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A B S T R A C T   

Psychoneuroimmunology and immunopsychiatry are quickly approaching a critical point where the clinical 
translatability of their evidence base will be tested. To maximize chances for translational success, we believe 
researchers must adopt causal inference techniques that augment the causal relevance of estimates given theo-
rized causal structures. To illustrate the utility of incorporating causal inference perspectives into psychoneu-
roimmunology, we applied directed acyclic graphs and a combination of empirical and simulated data to 
demonstrate the consequences of controlling for adiposity when testing the association between inflammation 
and depression under the plausible causal structure of increases in adipose tissue leading to greater inflammation 
that in turn promotes depression. Effect size estimates were pulled from a dataset combining the Midlife in the 
United States 2 (MIDUS-2) and MIDUS Refresher datasets. Data were extracted and used to simulate data 
reflecting an adiposity → inflammation → depression causal structure. Next, a Monte Carlo simulation study with 
1,000 iterations and three sample size scenarios (Ns = 100, 250, and 500) was conducted testing whether 
controlling for adiposity when estimating the relation between inflammation and depression influenced the 
precision of this estimate. Across all simulation scenarios, controlling for adiposity reduced precision of the 
inflammation → depression estimate, suggesting that researchers primarily interested in quantifying inflam-
mation → depression associations should not control for adiposity. This work thus underscores the importance of 
incorporating causal inference approaches into psychoneuroimmunological research.   

1. Introduction 

Over the past 50 years, the field of psychoneuroimmunology has 
yielded substantial evidence illustrating how human thoughts, feelings, 
and behaviors affect the immune system and vice versa. With this 
knowledge in hand, a primary focus for the next era will be to translate 
this basic science of psychoneuroimmunology into clinical interventions 
aimed at improving immune-mediated somatic and psychiatric health 
outcomes. Success in this mission, we believe, will be determined by the 
field’s willingness to adopt methodological techniques and perspectives 
that maximize the causal inferences that can be gleaned from psycho-
neuroimmunological studies. 

Causal inference is an entire field of scientific inquiry dedicated to 

estimating the magnitude of causal effects given theorized causal 
structures (also described as “data generating mechanisms”). Specif-
ically, beyond experimental designs, causal inference principles describe 
the conditions required to maximize the causal implications of obser-
vational data [see Morgan and Winship (2015) for an overview specific 
to observational social science data]. The primary aim of this article is to 
illustrate the consequences of observational psychoneuroimmunological 
research that does not abide by these principles using a combination of 
empirical data and Monte Carlo simulations. To accomplish this aim, we 
first provide a brief introduction to core benefits of causal inference 
perspectives and discuss how they maximize the causal relevance of 
research. Second, we use the common decision to control for adiposity/ 
body mass index (BMI) when looking at inflammatory predictors of 
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depression as a widely relevant use-case to demonstrate how this com-
mon strategy may reduce the precision of key effect estimates in 
immunopsychiatry. Finally, we conclude with recommendations for 
psychoneuroimmunologists looking to leverage the field of causal 
inference to improve their own work. 

1.1. A Primer on Causal Inference 

A complete review of the field of causal inference can be found 
elsewhere, such as in Dablander’s didactic introduction to causal 
inference (Dablander, 2020). In brief, causal inference methodologies 
improve the causal relevance of research by (a) establishing a formal 
causal hierarchy, (b) accounting for bias (including bias that cannot be 
addressed using statistical control), and (c) improving the precision of 
effect estimates (Pearl and Machenzie, 2018). Below, we briefly intro-
duce the causal hierarchy and implications for bias, as implications for 
precision will be the focus of this article and will be discussed in greater 
detail below. 

