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a b s t r a c t

Biological age and brain age estimated using biological and neuroimaging measures have recently emerged as 
surrogate aging biomarkers shown to be predictive of diverse health outcomes. As aging underlies the develop-
ment of many chronic conditions, surrogate aging biomarkers capture health at the whole person level, having the 
potential to improve our understanding of multimorbidity. Our study investigates whether elevated biological age 
and brain age are associated with an increased risk of multimorbidity using a large dataset from the Midlife in the 
United States Refresher study. Ensemble learning is utilized to combine multiple machine learning models to 
estimate biological age using a comprehensive set of biological markers. Brain age is obtained using Gaussian 
processes regression and neuroimaging data. Our study is the first to examine the relationship between ac-
celerated brain age and multimorbidity. Furthermore, it is the first attempt to explore how biological age and brain 
age are related to multimorbidity in mental health. Our findings hold the potential to advance the understanding of 
disease accumulation and their relationship with aging.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Multimorbidity, coexistence of 2 or more chronic conditions in an 
individual, is increasingly common especially among older adults 
and poses substantial public health challenges (Suls et al., 2016). 
Multimorbidity differs from a related term comorbidity in the sense 
that comorbidity has a primary condition of interest and examines 
the co-occurring of other conditions with this primary condition 
(Johnston et al., 2019). Medical research has been primarily single- 
disease focused, which considers 1 disease at a time and sometimes 
the comorbidity of a particular disease of interest (Suls et al., 2016). 
Multimorbidity offers an effective framework for examining the co- 
occurrence of multiple chronic conditions without the need to de-
fine a specific primary condition (Fabbri et al., 2015).

Aging is a universally experienced process, which underlies the 
development of most chronic conditions. The mechanism that drives 
the aging process may also drive multiple age-related chronic con-
ditions. In this sense, aging represents a key risk factor for multi-
morbidity and a shared pathway across many chronic diseases 
(Fabbri et al., 2015; Liu et al., 2018). In recent years, biological age 
has been proposed as a surrogate biomarker to capture the process 
of aging (Klemera and Doubal, 2006; Levine, 2012). At the individual 
level, biological age can deviate from chronological age, with ele-
vated biological age indicating higher risk for aging-related diseases 
(Wu et al., 2021). More importantly, this type of surrogate aging 
biomarker allows researchers to examine health at the whole person 
level, not unique to a specific health condition.

However, currently only 3 studies have investigated the re-
lationship between biological age and multimorbidity. Biological age 
obtained from regression-based models with a set of clinical mar-
kers was found to explain a significant amount of variability in 
multimorbidity defined based on 5 chronic diseases in middle-aged 
and older adults (Crimmins et al., 2021). Another study reported a 
significant correlation between multimorbidity and a biological age 
metric estimated based on blood immune biomarkers in older adults 
(Sayed et al., 2021). Additionally, a strong association was reported 
between the number of diseases and a summary aging measure 
obtained by regressing the hazard of mortality on a set of clinical 
markers and chronological age in adult (Liu et al., 2018). More 
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research is needed to examine biological age estimated from a broad 
range of clinical/biochemical markers and multimorbidity defined 
based on more categories of chronic conditions. In addition, a 
number of important methodological issues need to be clarified, 
such as how to address the estimation bias that biological age tends 
to be overestimated for younger participants and underestimated for 
older participants in regression-based models. 

Brain age estimated by machine learning models and neuroi-
maging data is another surrogate biomarker on aging (Niu et al., 
2020, 2022). Similar to biological age, brain age allows us to examine 
health as an integrative process, not specific to a particular health 
condition. A comparison of an individual’s brain age and chron-
ological age can inform us whether an individual’s brain ages faster 
or slower than it should. Studies have shown that brain age is 
powerful in predicting a broad range of health outcomes, such as 
cognitive functioning, stroke, diabetes, Alzheimer’s disease, 
smoking, alcohol, and mortality (Cole, 2020; Cole et al., 2017a, 
2017b; Wang et al., 2019). However, no study has examined the re-
lationship between brain age and multimorbidity. In addition, it is 
unclear whether the relationship between these aging biomarkers 
(i.e., biological age, brain age) and multimorbidity is moderated by 
sex. Studies have reported that the prevalence of multimorbidity 
differs by sex, notably a higher rate in women (Marengoni et al., 
2011). Understanding how the influence of biological age and brain 
age on multimorbidity differs by sex may allow us to develop more 
personalized strategies to prevent or delay multimorbidity. 

