T.A., Paudel, S., Gasevic, D., Ryan, J., Freak-Poli, R., Owen, A.J., 2021. The association of weight change and all-cause mortality in older adults: a systematic review and meta-analysis. Age Ageing 50 (3), 697-704. https://doi.org/10.1093/ ageing/afaa231.
Almas, A., Moller, J., Iqbal, R., Lundin, A., Forsell, Y., 2019. Does depressed persons with non-cardiovascular morbidity have a higher risk of CVD? a population-based cohort study in Sweden. BMC Cardiovasc Disord. 19 (1), 260. https://doi.org/10.1186/ s12872-019-1252-7.
Álvarez-Gálvez, J., Ortega-Martín, E., Carretero-Bravo, J., Pérez-Muñoz, C., SuárezLledó, V., Ramos-Fiol, B., 2023. Social determinants of multimorbidity patterns: a systematic review. Front Public Health 11, 1081518. https://doi.org/10.3389/ fpubh.2023.1081518.
Aminisani, N., Stephens, C., Allen, J., Alpass, F., Shamshirgaran, S.M., 2019. Sociodemographic and lifestyle factors associated with multimorbidity in New Zealand. Epidemiol. Health 42, e2020001. https://doi.org/10.4178/epih.e2020001.
Arias-de la Torre, J., Ronaldson, A., Prina, M., et al., 2021. Depressive symptoms during early adulthood and the development of physical multimorbidity in the UK: an observational cohort study. Lancet Healthy Longev. 2 (12), e801-e810. https://doi. org/10.1016/S2666-7568(21)00259-2.
Arvidsson, D., Fridolfsson, J., Börjesson, M., 2019. Measurement of physical activity in clinical practice using accelerometers. J. Intern Med. Publ. 12908. https://doi.org/ 10.1111/joim. 12908.

Balogun, S.A., Aitken, D., Wu, F., Scott, D., Jones, G., Winzenberg, T., 2021. Linear and nonlinear associations between physical activity, body composition, and multimorbidity over 10 years among community-dwelling older adults. In: Newman, A.B. (Ed.), J Gerontol Ser A, 76, pp. 2015-2020. https://doi.org/10.1093/ gerona/glab086.
Bisquera, A., Turner, E.B., Ledwaba-Chapman, L., et al., 2022. Inequalities in developing multimorbidity over time: a population-based cohort study from an urban, multiethnic borough in the United Kingdom. Lancet Reg. Health - Eur. 12, 100247 https://doi.org/10.1016/j.lanepe.2021.100247.
Blümel, J.E., Carrillo-Larco, R.M., Vallejo, M.S., Chedraui, P., 2020. Multimorbidity in a cohort of middle-aged women: risk factors and disease clustering. Maturitas 137, 45-49. https://doi.org/10.1016/j.maturitas.2020.04.016.
Braveman, P.A., Kumanyika, S., Fielding, J., et al., 2011. Health disparities and health equity: the issue is justice. S149-155 Am. J. Public Health 101 Suppl 1 (Suppl 1). https://doi.org/10.2105/AJPH.2010.300062.
Calderon-Larranaga, A., Fratiglioni, L., 2019. Multimorbidity research at the crossroads: developing the scientific evidence for clinical practice and health policy. J. Intern Med 285 (3), 251-254. https://doi.org/10.1111/joim.12872.
Calderon-Larranaga, A., Vetrano, D.L., Onder, G., et al., 2017. Assessing and measuring chronic multimorbidity in the older population: a proposal for its operationalization. J. Gerontol. Biol. Sci. Med Sci. 72 (10), 1417-1423. https://doi.org/10.1093/ gerona/glw233.
Calderón-Larrañaga, A., Vetrano, D.L., Welmer, A.K., Grande, G., Fratiglioni, L., Dekhtyar, S., 2019. Psychological correlates of multimorbidity and disability accumulation in older adults. Age Ageing 48 (6), 789-796. https://doi.org/10.1093/ ageing/afz117.
Calderón-Larrañaga, A., Saadeh, M., Hooshmand, B., et al., 2020. Association of homocysteine, methionine, and MTHFR $677 \mathrm{C}>\mathrm{T}$ polymorphism with rate of cardiovascular multimorbidity development in older adults in Sweden. JAMA Netw. Open 3 (5), e205316. https://doi.org/10.1001/jamanetworkopen.2020.5316.
Calderón-Larrañaga, A., Hu, X., Guo, J., Ferrucci, L., Xu, W., Vetrano, D.L., 2021. Body mass trajectories and multimorbidity in old age: 12-year results from a populationbased study. Clin. Nutr. 40 (12), 5764-5770. https://doi.org/10.1016/j. clnu.2021.10.012.
Chau, E., Rosella, L.C., Mondor, L., Wodchis, W.P., 2021. Association between continuity of care and subsequent diagnosis of multimorbidity in Ontario, Canada from 2001-2015: A retrospective cohort study. In: Nunes, B.P. (Ed.), PLOS ONE, 16. https://doi.org/10.1371/journal.pone.0245193.