The causal hierarchy is typically described as having three levels: 
association, intervention, and counterfactuals (Pearl and Machenzie, 
2018; Pearl, 2019). These levels are listed in order of both (a) least-to- 
most causally relevant and (b) least-to-most intensive assumptions. 
These levels are also referred to as their three associated actions: seeing, 
doing, and imagining, respectively. Association/seeing refers to studies 
using observational data, which will be the level relevant to our use case 
below (i.e., what is the association between inflammation and depres-
sion symptoms). Although the use of causal inference methods such as 
directed acyclic graphs (described below) does not enable researchers to 
make causal claims from observational data, considering causal associ-
ations between variables of interest can reduce bias and improve esti-
mate precision by informing study design, data collection, and analysis 
(Pearl, 1995). The second level of the hierarchy, intervention/doing, 
involves manipulation of variables to answer population-level questions 
(e.g., what would happen if all patients with depression were forced to 
take an anti-inflammatory medication?). The final level of the hierarchy 
is counterfactuals/imagining, which enables exploration of individual- 
level questions (e.g., would patient X have recovered if they had 
received this medication, even though they neither recovered nor 
received this medication in reality). 

In well-intentioned efforts to increase the causal relevance of 
observational data, many researchers decide to statistically control for 
potentially influential “third variables”. Unfortunately, it is not un-
common for this to result in a “kitchen sink”/“garbage can” approach of 
controlling for all variables that are potentially related to the focal 
predictor and outcome (Achen, 2005) without considering the under-
lying causal relations between the variables and their implications for 
bias and precision. Directed acyclic graphs (DAGs) are a common tool in 
causal inference used to formalize assumptions about these causal re-
lations to inform modeling decisions. For example, the use of DAGs can 
help avoid certain systematic sources of bias, such as confounding bias. 
A confounder is, by definition, a third variable that has a causal influ-
ence on two other variables that might be associated. Controlling for a 
confounder removes this bias. 

Specific to psychoneuroimmunology, acute stress can be thought of 
as a confounder of the relation between inflammatory biology and 
depression (for an example DAG, see Fig. 1). A second type of bias that 
can be identified using DAGs is collider bias. Collider bias arises when 
controlling for a variable that is caused by the two variables of interest, 
which can cause spurious correlations between the two variables and 
should be avoided (Rubin, 1974; Rosenbaum, 1984; Elwert and Win-
ship, 2014). For example, both receiving a vaccination and recent ex-
ercise can increase inflammation, but there is plausibly no causal 
relation between vaccination and recent exercise (Fig. 2). In this sce-
nario, controlling for inflammation would be conditioning on a colli-
der—potentially biasing the association between vaccination and recent 
exercise. 

Here, we briefly describe the key assumptions for DAGs [see Rohrer 
(2018) for a detailed description of DAGs]. Simply put, DAGs are visual 
tools used to specify causal assumptions using nodes (variables) and 
edges (arrows) that reflect causal relations (Pearl, 1995). One of the core 
assumptions of DAGs is that direct manipulation of one node will cause 
changes in downstream nodes. Importantly, DAGs only allow for single- 
headed arrows (i.e., no bidirectional relations) because no nodes are 
allowed to proceed themselves—described as a “cyclic” association. 
However, separate DAGs can be constructed for different measurement 
occasions to incorporate concepts of A → B and, later, B → A. Under the 
right conditions, the use of Structural Causal Models can be used to 
formalize bidirectional associations. Structural Causal Models incorpo-
rate all three levels of causality and translate causal statements to 
probabilistic statements that can be empirically tested. 

Although more complex causal structures exist, all can be broken 
down into three fundamental causal structures: chains, forks, and 
inverted forks (Elwert, 2013). Chains represent a causal path from A → B 
→ C (e.g., Fig. 3). Forks describe A ← B → C paths (see Fig. 1), whereas 
inverted forks describe A → B ← C paths (see Fig. 2). In these paths, 
nodes at the receiving end of edges are referred to as “descendants” 
whereas nodes at the beginning of edges are referred to as “ancestors”. 
Any path that contains an inverted fork is “blocked” because the asso-
ciations cannot be transmitted behind the ancestor node. Using DAGs to 
map out these associations can inform analytic decisions to reduce bias 
(described above) as well as maximize precision of effect estimates. 