To answer these questions, we first estimate biological age using 
machine learning models and a comprehensive set of clinical and bio-
chemical markers including BMI (Body Mass Index), blood hemoglobin, 
and C-reactive protein. We then investigate whether the elevated bio-
logical age is related to an increased risk of multimorbidity defined 
based on 13 different categories of chronic conditions. Then, we examine 
whether accelerated brain age estimated by machine learning models 
and neuroimaging data is associated with an increased risk of multi-
morbidity. In addition, we test whether the relationship between mul-
timorbidity and the surrogate aging biomarker (e.g., biological age and 
brain age) is moderated by sex. Lastly, multimorbidity in mental health 
has been relatively under-researched, despite its advantage in under-
standing clinical complexity in psychiatry (i.e., having multiple psy-
chiatric and/or addictive disorders in an individual) (Bhalla et al., 2018; 
Langan et al., 2013). To this end, we explore the relationship between 
these surrogate aging biomarkers and mental health multimorbidity. 
Findings from our study hold the potential to improve our under-
standing of multimorbidity and its major risk factor aging, which may 
shed the light on new strategies to improve the treatment and clinical 
management of multimorbidity. 

2. Materials and methods 

2.1. MIDUS Refresher Study 

We used data from the Midlife in the United States (MIDUS) 
Refresher study (Ryff et al., 2017). A national sample of 4085 adults, 
aged 25–74 years, was studied between 2011 and 2016. Participants 
recruited through random digit dialing and a separate Black/African 
American sample from Milwaukee were included in the analyses. 
The MIDUS Refresher Biomarker Project obtained comprehensive 
biological assessments from 863 respondents who participated in 
the MIDUS Refresher project. Additionally, the MIDUS Refresher 
Neuroscience Project collected neuroscience assessments from 138 
respondents who also completed the Biomarker Project. Detailed 
sample descriptions can be found in other published papers (Boylan 
et al., 2020; Radler, 2014). To estimate biological age, we used data 
from all participants in the MIDUS Refresher Biomarker Project 

(n = 863). To obtain brain age, we included data from all participants 
in the MIDUS Refresher Neuroscience Project (n = 138). 

2.2. Multimorbidity 

We assessed multimorbidity using a dichotomous variable, indicating 
whether having 2 or more of the following conditions. Similar to other 
studies that examined multimorbidity using MIDUS data, we considered 
13 different categories of chronic conditions including diabetes, asthma, 
hypertension, HIV or AIDS, tuberculosis, neurological disorders, stroke, 
ulcer, arthritis, ever had cancer, heart trouble, obesity, and/or high cho-
lesterol levels (Friedman et al., 2015; Shorey and Friedman, 2018). This 
dichotomous variable was coded as 0 if the subject had single or no 
condition and 1 if the subject had 2 or more of the 13 chronic conditions 
in the past 12 months. We computed multimorbidity for all participants 
in the Biomarker Project. Additionally, we examined multimorbidity in 
mental health, a binary variable indicating whether having 2 or more of 
the psychiatric and addictive conditions, including depression 
(Rottenberg et al., 2019), anxiety disorder (Disabato et al., 2021), alcohol 
abuse (Ransome et al., 2017), and drug misuse (Kim et al., 2020). 

2.3. Biological measures 

Based on studies that estimated biological age using clinical and 
biochemical markers (Belsky et al., 2015; Crimmins et al., 2021; 
Klemera and Doubal, 2006), we identified a set of fairly standard 
markers that are commonly collected in a clinical exam. Here is the 
complete list of biological measures used: BMI, waist-hip ratio, blood 
pressure (systolic), HDL cholesterol, LDL cholesterol, total cholesterol, 
triglycerides, HbA1C, blood-fasting glucose, blood-fasting insulin-like 
growth factor 1 (IGF1), C-reactive protein, creatinine, peak flow, blood 
serum MSD IL10, and bone-specific alkaline phosphatase. 