Delpino, F.M., Dos Santos Rodrigues, A.P., Petarli, G.B., et al., 2023. Overweight, obesity and risk of multimorbidity: a systematic review and meta-analysis of longitudinal studies. Obes. Rev. J. Int Assoc. Study Obes. 24 (6), e13562 https://doi.org/ 10.1111/obr. 13562.

Demirchyan, A., Khachadourian, V., Armenian, H.K., Petrosyan, V., 2013. Short and long term determinants of incident multimorbidity in a cohort of 1988 earthquake survivors in Armenia. Int J. Equity Health 12 (1), 68. https://doi.org/10.1186/1475-9276-12-68.
van den Akker, M., Buntinx, F., Metsemakers, J.F.M., Knottnerus, J.A., 2000. Marginal impact of psychosocial factors on multimorbidity: results of an explorative nested case-control study. Soc. Sci. Med 50 (11), 1679-1693. https://doi.org/10.1016/ S0277-9536(99)00408-6.
van den Akker, M., Buntinx, F., Metsemakers, J.F.M., van der Aa, M., Knottnerus, J.A., 2001. Psychosocial patient characteristics and GP-registered chronic morbidity. J. Psychosom. Res 50 (2), 95-102. https://doi.org/10.1016/S0022-3999(00)002270.

Dhalwani, N.N., Zaccardi, F., O'Donovan, G., et al., 2016. Association Between Lifestyle Factors and the Incidence of Multimorbidity in an Older English Population. In: J Gerontol A Biol Sci Med Sci, July 28. Published online. https://doi.org/10.1093/ gerona/glw146.
Dibato, J.E., Montvida, O., Zaccardi, F., et al., 2021. Association of cardiometabolic multimorbidity and depression with cardiovascular events in early-onset adult type 2 diabetes: a multiethnic study in the U.S. Diabetes Care 44 (1), 231-239. https://doi. org/10.2337/dc20-2045.
England, C.Y., Andrews, R.C., Jago, R., Thompson, J.L., 2015. A systematic review of brief dietary questionnaires suitable for clinical use in the prevention and management of obesity, cardiovascular disease and type 2 diabetes. Eur. J. Clin. Nutr. 69 (9), 977-1003. https://doi.org/10.1038/ejen.2015.6.
Fabbri, E., An, Y., Schrack, J.A., et al., 2015a. Energy metabolism and the burden of multimorbidity in older adults: results from the baltimore longitudinal study of aging. J. Gerontol. A Biol. Sci. Med Sci. 70 (11), 1297-1303. https://doi.org/ 10.1093/gerona/glu209.