1.2. Precision Amplifies Translational Impact 

As the focus of psychoneuroimmunology research shifts toward 
translational impact, the ability to precisely quantify the size of effects 
between psychology, behavior, and immunology is equally as important 
as the ability to detect if an effect exists. Consider the development of a 
randomized clinical trial testing immune-modulating medications as an 
augmentative treatment to a psychosocial intervention for depression. 
The immune system is an immensely diverse, multifaceted biological 
system that presents a variety of possible treatment targets (Capuron 
and Miller, 2004; Raison et al., 2006, 2013; Felger and Miller, 2020; 
Nettis et al., 2021). Selecting the most promising immune-modulating 
medications requires a comparison of effect sizes between candidate 
treatment targets (i.e., proteins with an identified association) and 
depression. Imprecise effect size estimates decrease clarity of this choice 
and could lead to investment in suboptimal treatments, resulting in 

Fig. 1. Example Directed Acyclic Graph – Stress as a Confounder.  

Fig. 2. Example Directed Acyclic Graph – Inflammation as a Collider.  
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inefficiently stewarded resources (e.g., research funding, time) and 
limited clinical impact. The same rationale applies to selecting behav-
ioral interventions to alter immunology. Solely understanding that be-
haviors, such as dietary routines and exercise, influence immune 
functioning is not enough to determine the optimal, first-line behavioral 
intervention for rheumatoid arthritis; rather, it is necessary to accurately 
quantify and compare the effects of specific diet changes and exercise 
programs (amongst other interventions) to optimize treatment recom-
mendations. Further, imprecise effect size estimates could result in un-
derpowered clinical trials, further slowing translation of basic 
psychoneuroimmunology into real world impact. 

1.3. Plausible Causal Structure of Adiposity, Inflammation, and 
Depression 

To further illustrate the nature of these issues, we turn now to a 
specific example: controlling for adiposity when investigating immu-
nological associations with depression. Controlling for adiposity or a 
proxy for adiposity, such as BMI, is common practice in immunop-
sychiatry, and is formally recommended in some widely cited articles on 
covariates in psychoneuroimmunology (O’Connor et al., 2009; Horn 
et al., 2018). The primary rationale for doing this is that many 
commonly studied inflammatory proteins are created and released by 
macrophages and adipocytes in fat tissue (Shelton and Miller, 2011; 
Ellulu et al., 2017). For example, approximately 30% of circulating 
interleukin (IL)-6 is estimated to originate from adipose tissue 
(Mohamed-Ali et al., 1998). This hypothesis has also inspired research 
examining the extent to which inflammation may mediate the associa-
tion between adipose tissue and depression (visualized in Fig. 3; 
Capuron et al., 2011; Shelton and Miller, 2011; Daly, 2013; Chu et al., 
2023). Although we did not find any studies that tested true mediation 
models of these associations using repeated measures of all focal vari-
ables to assess change (i.e., changes in predictor → changes in mediator 
→ changes in outcome), this is a compelling causal framework. Indeed, 
this causal model is often the primary rationale for the widespread 
acceptance of adiposity/BMI as a recommended covariate when testing 
immunology as a predictor of psychopathology and behavioral out-
comes (O’Connor et al., 2009; Horn et al., 2018). As highlighted above, 
however, this rationale does not classify adiposity as a confounder of the 
inflammation → depression association. In fact, the application of causal 
inference principles highlights that this well-intentioned standard might 
have negative consequences for statistical model performance. 

In Fig. 3, we use a DAG to illustrate a causal chain wherein adiposity 
affects depression through inflammation, which has been proposed by 
several theories of depression (Slavich and Irwin, 2014; Miller et al., 
2009). Critically, there are a variety of established implications of 
controlling for Z in different causal structures when the association 
between X and Y is the effect of interest [for a more thorough primer on 
how to use DAGs to determine the consequences of covariate selection, 
see Supplement 3 of Del Giudice and Gangestad (2021)]. As we will 
illustrate in the present study (below), controlling for Z in the scenario 
depicted in Fig. 3 will invariably decrease measurement precision of the 
X →Y estimate, when there is no direct effect of adiposity above and 
beyond the indirect effect via inflammation. 

2. The Present Study 

The present study uses both empirical data and simulations to 
illustrate the consequences of controlling for a more distal causal vari-
able when trying to quantify the relation between a downstream vari-
able (i.e., a mediator) and the outcome when the distal variable has no 
direct effect itself on the outcome. Specifically, we leverage the decision 
to control for adiposity when quantifying the inflammation → depres-
sion association as a widely-relevant use case. Effect sizes are identified 
using two open datasets (described below). These effect sizes are then 
used to simulate datasets to compare the precision of inflammation → 
depression estimates with and without controlling for adiposity to a 
known, “true” effect size. 