2.4. Biological age 

We built machine learning models to estimate biological age with 
the list of biological measures described above. To do so, we first 
identified a subset of healthy participants without any of the physical 
and mental health conditions listed above (n = 193, a mean age of 45.60 
years, SD = 12.73 years, age range 25–74 years). The healthy cohort was 
randomly split in half with 50% of the data as a training set and the 
remaining 50% as an independent test set. We then built machine 
learning models with the list of biological measures to predict chron-
ological age using the training set. We took an ensemble learning ap-
proach, which is an effective tool to combine multiple machine 
learning models to achieve improved prediction accuracy, compared to 
a single machine learning model. In particular, we combined 3 popular 
machine learning models including support vector regression (Smola 
and Schölkopf, 2004), elastic net (Zou and Hastie, 2005), and Gaussian 
processes regression (Rasmussen and Williams, 2006) using a general 
linear model to create a linear combination of models as implemented 
in the R package caretEnsemble version 2.0.1 (Deane-Mayer and 
Knowles, 2016; Kuhn, 2008). Support vector regression generalizes the 
idea of support vector machine to a regression setting. In this study, we 
used a linear kernel and tuned the cost parameter using 10-fold cross- 
validation (CV) within the training set. Elastic net is a type of regular-
ized regression model with both L1 and L2 norms. The tuning para-
meters alpha and lambda were chosen to minimize CV error. We 
conducted Gaussian processes regression with radial basis function 
kernel and optimized the tuning parameter sigma using 10-fold CV. 
Biological measures were standardized before running machine 
learning models. For each of the biological measures, we subtracted the 
mean and then divide by its standard deviation in the training set. For 
the test set, we standardized each biological measure based on its 
mean and standard deviation computed from the training set. All 15 
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biological measures listed in Section 2.3 were used in the ensemble 
model. The trained model was then applied to the independent test set 
of healthy participants to predict their chronological age. The predicted 
chronological age is the so-called biological age. The underlying as-
sumption is that the biological age is on average the same as the 
chronological age for healthy participants. In this sense, we would 
expect an accurate model to achieve a small mean absolute error (MAE) 
from a test set of healthy participants. One important methodological 
issue that has not been made clear in the literature of biological age 
estimation is that a valid metric for evaluating model performance 
needs to be computed from an independent test set. This is because a 
model can easily overfit a training set. Another key methodological 
issue to note is that biological age can deviate from chronological age in 
disease groups. Thus, models for predicting biological age should be 
built with healthy participants. Though model training should be done 
with a healthy cohort, the trained model for estimating biological age 
can be applied to disease groups. We also applied our trained model to 
predict biological age for participants with at least 1 of the 13 cate-
gories of chronic conditions (n = 630). We computed a difference score 
by subtracting chronological age from the estimated biological age, 
called the biological age gap. A positive biological age gap means ac-
celerated biological aging. To correct for age-related bias, we conducted 
a general linear model to regress the biological age gap on chron-
ological age and computed the residualized/adjusted biological age gap. 

2.5. Image acquisition 

All structural scans were acquired using a 3T scanner (MR750, GE 
Healthcare, Waukesha, WI) with an 8-channel head coil. These data 
were derived from BRAVO T1-weighted structural images with TR 
(Repetition Time) = 8.2 ms, TE (Echo Time) = 3.2 ms, flip angle = 12°, 
matrix = 256 × 256, FOV (Field of View) = 256 mm, slices = 160, slice 
thickness = 1 mm, and inversion time = 450 ms. 

2.6. Brain age 

The estimates of brain age were computed using the brainageR 
(https://github.com/james-cole/brainageR) model as described by Cole 
et al. (2017a, 2017b). In brief, Gaussian processes regression was built 
using raw T1-weighted MRI (Magnetic Resonance Image) data from a 
large set of healthy adults (n = 2001, age range 18–90 years) to predict 
chronological age, which was reported to achieve high prediction ac-
curacy. The software brainageR takes raw MRI data, which is then 
minimally preprocessed automatically by the software itself. The pre-
dicted chronological age based on brain imaging data is the so-called 
brain-predicted age, or brain age in short. As discussed in previous 
publications from our group and others, brain age is often over-
estimated in younger individuals and underestimated in older in-
dividuals (Cole et al., 2017a, 2017b; Liang et al., 2019; Niu et al., 2020, 
2022; Smith et al., 2019). This brainageR model also corrects for age- 
related prediction bias by regressing brain age on chronological age. 
The trained model from Cole et al. (2017a, 2017b) was applied to raw 
T1-weighted MRI data collected in the Neuroscience Project (n = 138) 
to obtain their brain age. Moreover, we calculated a difference score 
between brain age and chronological age, called the brain age gap. A 
positive brain age gap indicates accelerated brain aging. 