Fabbri, E., An, Y., Zoli, M., et al., 2015b. Aging and the burden of multimorbidity: associations with inflammatory and anabolic hormonal biomarkers. J. Gerontol. Ser. A 70 (1), 63-70. https://doi.org/10.1093/gerona/glu127.
Fabbri, E., Tanaka, T., An, Y., et al., 2015c. Loss of weight in obese older adults: a biomarker of impending expansion of multimorbidity? J. Am. Geriatr. Soc. 63 (9), 1791-1797. https://doi.org/10.1111/jgs. 13608.
Flegal, K.M., Kit, B.K., Orpana, H., Graubard, B.I., 2013. Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA 309 (1), 71-82. https://doi.org/ 10.1001/jama.2012.113905.

Freisling, H., Viallon, V., Lennon, H., et al., 2020. Lifestyle factors and risk of multimorbidity of cancer and cardiometabolic diseases: a multinational cohort study. BMC Med 18 (1), 5. https://doi.org/10.1186/s12916-019-1474-7.
Gondek, D., Bann, D., Brown, M., Hamer, M., Sullivan, A., Ploubidis, G.B., 2021. Prevalence and early-life determinants of mid-life multimorbidity: evidence from the 1970 British birth cohort. BMC Public Health 21 (1), 1319. https://doi.org/10.1186/ s12889-021-11291-w.
Han, Y., Hu, Y., Yu, C., et al., 2021. Lifestyle, cardiometabolic disease, and multimorbidity in a prospective Chinese study. Eur. Heart J. 42 (34), 3374-3384. https://doi.org/10.1093/eurheartj/ehab413.
Head, A., Fleming, K., Kypridemos, C., Schofield, P., Pearson-Stuttard, J., O’Flaherty, M., 2021. Inequalities in incident and prevalent multimorbidity in England, 2004-19: a population-based, descriptive study. Lancet Healthy Longev. 2 (8), e489-e497. https://doi.org/10.1016/S2666-7568(21)00146-X.
Henchoz, Y., Seematter-Bagnoud, L., Nanchen, D., et al., 2019. Childhood adversity: a gateway to multimorbidity in older age? Arch. Gerontol. Geriatr. 80, 31-37. https:// doi.org/10.1016/j.archger.2018.10.003.
Hlaing-Hlaing, H., Dolja-Gore, X., Tavener, M., James, E.L., Hodge, A.M., Hure, A.J., 2021. Diet quality and incident non-communicable disease in the 1946-1951 cohort of the Australian longitudinal study on women's health. Int J. Environ. Res Public Health 18 (21), 11375. https://doi.org/10.3390/ijerph182111375.

Hopkins, D.P., Razi, S., Leeks, K.D., Priya Kalra, G., Chattopadhyay, S.K., Soler, R.E., 2010. Smokefree Policies to Reduce Tobacco Use. Am. J. Prev. Med 38 (2), S275-S289. https://doi.org/10.1016/j.amepre.2009.10.029.
Humphreys, J., Jameson, K., Cooper, C., Dennison, E., 2018. Early-life predictors of future multi-morbidity: results from the Hertfordshire Cohort. Age Ageing 47 (3), 474-478. https://doi.org/10.1093/ageing/afy005.
Hussin, N.M., Shahar, S., Din, N.C., et al., 2019. Incidence and predictors of multimorbidity among a multiethnic population in Malaysia: a community-based longitudinal study. Aging Clin. Exp. Res 31 (2), 215-224. https://doi.org/10.1007/ s40520-018-1007-9.
Irshad, C.V., Dash, U., 2022. Healthy aging in India: evidence from a panel study. J. Health Res 36 (4), 714-724. https://doi.org/10.1108/JHR-09-2020-0395.