3. Method 

3.1. Participants and Procedure 

Effect sizes for the simulation were extracted from a dataset 
combining data from the Midlife in the United States 2 [MIDUS-2; Ryff 
et al. (2017)] and MIDUS Refresher (MIDUS-R; Weinstein et al. (2017)] 
datasets. MIDUS-2 studied 1,255 (Mage = 55.42 years, 50% female, 78% 
White) participants aged 25-75 years old who were fluent in English and 
volunteered to participate in a biomarker collection protocol that 
included a sera assessment of eight inflammatory proteins [i.e., C- 
reactive protein (CRP), IL-6, IL-8, IL-10, tumor necrosis factor-α (TNF-α), 
fibrinogen, E-selectin, and intercellular adhesion molecule-1 (ICAM-1)]. 
Beyond fibrinogen, all of these proteins are found in adipose tissue. 
Therefore, all proteins except fibrinogen were tested. MIDUS-R was 
designed to parallel MIDUS-2’s methodology and consisted of 863 adults 
(Mage = 53.53 years, 50% female, 87% White). After combining datasets 
and removing missing data (various participants in MIDUS had adiposity 
quantified using different methods, described below), the analytic 
sample size for the mediation analyses ranged from 543-549 depending 
on the protein tested. 

3.2. Measures 

Total Body Adiposity. Total grams of whole body fat mass was 
measured using Lunar DXA scanners. Different MIDUS data collection 
sites used different scanners, and our decision to use the Lunar scanner 
data maximized our analytic sample size as it was the only adiposity 
measurement included in both MIDUS-2 and MIDUS-R datasets. 

Inflammatory Proteins. Fasting blood draws were collected be-
tween 6:00 and 8:30 am for both studies. Blood was centrifuged and 
plasma and serum samples were stored in a -60 to -80◦C freezer. Samples 
were shipped to the MIDUS Biocore Lab on dry ice, where they were 
stored at -65 ◦C until assayed. CRP originally was analyzed in plasma via 
BNII nephelometer (Dade Behring Inc.). Samples falling below the assay 
range for this method were re-assayed using immunoelec-
trochemiluminescence using a high-sensitivity assay kit [Meso Scale 
Diagnostics (MSD)]. Beginning in 2016, all participants (n = 150 from 
MIDUS-R) had CRP assayed using the MSD platform using serum. Cor-
rections to account for these changes were applied before the data were 
made publicly available and analyzed for this study. E-Selectin and 
ICAM-1 were measured using enzyme-linked immunosorbent assays 
(ELISAs; R&D Systems, Minneapolis, MN). Lot-to-lot changes in both E- 
Selectin and ICAM-1 assays were made throughout the course of the 
study and adjusted for prior to the data being made publicly available. 
Cytokines (IL-6, IL-8, IL-10, and TNF-α) were quantified by V-plex 
Custom Human Cytokine Kit (MSD, Rockville, MD), MSD Sulfo-tag, and 
MSD Sector Imager. E-Selectin and ICAM-1 values outside of the 
detectable range (LLOD =<.1 ng/mL and <45 mg/L, respectively) were 
set at .09 ng/mL and 44 ng/mL, respectively. MIDUS documentation 
(Ryff et al., 2017; Weinstein et al., 2017) indicates that none of the other 
proteins had values outside of the detectable range. Assay ranges and 

Fig. 3. Example Directed Acyclic Graph – Adiposity, Inflammation, 
and Depression. 
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variability for all proteins can be found in the MIDUS documentation 
available online (Ryff et al., 2017; Weinstein et al., 2017). 

Depression Symptoms. The Center for Epidemiological Studies 
Depression Inventory (CES-D) quantified depression symptoms. The 
CES-D is a 20-item questionnaire with a 4-point Likert response scale. 
Scale scores were summed by computing the sum of all items for ob-
servations in which there was no missing data, after reverse scoring 
appropriate items (Cronbach’s α = .89). 