2.7. Statistical analysis 

To examine whether accelerated biological aging was associated 
with an increased risk of multimorbidity, we conducted logistic re-
gression with the residualized biological age gap as the independent 
variable and multimorbidity as the outcome variable. In this ana-
lysis, we pooled the test set of healthy subject and the remaining 
participants with at least 1 chronic condition together (total sample 

size n = 726). We also controlled for chronological age, sex, race, and 
education. Race was coded as a binary variable, representing white 
and non-white. The non-white group included a few race categories 
including African American, native American, Asian, native Hawaiian 
or Pacific Islander, and other. These categories were combined due to 
their relatively small sample sizes. Education was categorized as 3 
levels including high school or General Educational Development 
(GED), some college, and college degree or more. Similarly, logistic 
regression was used to examine whether advanced brain aging (i.e., a 
positive residualized brain age gap) was related to an increased risk 
of multimorbidity. Since the brain age prediction model was trained 
using a different data set, we included all participants from the 
MIDUS Refresher Neuroscience Project with structural MRI data 
available (n = 127) in the logistic regression. The same set of cov-
ariates was controlled for in this analysis. In addition, we examined 
the potential moderating effect of sex on the relationship between 
multimorbidity and biological age gap. We also conducted separate 
moderation analyses to test whether the association between mul-
timorbidity and brain age gap depended on sex. Lastly, we conducted 
exploratory analyses to examine the relationship between mental 
health multimorbidity and each of the 2 surrogate aging biomarkers 
(i.e., biological age gap, brain age gap). To account for the potential 
confounding effect of chronological age, we used residualized bio-
logical and brain age gap and included chronological age as a cov-
ariate in all analyses examining multimorbidity. 

3. Results 

3.1. Sample characteristics 

Descriptive statistics for the study sample is shown in Table 1. 
Participants in this study aged between 25 and 76 years with a mean 
age of 50.84 years (SD = 13.41 years). The sample was primarily non- 
Hispanic white, and 52.1% were female. Of the study sample, 52.2% had 
a college degree or more and 42.8% had 2 or more chronic conditions 
(i.e., multimorbidity). The proportion of mental health multimorbidity 
was 9.7%. Among the participants in the Neuroscience Project (n = 138, 
age range: 25–74 years), 40.6% had 2 or more chronic conditions and 
10.1% had mental health multimorbidity. 

3.2. Biological age 

In the training set, biological age estimated by the machine learning 
model was correlated with chronological age (r = 0.81, MAE = 7.09 years) 
before bias adjustment. As shown in Fig. 1A, biological age was over-
estimated for younger participants and underestimated for older parti-
cipants. Due to this systematic difference between the estimated 
biological age and chronological age, the biological age gap was nega-
tively associated with chronological age (Fig. 1B). However, we expect 

Table 1 
Subject characteristics, the MIDUS Refresher Biomarker Project (n = 863)      

Variable Mean (SD) Range Percent  

Age  50.84 (13.41) 25–76  
Sex (% female)    52.1% 
Race (% non-white)    29.4% 
Education    

High school or GED    17.3% 
Some college    30.5% 
College or more    52.2% 

Number of chronic conditions  1.58 (1.56) 0–8  
Multimorbidity (% yes)    42.8% 
Number of mental health conditions  0.42 (0.74) 0–4  
Mental health multimorbidity (% yes)    9.7% 

Key: GED, General Educational Development.  

147 F. Zhang, H. Chang, S.M. Schaefer et al. / Neurobiology of Aging 132 (2023) 145–153 



the biological age gap is on average 0 among healthy participants. 
To account for this systematic negative association between biological 
age gap and chronological age, we regressed biological age gap on 
chronological age and computed the residualized/adjusted biological age 
gap (i.e., bias correction step). As shown in Fig. 1C, the adjusted biological 
age gap was not associated with chronological age and was on average 
very close to 0. When investigating biological age or biological age gap as 
a potential biomarker for aging, it is essential to account for this sys-
tematic bias by either computing the residualized biological age (gap) 
and/or controlling for chronological age. Otherwise, the effect of biolo-
gical age (gap) can be confounded by chronological age. 