Jackson, C.A., Dobson, A., Tooth, L., Mishra, G.D., 2015. Body mass index and socioeconomic position are associated with 9-year trajectories of multimorbidity: A population-based study. Prev. Med 81, 92-98. https://doi.org/10.1016/j. ypmed.2015.08.013.
Jackson, C.A., Dobson, A.J., Tooth, L.R., Mishra, G.D., 2016. Lifestyle and socioeconomic determinants of multimorbidity patterns among mid-aged women: a longitudinal study. In: Chamberlain, A.M. (Ed.), PLOS ONE, 11. https://doi.org/10.1371/journal. pone. 0156804.
Katikireddi, S.V., Skivington, K., Leyland, A.H., Hunt, K., Mercer, S.W., 2017. The contribution of risk factors to socioeconomic inequalities in multimorbidity across the lifecourse: a longitudinal analysis of the Twenty-07 cohort. BMC Med 15 (1), 152. https://doi.org/10.1186/s12916-017-0913-6.

Kettle, V.E., Madigan, C.D., Coombe, A., et al., 2022. Effectiveness of physical activity interventions delivered or prompted by health professionals in primary care settings: systematic review and meta-analysis of randomised controlled trials. BMJ. Publ. Online Febr. 23, e068465 https://doi.org/10.1136/bmj-2021-068465.
Khanolkar, A.R., Chaturvedi, N., Kuan, V., et al., 2021. Socioeconomic inequalities in prevalence and development of multimorbidity across adulthood: A longitudinal analysis of the MRC 1946 National Survey of Health and Development in the UK. In: Basu, S. (Ed.), PLOS Med, 18. https://doi.org/10.1371/journal.pmed. 1003775.
Ki, M., Lee, Y.H., Kim, Y.S., Shin, J.Y., Lim, J., Nazroo, J., 2017. Socioeconomic inequalities in health in the context of multimorbidity: a Korean panel study. In: Zeeb, H. (Ed.), PLOS ONE, 12. https://doi.org/10.1371/journal.pone. 0173770.
Kivimäki, M., Kuosma, E., Ferrie, J.E., et al., 2017. Overweight, obesity, and risk of cardiometabolic multimorbidity: pooled analysis of individual-level data for 120813 adults from 16 cohort studies from the USA and Europe. e277-e285 Lancet Public Health 2 (6). https://doi.org/10.1016/S2468-2667(17)30074-9.
Li, A., Rosella, L.C., Kurdyak, P., Wodchis, W.P., 2021. Depression as a risk factor for physical illness and multimorbidity in a cohort with no prior comorbidity. Can. J. Psychiatry 66 (8), 726-736. https://doi.org/10.1177/0706743720974832.
Li, G., Lu, Y., Qiao, Y., Hu, D., Ke, C., 2022. Role of pulmonary function in predicting new-onset cardiometabolic diseases and cardiometabolic multimorbidity. Chest 162 (2), 421-432. https://doi.org/10.1016/j.chest.2021.12.663.

Liberati, A., Altman, D.G., Tetzlaff, J., et al., 2009. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339, b2700. https://doi.org/ 10.1136/bmj.b2700.

Lin, L., Wang, H.H., Lu, C., Chen, W., Guo, V.Y., 2021. Adverse childhood experiences and subsequent chronic diseases among middle-aged or older adults in china and associations with demographic and socioeconomic characteristics. JAMA Netw. Open 4 (10), e2130143. https://doi.org/10.1001/jamanetworkopen.2021.30143.
Little, M., Rosa, E., Heasley, C., Asif, A., Dodd, W., Richter, A., 2022. Promoting healthy food access and nutrition in primary care: a systematic scoping review of food prescription programs. Am. J. Health Promot 36 (3), 518-536. https://doi.org/ 10.1177/08901171211056584.