3.3. Effect Size Extraction 

Unfortunately, none of the studies we found that tested inflammation 
as a mediator of the association between adiposity or adiposity proxies 
(e.g., BMI) and depression [e.g., Capuron et al. (2011); Daly (2013); Chu 
et al. (2023)], tested repeated measures of all focal variables (i.e., 
changes in adiposity → changes in inflammation → changes in depres-
sion) and reported standardized effect sizes that could be used for 
simulating the data necessary for this study. To acquire standardized 
effect size estimates, MIDUS-2 and MIDUS-R datasets were combined 
and analyzed using Model 4 of the PROCESS V4.2 SPSS macro (Hayes, 
2017), resulting in analytic sample sizes of 543-549 for the mediation 
analyses, depending on the protein tested. Each of the seven proteins 
was tested as a mediator of the association between total body adiposity 
and depression. Protein values were not transformed because the 
assumption of normality in linear models refers to the residuals (the 
PROCESS macro does not give this diagnostic) not the normality of the 
values (Ernst and Albers, 2017) as commonly reported in psychoneu-
roimmunology research (Moriarity, 2022). 

3.4. Monte Carlo Simulation 

The Monte Carlo simulation study was conducted in R Version 4.2.2 
(Team RC, 2013). Briefly, a Monte Carlo simulation involves simulating 
multiple datasets with “known” effects between the variables of interest. 
Because the data were generated with the effect sizes specified, it is 
already known what the “true” answer is when trying to quantify these 
effects (e.g., the association between inflammation and depression). 
This gold standard can then be used as a benchmark to compare analyses 
run on the simulated data to determine which of a set of analytic ap-
proaches (e.g., regressions with inflammation predicting depression 
with, and without, controlling for adiposity) is most effective at quan-
tifying or detecting the “true” effect size. 

The effect sizes observed in the MIDUS data were used to simulate a 
dataset reflecting a causal association from adiposity, through an in-
flammatory protein, to depression. Data were managed using tidyverse 
(Wickham et al., 2019). Data were simulated using lavaan (Rosseel, 
2012). Simulation results were estimated and visualized using rsimsum 
(Gasparini, 2018). Three Monte Carlo simulations with 1,000 different 
samples were conducted. The three simulation scenarios only differed in 
the size of each sample (Ns = 100, 250, and 500) to illustrate that larger 
sample sizes do not change our conclusions. Data were simulated to 
reflect a causal structure where an inflammatory protein mediated the 
association between adiposity and depression according to the proxy 
effect sizes found in the cross-sectional mediation analyses. Two re-
gressions were estimated in each simulated dataset: one with inflam-
mation predicting depression and one with inflammation predicting 
depression while controlling for adiposity. Each estimate of the associ-
ation between inflammation and depression was extracted and 
compared to the “true” effect size (i.e., the effect size that the simulated 
data was based on) between inflammation and depression to compare 
model performance. The key metric of interest is the precision of the 
model estimates. The code for the data simulation and simulation per-
formance analyses are available in the Supplemental Materials. A cor-
relation matrix of MIDUS variables can be found in Supplemental Table 
1. 

4. Results 

4.1. Effect Size Extraction 

Of the proteins assessed, IL-6 and CRP were the only proteins that 
accounted for a significant indirect effect of adiposity on depression 
symptoms (IL-6: β = .034, bootstrapped 95% CI [.015, .070]; CRP: β =
.046, bootstrapped 95% CI [.008, .086]). After accounting for these 
indirect effects, the direct effect of adiposity on depression symptoms 
was null in both models (IL-6: p = .193; CRP: p = .376), consistent with 
some prior longitudinal research on inflammatory proteins as a mediator 
of the association between excess body weight and somatic depression 
symptoms (Chu et al., 2023). The a’ and b’ pathways were significant in 
both models, with more adiposity predicting higher inflammatory pro-
tein levels (IL-6: β = .274, p < .001; CRP: β = .429, p < .001), and 
higher inflammatory protein levels predicting more depression symp-
toms (IL-6: β = .125, p < .001; CRP: β = .108, p = .023), respectively. 
See Fig. 4 for the resulting DAGs. 