The trained machine learning model was then applied to a test set 
of healthy adults to evaluate model performance. The systematic dif-
ference in the estimated biological age and chronological age was also 
observed in the test set (Fig. 1D). The model prediction performance on 
the test set (r = 0.54, MAE = 9.08 years) was less accurate than what was 
achieved on the training set, which is to be expected in a train-test 
split. The difference in prediction performance between the training 
and test sets is common in machine learning evaluations and can be 
attributed to the fact that a trained model is evaluated on new, unseen 
data during testing. This highlights the importance of reporting model 
performance from both the training and test sets since reporting the 
training MAE alone would not allow researchers to evaluate the model 
generalizability to new, unseen data. It is also worth noting that a high 
correlation coefficient and a small MAE imply better prediction per-
formance only when we examine a cohort of healthy participants. 

Feature importance value was computed from the ensemble 
learning model to rank the biological markers in terms of their con-
tribution for estimating biological age (Fig. 2). Feature importance for 
each machine learning model was calculated using the root mean 
squared error. These metrics were then scaled to collectively sum up to 
100, enabling standardized comparison. The overall variable im-
portance was computed by a weighted average, where feature 

importance from each individual model was averaged based on their 
corresponding weight in the overall ensembled model, as implemented 
in the function varImp in the R package caretEnsemble version 2.0.1 
(Deane-Mayer and Knowles, 2016; Kuhn, 2008). This results in a 
standardized metric representing variable importance, considering 
both individual model contributions and their weights in the ensemble. 
The top predictors were total cholesterol, blood-fasting IGF1, bone- 
specific alkaline phosphatase, and blood pressure. Creatinine was 
ranked as the least informative biological marker for estimating bio-
logical age. 

3.3. Brain age 

The brainageR model trained with a large set of healthy adults by 
Cole and colleagues (2017) was applied to the MIDUS Refresher 
Study Neuroscience Project. The resulting model performance of the 
trained brainageR model on our MIDUS test data was r = 0.79 and 
MAE = 6.1 years. Given that participants in the Neuroscience Project 
included the ones with chronic health conditions, the deviation from 
chronological age could indicate accelerated aging, which was ex-
amined in the following sections. Similar to what we observed for 
biological age, brain age was overestimated in younger participants 
and underestimated in older participants (Fig. 3 left panel). This 
systematic bias has been discussed in our previous publications 
(Liang et al., 2019; Niu et al., 2020). Though a regression-based bias 
correction step was conducted automatically by the brainageR 
model to account for a statistical dependency on chronological 
age (Cole et al., 2017a, 2017b), we still observed some overestimation 
and underestimation in the bias-adjusted brain age (Fig. 3 right 
panel, r = −0.31). Therefore, in the subsequent analyses examining 
multimorbidity, we included chronological age as a covariate to 
further adjust for age dependency and control for the potential 
confounding effect of chronological age. 

Fig. 1. Scatterplots of biological age/(adjusted) biological age gap (y-axis) and chronological age (x-axis) with fitted regression lines and 95% confidence bands for the training and 
test sets of healthy adults. 
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3.4. Association with multimorbidity 

As shown in Table 2, results from logistic regression found that a 
larger biological age gap was significantly associated with an increased 
risk of multimorbidity after controlling for sex, chronological age, race, 

and education (b = 0.06, p = 0.007, OR (Odds ratio) = 1.07, 95% CI 
(Confidence interval) [1.02, 1.12]). Among the covariates, higher 
chronological age (b = 0.13, p  <  0.001, OR = 1.14, 95% CI [1.09, 1.19]) and 
being non-white (b = 0.45, p = 0.022, OR = 1.57, 95% CI [1.07, 2.30]) were 
significantly related to an increased risk of multimorbidity. Having a 

Fig. 2. Feature importance yielded by the machine learning models for the list of biological markers used to estimate biological age. The x-axis is the standardized unit of feature 
importance out of 100. 

Fig. 3. Scatterplots of brain age/brain age gap (y-axis) and chronological age (x-axis) with fitted regression lines and 95% confidence bands for the test set.  
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college degree or more was negatively associated with the risk of 
multimorbidity (b = −0.76, p  <  0.001, OR = 0.48, 95% CI [0.30, 0.73]). 