Liu, M., Liu, S., Sun, S., Tian, H., Li, S., Wu, Y., 2022. Sex differences in the associations of handgrip strength and asymmetry with multimorbidity: evidence from the english longitudinal study of ageing. e1 J. Am. Med Dir. Assoc. 23 (3), 493-498. https://doi. org/10.1016/j.jamda.2021.07.011.
Lu, Y., Liu, S., Qiao, Y., Li, G., Wu, Y., Ke, C., 2021. Waist-to-height ratio, waist circumference, body mass index, waist divided by height0.5 and the risk of cardiometabolic multimorbidity: A national longitudinal cohort study. Nutr. Metab. Cardiovasc Dis. 31 (9), 2644-2651. https://doi.org/10.1016/j. numecd.2021.05.026.
Luchini, C., Stubbs, B., Solmi, M., Veronese, N., 2017. Assessing the quality of studies in meta-analyses: advantages and limitations of the Newcastle Ottawa Scale. World J. Meta-Anal. 5 (4), 80. https://doi.org/10.13105/wjma.v5.i4.80.
Makovski, T.T., Schmitz, S., Zeegers, M.P., Stranges, S., van den Akker, M., 2019. Multimorbidity and quality of life: systematic literature review and meta-analysis. Ageing Res Rev. 53, 100903 https://doi.org/10.1016/j.arr.2019.04.005.
Marengoni, A., Onder, G., 2015. Guidelines, polypharmacy, and drug-drug interactions in patients with multimorbidity. h1059-h1059 BMJ 350 (mar11 4). https://doi.org/ 10.1136/bmj.h1059.

Marengoni, A., Angleman, S., Melis, R., et al., 2011. Aging with multimorbidity: a systematic review of the literature. Ageing Res Rev. 10 (4), 430-439. https://doi. org/10.1016/j.arr.2011.03.003.
Melis, R., Marengoni, A., Angleman, S., Fratiglioni, L., 2014. Incidence and predictors of multimorbidity in the elderly: a population-based longitudinal study. In: Scuteri, A. (Ed.), PLoS ONE, 9. https://doi.org/10.1371/journal.pone.0103120.
Moin, J.S., Glazier, R.H., Kuluski, K., Kiss, A., Upshur, R., 2021. Impact of neighbourhood walkability on the onset of multimorbidity: a cohort study. BMJ Open 11 (4), e045890. https://doi.org/10.1136/bmjopen-2020-045890.

Mounce, L.T.A., Campbell, J.L., Henley, W.E., Tejerina Arreal, M.C., Porter, I., Valderas, J.M., 2018. Predicting incident multimorbidity. Ann. Fam. Med 16 (4), 322-329. https://doi.org/10.1370/afm. 2271.
Onder, G., Vetrano, D.L., Palmer, K., et al., 2022. Italian guidelines on management of persons with multimorbidity and polypharmacy. Aging Clin. Exp. Res 34 (5), 989-996. https://doi.org/10.1007/s40520-022-02094-z.
Palmer, K., Marengoni, A., Forjaz, M.J., et al., 2018. Multimorbidity care model: recommendations from the consensus meeting of the joint action on chronic diseases and promoting healthy ageing across the life cycle (JA-CHRODIS). Health Policy 122 (1), 4-11. https://doi.org/10.1016/j.healthpol.2017.09.006.