4.2. Monte Carlo Simulation 

As hypothesized, the observed effect size between both inflammatory 
proteins and depression was less precise in models controlling for 
adiposity, regardless of sample size. Specifically, effect estimates for the 
IL-6 models were 7.7%, 5.8%, and 9.4% less precise, and the estimates in 
the CRP models were 16.4%, 12.8%, and 16.5% less precise (for the 
simulations with N = 100, N = 250, and N = 500, respectively) in 
models covarying for adiposity relative to models not covarying for 
adiposity (Fig. 5). Relatedly, standard errors for the inflammation 
→depression effects were larger for models controlling for adiposity in 
all three sample size scenarios (Fig. 6) for both the IL-6 (N = 100: t =
-9.08, p < .001; N = 250: t = -13.94, p< .001; N = 500: t = -18.58, p <
.001) and CRP models (N = 100: t = -19.78, p < .001; N = 250: t = 31.41, 
p< .001; N = 500: t = -43.39, p < .001). Also of interest, power was 
higher in all three scenarios when adiposity was not modeled as a co-
variate for both the IL-6 (N = 100: no adiposity = 29% power vs. control 
for adiposity = 28% power; N = 250: no adiposity = 57% power vs. 
control for adiposity = 52% power; N = 500: no adiposity = 87% power 
vs. control for adiposity = 84% power) and CRP models (N = 100: no 
adiposity = 28% power vs. control for adiposity = 25% power; N = 250: 
no adiposity = 53% power vs. control for adiposity = 46% power; N =
500: no adiposity = 80% power vs. control for adiposity = 73% power). 

5. Discussion 

As psychoneuroimmunology attempts to realize its potential for 
clinical translation, it will be critical for data to be collected and 
analyzed in ways that maximize the causal inferences that can be made 
from the studies conducted. To illustrate this important point, we 
applied concepts from the field of causal inference to demonstrate how a 
common recommendation in psychoneuroimmunology (O’Connor et al., 

Fig. 4. Directed Acyclic Graphs for Simulations.  
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2009) — to control for adiposity when quantifying the association be-
tween inflammation and depression — might systematically reduce 
precision of inflammation → depression estimates. 

Leveraging the power of Monte Carlo simulations and open datasets 
(MIDUS-2 and MIDUS-R), we simulated data to reflect a causal structure 
wherein inflammation mediates the relation between adiposity and 
depression, a common rationale for controlling for adiposity when 
testing inflammatory predictors of mental health and inspiration for 

several mediation studies and perspective pieces (Shelton and Miller, 
2011; Daly, 2013; Chu et al., 2023). By creating a DAG to illustrate this 
causal structure, we were able to refer to the causal inference literature 
on whether controlling for adiposity would improve or impair a statis-
tical model’s ability to accurately quantify the inflammation → 
depression association. Consistent with recommendations from the 
causal inference literature to avoid selecting covariates that primarily 
influence the outcome by its downstream effect on the focal predictor 

Fig. 5. Precision Decreases when Controlling for Adiposity. Models with inflammation predicting depression without adiposity as a covariate are used as a 
reference group. Consequently, the “No Adiposity” condition is always at 0% relative gain in precision because it is compared to itself. Controlling for adiposity 
resulted in a loss of precision for all sample sizes. Confidence intervals are based on Monte Carlo standard errors. 

Fig. 6. Standard Errors are Larger When Controlling for Adiposity. Ridge plots of the distributions of the standard errors for each sample size condition. As 
would be expected, standard errors increased as the sample sizes decreased. Additionally, in all three scenarios, controlling for adiposity resulted in higher standard 
errors compared to not controlling for adiposity, as indicated by the yellow distributions being shifted farther to the right relative to the grey distributions. 
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(Del Giudice and Gangestad, 2021), our simulations demonstrated that 
controlling for adiposity reduced the precision of inflammation → 
depression estimates for two different proteins. However, it is important 
to note that this finding would be less straightforward if adiposity had a 
significant direct effect on depression above and beyond the indirect 
effect via inflammation [which was the case in Daly (2013) but not in 
the MIDUS data used here or in Chu et al. (2023)]. In this situation, the 
DAG in Fig. 3 should be revisited and the costs/benefits of controlling for 
adiposity reconsidered. Specifically, it might be more appropriate to 
control for adiposity if the indirect effect of adiposity on depression via 
inflammation is substantially smaller than the direct effect of adiposity 
on depression, in which case adiposity would primarily function as a 
confounder of the inflammation → depression association. 