Findings on the association between brain age gap and multi-
morbidity were summarized in Table 3. The brain age gap was not 
significantly associated with the risk of multimorbidity (b = −0.02, 
p = 0.551, OR = 0.98, 95% CI [0.92, 1.04]). Among the covariates, 
chronological age was positively associated with the risk of multi-
morbidity (b = 0.11, p  <  0.001, OR = 1.11, 95% CI [1.07, 1.17]) while 
having a college degree or more was negatively related to the risk of 
multimorbidity (b = −1.36, p = 0.021, OR = 0.26, 95% CI [0.08, 0.79]). 

3.5. Moderating effect of sex 

The effect of the biological age gap on the risk of multimorbidity 
was not significantly moderated by sex (b = 0.003, p = 0.850, OR = 
1.00, 95% CI [0.97, 1.03]). Including the interaction term between 
biological age gap and sex in the logistic regression did not change 
the pattern and significance of other variables (see the last 2 col-
umns of Table 2). In contrast, the brain age gap by sex interaction 
term was statistically significant and was negatively associated with 
the risk of multimorbidity (b = −0.19, p = 0. 009, OR = 0.83, 95% CI 
[0.71, 0.95]). This suggests that the effect of the brain age gap on the 
risk of multimorbidity depended on sex and was weaker among 
females compared to males. The inclusion of the interaction term did 
not change the pattern and significance of other variables in the 
logistic regression model (refer to the last 2 columns of Table 3). 

3.6. Association with mental health multimorbidity 

In the exploratory analyses, we found that the biological age gap 
was positively associated with the risk of mental health 

multimorbidity after controlling for sex, chronological age, race, and 
education (b = 0.07, p = 0.046, OR = 1.07, 95% CI [1.00, 1.15]). Among 
the covariates, having some college education was negatively related 
to the risk of mental health multimorbidity (b = −0.66, p = 0.031, OR = 
0.52, 95% CI [0.28, 0.94]). Additionally, having a college degree or 
more was associated with a decreased risk of mental health multi-
morbidity (b = −1.17, p  <  0.001, OR = 0.31, 95% CI [0.17, 0.57]). 

Similarly, the brain age gap was found to be positively related to 
the risk of mental health multimorbidity after controlling for sex, 
chronological age, race, and education (b = 0.10, p = 0.038, OR = 1.10, 
95% CI [1.01, 1.22]). All other covariates were not statistically sig-
nificant. This is likely due to the fact that the sample size of the 
Neuroscience Project is much smaller compared to the Biomarker 
Project (see “Methods” section). 

4. Discussion 

In this study, we estimated biological age using machine learning 
models and a comprehensive set of biological markers collected from a 
large number of adults in the MIDUS Refresher sample. We showed 
that elevated biological age was associated with an increased risk of 
multimorbidity defined based on 13 different categories of chronic 
conditions. In addition, it is the first study to examine the relationship 
between accelerated brain age and multimorbidity. We also in-
vestigated whether the relationship between the surrogate aging bio-
markers and multimorbidity was moderated by sex. Though the brain 
age gap was not associated with the risk of multimorbidity, the inter-
action between brain age gap and sex was significantly negatively re-
lated to the risk of multimorbidity, suggesting that the effect of 
the brain age gap on the risk of multimorbidity was weaker among 
females compared to males. Lastly, in our exploratory analyses, we 
found that elevated biological age and accelerated brain age were both 
associated with an increased risk of mental health multimorbidity. 
These findings are helpful to improve our understanding of the accu-
mulation of physical and mental health conditions in an individual and 
sex-related differences in aging. 

Though varied in the methods of estimating biological age and 
quantifying multimorbidity, our study obtained findings consistent 
with previous studies that elevated biological age was related to an 
increased risk of multimorbidity (Crimmins et al., 2021; Liu et al., 
2018; Sayed et al., 2021). This points to the value of investigating 
biological aging as an underlying mechanism for multimorbidity and 
a shared pathway for different chronic conditions. Early detection of 
accelerated biological aging before the onset of chronic conditions 
holds the potential for disease prevention. Cole (2020) reported that 
advanced brain aging was associated with hypertension, diabetes, 
and stroke when testing with 14,701 individuals from the UK Bio-
bank (Cole, 2020). However, in our study, brain age was not found to 
be significantly associated with multimorbidity. The relatively small 
sample size in the Neuroscience Project could limit the statistical 
power to detect the effect. As our study is the first attempt to explore 
the association between brain age and multimorbidity, future stu-
dies with larger sample sizes are needed to validate the findings. 