Pérez, L.M., Hooshmand, B., Mangialasche, F., et al., 2020. Glutathione serum levels and rate of multimorbidity development in older adults. In: Le Couteur, D. (Ed.), J Gerontol Ser A, 75, pp. 1089-1094. https://doi.org/10.1093/gerona/glz101.
Petermann-Rocha, F., Hanlon, P., Gray, S.R., et al., 2020. Comparison of two different frailty measurements and risk of hospitalisation or death from COVID-19: findings from UK Biobank. BMC Med 18 (1), 355. https://doi.org/10.1186/s12916-020-01822-4.
Petermann-Rocha, F., Gray, S.R., Pell, J.P., Ho, F.K., Celis-Morales, C., 2021. The joint association of sarcopenia and frailty with incidence and mortality health outcomes: A prospective study. Clin. Nutr. 40 (4), 2427-2434. https://doi.org/10.1016/j. clnu.2020.10.044.
Peterson, M.D., Casten, K., Collins, S., Hassan, H., García-Hermoso, A., Faul, J., 2021. Muscle weakness is a prognostic indicator of disability and chronic disease multimorbidity. Exp. Gerontol. 152, 111462 https://doi.org/10.1016/j. exger.2021.111462.
Poole, L., Steptoe, A., 2018. Depressive symptoms predict incident chronic disease burden 10 years later: findings from the English Longitudinal Study of Ageing (ELSA). J. Psychosom. Res 113, 30-36. https://doi.org/10.1016/j. jpsychores.2018.07.009.
Poppitt, S., Swann, D., Black, A., Prentice, A., 1998. Assessment of selective underreporting of food intake by both obese and non-obese women in a metabolic facility. Int J. Obes. 22 (4), 303-311. https://doi.org/10.1038/sj.ijo. 0800584.
Prados-Torres, A., Calderon-Larranaga, A., Hancco-Saavedra, J., Poblador-Plou, B., van den Akker, M., 2014. Multimorbidity patterns: a systematic review. J. Clin. Epidemiol. 67 (3), 254-266. https://doi.org/10.1016/j.jclinepi.2013.09.021.
Proper, K.I., van Oostrom, S.H., 2019. The effectiveness of workplace health promotion interventions on physical and mental health outcomes - a systematic review of reviews. Scand. J. Work Environ. Health 45 (6), 546-559. https://doi.org/10.5271/ sjweh. 3833.
Qiao, Y., Liu, S., Li, G., et al., 2021. Longitudinal follow-up studies on the bidirectional association between ADL/IADL disability and multimorbidity: results from two national sample cohorts of middle-aged and elderly adults. Gerontology 67 (5), 563-571. https://doi.org/10.1159/000513930.
Qiao, Y., Liu, S., Zhang, Y., Wu, Y., Shen, Y., Ke, C., 2022. Bidirectional association between depression and multimorbidity in middle-aged and elderly Chinese adults: a longitudinal cohort study. Aging Ment. Health 26 (4), 784-790. https://doi.org/ 10.1080/13607863.2021.1877609.

Quinones, A.R., Markwardt, S., Botoseneanu, A., 2016. Multimorbidity combinations and disability in older adults. J. Gerontol. Biol. Sci. Med Sci. 71 (6), 823-830. https:// doi.org/10.1093/gerona/glw035.
Quiñones, A.R., Botoseneanu, A., Markwardt, S., et al., 2019. Racial/ethnic differences in multimorbidity development and chronic disease accumulation for middle-aged adults. In: Ginsberg, S.D. (Ed.), PLOS ONE, 14. https://doi.org/10.1371/journal. pone. 0218462.
Rimm, E.B., Giovannucci, E.L., Stampfer, M.J., Colditz, G.A., Litin, L.B., Willett, W.C., 1992. Reproducibility and validity of an expanded self-administered semiquantitative food frequency questionnaire among male health professionals. Am. J. Epidemiol. 135 (10), 1114-1126. https://doi.org/10.1093/oxfordjournals. aje.a116211.
Rizzuto, D., Melis, R.J.F., Angleman, S., Qiu, C., Marengoni, A., 2017. Effect of chronic diseases and multimorbidity on survival and functioning in elderly adults. J. Am. Geriatr. Soc. 65 (5), 1056-1060. https://doi.org/10.1111/jgs. 14868.
Rocca, W.A., Gazzuola Rocca, L., Smith, C.Y., et al., 2017. Bilateral oophorectomy and accelerated aging: cause or effect? J. Gerontol. Ser. A 72 (9), 1213-1217. https:// doi.org/10.1093/gerona/glx026.
Ryan, A., Murphy, C., Boland, F., Galvin, R., Smith, S.M., 2018. What is the impact of physical activity and physical function on the development of multimorbidity in older adults over time? a population-based cohort study. J. Gerontol. Ser. A 73 (11), 1538-1544. https://doi.org/10.1093/gerona/glx251.
Sarris, J., O'Neil, A., Coulson, C.E., Schweitzer, I., Berk, M., 2014. Lifestyle medicine for depression. BMC Psychiatry 14 (1), 107. https://doi.org/10.1186/1471-244X-14107.