Imprecise estimation of effect sizes is a meaningful hurdle that must 
be overcome to effectively prioritize treatment targets, design clinical 
trials, and shorten the research-to-clinical impact pipeline. Even rela-
tively small drops in precision induced by controlling for adiposity (in 
this example) are important given that this is just one of many potential 
sources of precision reduction and/or bias in the many choices re-
searchers make [e.g., other covariates, measurement error in the vari-
ables, non-optimal time lags (Dormann and Griffin, 2015), improper 
choice of statistical models]. Further, given that inflammation → 
depression effect sizes are generally small, increases in standard errors 
(as observed here) can have substantial impact on both standardized 
effect sizes and p-values. Because the immune system is host to dozens of 
potential treatment targets, it is imperative that researchers designing 
clinical trials can compare effect sizes from pre-clinical studies to 
identify ideal treatment targets. Consider the hypothetical example of a 
research team designing a clinical trial for an immune-modulating 
augment to a psychosocial intervention for depression. Before select-
ing what augmentative treatments to consider, it is necessary to decide 
which immune mechanism to target. If the researchers have slimmed 
their options to IL-6 or CRP, they would want to decide which protein to 
target based on which protein is most strongly associated with depres-
sion. Consider that both proteins are tested as predictors of depression 
symptoms while controlling for adiposity, resulting in 9.4% and 16.5% 
drops in precision, respectively. If the effect size of IL-6 is under-
estimated by 9.4% and the effect size of CRP is overestimated by 16.5%, 
this equates to a “swing” of 25.9% and could misinform protein-level 
targets for subsequent intervention trials. Only if effect sizes are pre-
cisely estimated can they be meaningfully compared to select the im-
mune target(s) and intervention strategies that will provide the greatest 
return on investment for grant funding agencies, research teams, and the 
patients we serve. 

5.1. Considering Cyclic Relations and Moderators in DAGs 

Readers may note that many processes of interest to psychoneuro-
immunology researchers are often complex, characterized by bidirec-
tional associations and/or influenced by moderators, and wonder how 
these nuances might influence the use of causal inference tools or the 
recommendations in this article. First, we discuss cyclic/bidirectional 
pathways. In addition to adiposity being a source of inflammatory 
proteins, there is some evidence to suggest that chronic inflammation 
can itself promote adiposity via impaired leptin response (Pérez-Pérez 
et al., 2020), implicating a potential inflammation → adiposity → more 
inflammation → depression causal chain. In the case that inflammation 
→ depression is the primary association of interest, the recommendation 
would still be to avoid controlling for adiposity both for the rationale 
illustrated in the current study (i.e., controlling for adiposity will 
decrease precision of the estimate of the inflammation → depression 
effect as long as there is no direct effect of adiposity on depression) but 
also because controlling for a mediator, by definition, will bias the 
observable effect size between a predictor and an outcome to underes-
timate this association. There is also support for bidirectional associa-
tions between inflammation and depression (Moriarity et al., 2020). 

Cyclic/bidirectional processes cannot be included in singular DAGs, 
they have to be specified in separate DAGs associated with disparate 
timepoints (e.g., T1 DAG inflammation → depression, T2 DAG depres-
sion → inflammation). This process is valid because, by their nature, 
cyclic associations require more time to unfold. Therefore, at a small 
enough time scale, all causal effects are acyclic. Alternatively, under 
certain conditions, Structural Causal Models can also model cyclic re-
lations (resulting in directed cyclic graphs). Finally, there are many 
potential moderators in PNI [e.g., sex (Alanna et al., 2011; Moieni et al., 
2015; Moriarity et al., 2019)]. Traditionally, DAGs are nonparametric 
and, therefore, whether ancestors/causal determinants interact which 
each other is irrelevant. However, interaction DAGs (IDAGs; Nilsson 
et al., 2021) do exist in which, instead of nodes for an outcome, there are 
nodes for causal effects. IDAGs extend the concepts of DAGs to different 
types of interactions (e.g., confounded interactions, total vs. direct vs. 
indirect interactions), which allow for causal mapping of the complex 
moderating relations often studied by psychoneuroimmunologists. 