We identified a set of biological measures, which were found to 
influence biological age that was positively associated with the risk 
of multimorbidity. Our top-ranked biological markers (i.e., feature 
importance ≥5) for estimating biological age, including total cho-
lesterol, IGF1, alkaline phosphatase, glucose, C-reactive protein, and 
peak flow, have also been reported to be predictive of multi-
morbidity (Crimmins et al., 2021). Systolic blood pressure has been 
identified as a risk factor for death and disease (Liu et al., 2018; Port 
et al., 2000). In addition to total cholesterol, LDL and triglycerides 
were also found to be important for the quantification of biological 
aging (Belsky et al., 2015). These identified biological markers are 
modifiable factors, which may shed the light on new approaches to 

Table 2 
Results from the logistic regression models for examining the association between the 
residualized biological age gap and multimorbidity and for examining the moderating 
effect of sex        

Multimorbidity Multimorbidity (with 
sex as a moderator)  

b p value b p value  

Biological age gap 0.06 0.007  0.06 0.011 
Sex (female) 0.03 0.870  0.04 0.822 
Age 0.13  < 0.001  0.13  < 0.001 
Race (non-white) 0.45 0.022  0.45 0.022 
Education (some college) −0.17 0.475  −0.17 0.478 
Education (college or more) −0.76  < 0.001  −0.76 0.001 
Biological age gap * Sex — —  0.003 0.850 

Specifically, we used bias-adjusted (i.e., residualized) biological age gap and included 
chronological age as a covariate. Multimorbidity is defined based on 13 different ca-
tegories of chronic conditions. 
Significance values are indicated as p value in the table.  

Table 3 
Results from the logistic regression models for examining the association between the 
residualized brain age gap and multimorbidity and for examining the moderating 
effect of sex        

Multimorbidity Multimorbidity (with 
sex as a moderator)  

b p value b p value  

Brain age gap −0.02 0.551  0.07 0.129 
Sex (female) 0.27 0.554  0.59 0.236 
Age 0.11  < 0.001  0.11  < 0.001 
Race (non-white) −0.03 0.951  −0.26 0.608 
Education (some college) −0.72 0.216  −1.04 0.088 
Education (college or more) −1.36 0.021  −1.76 0.006 
Brain age gap * Sex — —  −0.19 0.009 

Multimorbidity is quantified using 13 different categories of chronic conditions. 
Significance values are indicated as p value in the table.  
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improve the treatment of multimorbidity. This also points to the 
need of collecting these biological measures during routine medical 
visits, which may assist with the detection of at-risk individuals. 

The negative association between brain age gap and chron-
ological age has been thoroughly investigated in prior work pub-
lished by our group (Liang et al., 2019; Niu et al., 2020, 2022) as well 
as other studies (Beheshti et al., 2019; Cole et al., 2017a, 2017b; 
Smith et al., 2019). The reason for this systematic bias can be ex-
plained by regression to the mean (Liang et al., 2019). However, this 
issue has not been formally reported in the literature of biological 
age estimation. Thus, we presented the pattern between biological 
age gap and chronological age using the MIDUS refresher sample and 
highlighted the importance of controlling for the confounding effect 
of chronological age. It is important to note that the bias adjustment 
step uses chronological age as an input to the model, making it 
circular for evaluating brain age or biological age prediction accuracy 
(Butler et al., 2021). Therefore, the evaluation metrics (e.g., correla-
tion coefficient r, MAE) calculated from bias-adjusted brain or bio-
logical age gap can be artificially inflated and are no longer 
appropriate for evaluating the prediction performance of the brain 
or biological age estimation model. The purpose of the age-bias 
adjustment is to control for the confounding effect of chronological 
age when testing the brain or biological age gap as a predictor of 
health outcomes. In the case where the age dependency cannot be 
perfectly eliminated by the bias adjustment, including chronological 
age as a covariate in subsequent analysis of multimorbidity allows us 
to further control for the potential confounding effect of age. Ad-
ditionally, we observe that the MAE obtained from a test set of 
healthy adults by the biological age prediction model was larger than 
the MAE calculated from a training set. This demonstrated the need 
of evaluating model performance using an independent test set as 
statistical models can easily overfit a training dataset. Because bio-
logical age can deviate from chronological age in disease groups, 
the correlation coefficient and MAE are the only meaningful metrics 
for evaluating model performance when examining healthy parti-
cipants. This speaks to the value of training/calibrating biological age 
estimation model only using health participants. Presenting these 
methodological issues in our study is helpful to guide the design and 
analysis of future studies on biological age and brain age. 