Schäfer, I., Hansen, H., Kaduszkiewicz, H., et al., 2019. Health behaviour, social support, socio-economic status and the 5-year progression of multimorbidity: Results from the MultiCare Cohort Study, 2235042X1988356 J. Comorbidity 9. https://doi.org/ 10.1177/2235042X19883560.

Schramm, S., Møller, S.P., Tolstrup, J.S., Laursen, B., 2022. Effects of individual and parental educational levels on multimorbidity classes: a register-based longitudinal study in a Danish population. BMJ Open 12 (2), e053274. https://doi.org/10.1136/ bmjopen-2021-053274.
Seo, S., 2019. Multimorbidity development in working people. Int J. Environ. Res Public Health 16 (23), 4749. https://doi.org/10.3390/ijerph16234749.
Shang, X., Hodge, A.M., Peng, W., He, M., Zhang, L., 2020a. Are leading risk factors for cancer and mental disorders multimorbidity shared by these two individual conditions in community-dwelling middle-aged adults? Cancers 12 (6), 1700. https://doi.org/10.3390/cancers12061700.

Shang, X., Peng, W., Wu, J., He, M., Zhang, L., 2020b. Leading determinants for multimorbidity in middle-aged Australian men and women: a nine-year follow-up cohort study. Prev. Med 141, 106260. https://doi.org/10.1016/j. ypmed.2020.106260.
Singh-Manoux, A., Fayosse, A., Sabia, S., et al., 2018. Clinical, socioeconomic, and behavioural factors at age 50 years and risk of cardiometabolic multimorbidity and mortality: A cohort study. In: Rahimi, K. (Ed.), PLOS Med, 15. https://doi.org/ 10.1371/journal.pmed. 1002571.

Stang, A., 2010. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 25 (9), 603-605. https://doi.org/10.1007/s10654-010-9491-z.
Sutin, A.R., Zonderman, A.B., Ferrucci, L., Terracciano, A., 2013. Personality traits and chronic disease: implications for adult personality development. J. Gerontol. B Psychol. Sci. Soc. Sci. 68 (6), 912-920. https://doi.org/10.1093/geronb/gbt036.
Tajik, B., Voutilainen, A., Kauhanen, J., et al., 2022. Lipid profile, lipid ratios, apolipoproteins, and risk of cardiometabolic multimorbidity in men: The Kuopio Ischaemic Heart Disease Risk Factor Study. Lipids 57 (2), 141-149. https://doi.org/ 10.1002/lipd. 12337.

Thornton, J.S., Frémont, P., Khan, K., et al., 2016. Physical activity prescription: a critical opportunity to address a modifiable risk factor for the prevention and management of chronic disease: a position statement by the Canadian Academy of Sport and Exercise Medicine: Table 1. Br. J. Sports Med 50 (18), 1109-1114. https:// doi.org/10.1136/bjsports-2016-096291.
Tomasdottir, M.O., Sigurdsson, J.A., Petursson, H., et al., 2016. Does 'existential unease' predict adult multimorbidity? Analytical cohort study on embodiment based on the Norwegian HUNT population. BMJ Open 6 (11), e012602. https://doi.org/10.1136/ bmjopen-2016-012602.
Vall Castelló, J., Tubianosa, C., 2020. Linking Mediterranean diet and lifestyle with cardio metabolic disease and depressive symptoms: a study on the elderly in Europe. Int J. Environ. Res Public Health 17 (19), 7053. https://doi.org/10.3390/ ijerph17197053.
Veritas Health Innovation. Covidence systematic review software. Published online 2022. www.covidence.org.