5.2. Recommendations for the Field 

Looking forward, there are several recommendations psychoneuro-
immunology researchers can adopt to ensure that their work (observa-
tional or otherwise) maximizes its causal, and consequently clinical, 
relevance. These recommendations are summarized in Table 1. First, we 
encourage readers to familiarize themselves with the foundational per-
spectives and tools of causal inference. Specifically, we recommend the 
introduction in Dablander (2020) or its associated blog post for a more 
digestible introduction to causal inference (see https://fabiandablander. 
com/r/Causal-Inference.html). Second, we suggest that researchers 
deeply consider the plausible causal structure of their variables of in-
terest, including covariates (Rohrer, 2018; Wysocki et al., 2022). This 
process should include reflection on longitudinal and experimental 
research regarding the temporal ordering of causal effects between 
variables. Even in studies where researchers have no intention to claim 
causal effects, formalizing the theorized causal structure using DAGs can 
inform a variety of different analytic decisions to improve causal rele-
vance. For example, in this study, we illustrated how controlling for a 
third variable (i.e., adiposity) that has a causal effect on a focal predictor 
(i.e., IL-6 or CRP), reduces estimate precision when quantifying associ-
ations between the focal predictor and downstream descendants (i.e., 
depression symptoms). Third, we discourage the use of the “kitchen 
sink” method of covariate selection occasionally embraced by 

Table 1 
Recommendations for Psychoneuroimmunologists.  

Recommendations Implementation 

1. Familiarize yourself with the 
foundational perspectives and tools 
of causal inference 

See Dablander (2020) for an 
introduction to causal inference or its 
associated blog post: https:// 
fabiandablander.com/r/Causal- 
Inference.html. 

2. Carefully consider the causal 
structure of variables of interest, 
including covariates 

Formalize the theorized causal structure 
of your variables using Directed Acyclic 
Graphs (DAGs). See Rohrer (2018); 
Williams et al. (2018); and Wysocki 
et al. (2022). 

3. Avoid the “kitchen sink” method of 
covariate selection 

Only include covariates in models after 
considering recommendations 1 & 2. 
Supplement 3 of Del Giudice and 
Gangestad (2021) is a useful resource to 
determine whether including a 
covariate is advantageous or 
deleterious, given the theoretical causal 
structure. 

4. Report standardized effect sizes E.g., Cohen’s d, Pearson’s correlation 
coefficient, standardized β. See end of 
analytic code in supplementary 
materials for code to z-standardize 
variables to create a standardized β.  
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researchers attempting to be as conservative as possible (Achen, 2005). 
Although well-intentioned, selecting covariates without careful consid-
eration of causal relations can obscure meaningful effects and reduce the 
estimate precision of key associations between immunology and psy-
chology. As illustrated here, and described in further detail in Rohrer 
(2018), Del Giudice and Gangestad (2021), and Wysocki et al. (2022), 
this can negatively impact the quality of the study and delay the 
advancement of psychoneuroimmunology. Finally, we believe it is 
important for all studies in psychoneuroimmunology to report stan-
dardized effect size estimates. Although it would not have changed the 
pattern of results (as long as there was no main effect of adiposity on 
depression above and beyond its indirect effect via inflammation), this 
simulation study would ideally have used standardized effect sizes from 
published longitudinal research. Unfortunately, the longitudinal medi-
ation studies we found (Daly, 2013; Chu et al., 2023) only reported 
unstandardized effect sizes, resulting in this study having to use cross- 
sectional data to estimate proxy effect sizes. Further, consistent report-
ing of standardized effect sizes is integral to empowering those devel-
oping interventions to select the most promising treatment targets and 
strategies. 

6. Conclusion 

In closing, psychoneuroimmunologists are inherently interdisci-
plinary and, as such, are well-poised to embrace the methodological 
techniques and perspectives of causal inference. By applying these 
techniques and perspectives, both when designing studies and when 
interpreting results, psychoneuroimmunology researchers will be able to 
tighten the gap between basic science and clinical impact, maximizing 
the effectiveness of interventions that have the potential to improve 
immune-mediated somatic and psychiatric health outcomes. 
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