Furthermore, while brain or biological age-bias adjustment 
models are designed to mitigate age-related prediction bias, their 
effectiveness can be influenced by various factors, particularly when 
the models are trained on existing data and then applied to a dif-
ferent cohort. This generalizability may not always be perfect, as the 
underlying biological and demographic characteristics of the test 
data might differ from the training data. Thus, even with robust bias 
correction, there may be residual variations that are due to differ-
ences in the data sets, such as different MRI scanning parameters 
and biospecimen qualities. Further investigation is warranted to 
delve into the nuanced mechanisms driving the age-related de-
pendency, enhancing our understanding of the intricate interplay 
between biological aging and data analysis techniques. 

Our study found that the 2-way interaction between brain age 
and sex was negatively associated with the risk of multimorbidity. 
This suggests that the potential sex difference in how brain aging is 
related to the accumulation of multiple chronic conditions. Previous 
study on brain aging reported on average younger brain in women 
throughout adulthood compared to men of the same age (Goyal 
et al., 2019). Sex differences in MRI-based volume loss were also 
reported across the brain, with females having less volume loss over 
time than males (Armstrong et al., 2019). Studies have suggested 
that sex hormones (e.g., estrogen) can play important roles in brain 
aging and may have a neuroprotective effect in women (Green and 
Simpkins, 2000; Zarate et al., 2017). Predictors of brain age were 
also found to be sex-specific, highlighting the value of sex-specific 

analyses (Sanford et al., 2022). Further research is needed on ex-
amining sex-specific risk and protective factors that influence brain 
aging and disease accumulation. 

Multimorbidity in mental health has been relatively under-in-
vestigated, despite its strength in capturing complex clinical re-
presentations of psychiatric disorders (Bhalla et al., 2018; Langan 
et al., 2013). Our study presents the first attempt to investigate how 
biological age and brain age are related to mental health multi-
morbidity. As hypothesized, we found that elevated biological age 
and accelerated brain age were associated with an increased risk of 
mental health multimorbidity. Our findings are consistent with 
previous studies that found accelerated brain aging in alcohol use 
(Amen et al., 2018; Cole, 2020), cannabis use (Amen et al., 2018), 
anxiety (Amen et al., 2018), and depression (Niu et al., 2022). In 
addition, accelerated biological aging has been reported in substance 
use (Bachi et al., 2017) and alcohol abuse (Piniewska-Róg et al., 
2021). Some biological age indicators (e.g., lung function, telomere 
length) have also been found to be altered in depression and anxiety 
disorder (Han et al., 2019). It will be interesting to examine the re-
lationship between these surrogate aging biomarkers and mental 
health multimorbidity using data with larger samples and more 
categories of mental health conditions. 

Because of our interest in examining brain age estimated by 
neuroimaging data, we chose the MIDUS refresher sample in this 
study, and thus our findings are limited to cross-sectional associa-
tion. Future research can benefit from longitudinal data to in-
vestigate whether biological age and brain age predict 
multimorbidity and mental health multimorbidity prospectively. 
The longitudinal nature of the MIDUS study will allow such future 
investigations. Furthermore, the estimated brain age was obtained 
based on structural MRI data. It will be interesting to test whether 
brain age estimated by multimodal neuroimaging data shows a 
stronger association with multimorbidity and mental health multi-
morbidity. In addition, our study defined the primary outcome 
as multimorbidity based on 13 different categories of chronic con-
ditions and explored mental health multimorbidity based on mea-
sures available in the MIDUS refresher sample. Alternative ways of 
defining multimorbidity (e.g., whether the duration and severity of 
chronic conditions are considered) and physical-mental multi-
morbidity patterns need to be examined in future research. 
Integrating other lifestyle factors such as diet and physical activity 
in the relationship between aging and multimorbidity may merit 
future research. 
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