Waller, K., Kujala, U.M., Kaprio, J., Koskenvuo, M., Rantanen, T., 2010. Effect of physical activity on health in twins: a $30-\mathrm{yr}$ longitudinal study. Med Sci. Sports Exerc 42 (4), 658-664. https://doi.org/10.1249/MSS.0b013e3181bdeea3.
Wang, A.Y., Hu, H.Y., Ou, Y.N., et al., 2022. Socioeconomic status and risks of cognitive impairment and dementia: a systematic review and meta-analysis of 39 prospective
studies. J Prev Alzheimers Dis. Published online. https://doi.org/10.14283/ jpad.2022.81.
Wells G., Shea B., O'Connell D., et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Published online 2023. 〈http s://www.ohri.ca/programs/clinical_epidemiology/oxford.asp \rangle.
Wikström, K., Lindström, J., Harald, K., Peltonen, M., Laatikainen, T., 2015. Clinical and lifestyle-related risk factors for incident multimorbidity: 10-year follow-up of Finnish population-based cohorts 1982-2012. Eur. J. Intern Med 26 (3), 211-216. https:// doi.org/10.1016/j.ejim.2015.02.012.
Willroth, E.C., Mroczek, D.K., Hill, P.L., 2021. Maintaining sense of purpose in midlife predicts better physical health. J. Psychosom. Res 145, 110485. https://doi.org/ 10.1016/j.jpsychores.2021.110485.

Xu, X., Mishra, G.D., Jones, M., 2017. Evidence on multimorbidity from definition to intervention: an overview of systematic reviews. Ageing Res Rev. 37, 53-68. https:// doi.org/10.1016/j.arr.2017.05.003.
Xu, X., Mishra, G.D., Dobson, A.J., Jones, M., 2018. Progression of diabetes, heart disease, and stroke multimorbidity in middle-aged women: a 20-year cohort study. In: Steinhubl, S.R. (Ed.), PLOS Med, 15. https://doi.org/10.1371/journal. pmed. 1002516.
Xu, X., Mishra, G.D., Dobson, A.J., Jones, M., 2019a. Short-term weight gain is associated with accumulation of multimorbidity in mid-aged women: a 20 -year cohort study. Int J. Obes. 43 (9), 1811-1821. https://doi.org/10.1038/s41366-018-0250-7.
Xu, X., Mishra, G.D., Jones, M., 2019b. Trajectories of mental health symptoms for women in their 20s predict the onset of chronic physical conditions in their 30s: two decades of follow-up of young Australian women. J. Affect Disord. 246, 394-400. https://doi.org/10.1016/j.jad.2018.12.106.
Xu, X., Jones, M., Mishra, G.D., 2020. Age at natural menopause and development of chronic conditions and multimorbidity: results from an Australian prospective cohort. Hum. Reprod. 35 (1), 203-211. https://doi.org/10.1093/humrep/dez259.
Zhang, K., Wu, B., Zhang, W., 2022. Adverse childhood experiences in relation to comorbid cardiovascular diseases and diabetes among middle-aged and old adults in China. Geriatr. Gerontol. Int 22 (1), 12-18. https://doi.org/10.1111/ggi.14312.
Zou, C., Sun, H., Lu, C., Chen, W., Guo, V.Y., 2022. Nighttime sleep duration, restlessness and risk of multimorbidity - a longitudinal study among middle-aged and older adults in China. Arch. Gerontol. Geriatr. 99, 104580 https://doi.org/10.1016/j. archger.2021.104580.

[^0]: * PROSPERO registration ID=CRD42019123304
 * Correspondence to: Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.

 E-mail address: alberto.zucchelli@unibs.it (A. Zucchelli).
 ${ }^{1}$ This authors contributed equally (co-first authors)
 https://doi.org/10.1016/j.arr.2023.102039
 Received 18 May 2023; Received in revised form 25 July 2023; Accepted 18 August 2023
 Available online 28 August 2023
 1568-1637/© 2023 Elsevier B.V. All rights reserved.

[^1]:

