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Data of longitudinal panel surveys constitute an important 
resource for educational, psychological, sociological, and health-
related research (e.g., Behr et al., 2020; Rackoff & Newman, 
2020). In contrast to cross-sectional data, longitudinal data allow 
to study developmental trajectories or within-person change in 
addition to between-person differences (Voelkle et al., 2014). 
However, the strength of longitudinal designs—assessing the 
same individuals at multiple occasions—also entails the risk of 
attrition, which is defined as temporary or permanent dropout of 
participants. High attrition rates are a major problem in longitu-
dinal research affecting the validity of conclusions drawn from 
such data (Schoeni et al., 2012). More precisely, systematic  
dropout of participants sharing common characteristics (e.g., low 
socioeconomic status) renders the remaining sample unrepre-
sentative, which in turn can lead to biased results (Heffetz & 
Reeves, 2019; Little & Rubin, 2002). For example, a longitudinal 
study on the effects of counseling on depression in which partici-
pants with the highest depression scores are most likely to drop 
out of the sample would falsely indicate a therapy to be more 
effective (Nicholson et al., 2017).

With the current study, we try to predict attrition using data-
driven machine learning algorithms. Insights about relevant  
predictors can then be used to take potentially more effective 
measures to anticipate and prevent attrition such as targeted 
incentives for at-risk participants (Lynn, 2017; Pforr et al., 2015). 
We compare the predictive accuracy of logistic regressions mod-
els with a machine learning algorithm, namely, gradient boosting 
machines (GBM; Friedman, 2001) in two longitudinal panel 

studies: Midlife in the United States (MIDUS) and Panel Analysis 
of Intimate Relationships and Family Dynamics (pairfam). 
Finally, we evaluate our results in terms of generalizability across 
studies and survey waves, respectively.

Strategies in Dealing With Panel 
Attrition
In the following, we will shortly present methods that are used to 
ensure the representativeness of the sample—(a) statistical 
modeling, (b) poststratification weights, or (c) oversampling/
refreshment samples—and discuss their strengths and limita-
tions. First, to address wave nonresponse, that is, participants’ 
data completely missing for a study wave in longitudinal studies, 
one could use the same procedures that are recommended in the 
missing data literature for item nonresponse (e.g., Enders, 2010; 
Little & Rubin, 2002). However, imputation-based or model-
based approaches rely on the assumption of missing at random 
(Schafer & Graham, 2002), that is, the occurrence of missing 
values does not depend on the expression of the variable itself or 
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on the expression of other variables in the data set after control-
ling for other observed variables. This prerequisite is problem-
atic, as participants’ most likely drop out systematically (missing 
not at random) and variables that are associated with this process 
are often unknown in advance or difficult to measure. However, 
recently promising approaches on handling non-random missing 
data have been developed (for an overview, see Kleinke et al., 
2020; Van Buuren, 2018). Researchers often try to reduce poten-
tial bias by incorporating relevant auxiliary variables in multiple 
imputation that might produce robust results despite common 
concerns (Mustillo & Kwon, 2014), but not in all cases (Hardt 
et al., 2012). Simpler methods such as listwise or pairwise dele-
tion are used regularly and often lead to biased estimates (Jeličić 
et al., 2009).

A second approach to compensate for attrition bias is to use 
poststratification weights. Groups or individuals are assigned 
weights according to their inversed probability of participation 
(Seaman & White, 2013). Thus, the usefulness of weighting 
hinges on whether all relevant predictors of attrition are inte-
grated into the statistical model that is used to calculate these 
probabilities (Gelman, 2007). As weighting does not replace 
missing values and requires complete data, any occurring item 
nonresponse must be addressed beforehand (e.g., using multiple 
imputation). Consequently, the later waves’ sample sizes of a lon-
gitudinal study still lack statistical power. Also, weights often 
lead to an increased variance of estimators (Schmidt & Woll, 
2017) and must be adjusted depending on which study waves or 
variables are analyzed.

A third approach is oversampling, which refers to the coun-
termeasure of recruiting more participants who are likely to 
drop during a longitudinal study. Oversampling recognizes 
attrition as inevitable and tries to buffer the unavoidable unrep-
resentativeness of the data and to reduce selection bias by start-
ing with an unbalanced sample at baseline. Following a similar 
logic, refreshment samples consist of new participants added  
at subsequent measurement occasions that are often sampled 
using the same sampling procedure as for the initial recruit-
ment (Deng et al., 2013). Whereas additional participants gen-
erally enhance statistical power, it has been advised to select 
refreshment participants who share characteristics with non-
respondents to avoid introducing bias (Dorsett, 2010). Additional 
negative aspects of using oversampling or refreshment samples 
are their high costs and that they often not sufficiently compen-
sate bias and therefore have to be combined with other 
strategies.

Drawbacks of Common Approaches 
to Analyzing Panel Attrition
Previous studies often examined attrition with different variables 
that are routinely collected at baseline such as demographic vari-
ables using logistic regressions (Eisner et al., 2018). This research 
repeatedly reported that males, singles, people with migration 
background, less educated, and urban living participants are at 
higher risk of becoming nonrespondents (Radler & Ryff, 2010; 
Young et al., 2006). Given that longitudinal studies usually focus 
on a specific topic and that panels are time-restricted, the breadth 
and depth of these variables are somewhat limited. But it is plau-
sible to assume that the decision to (regularly) take part in longi-
tudinal studies can be influenced by several factors beyond 

demographics such as personality (e.g., Lugtig, 2014) or health 
(e.g., Jacobsen et al., 2021). However, studies on personality or 
health focus on specific sets of variables, neglecting others.

Taken together, the selection and quantity of predictors used 
in previous research to predict attrition are often limited. 
Moreover, the assumption of exclusively linear effects on attri-
tion is questionable. Radler and Ryff (2010) showed that, for 
example, age interacted with subjective health when predicting 
attrition in the second study wave of MIDUS: Elderly partici-
pants only had a higher attrition probability when they also rated 
their subjective health as poorly, whereas older participants in 
excellent health showed significantly lower attrition rates. Not 
addressing such interaction effects may result in less accurate 
models.

Another common drawback of traditional attrition modeling 
approaches is that it is unclear whether their results are generaliz-
able. The ability of a model to provide accurate and generalizable 
predictions is especially essential in applied research (Rocca & 
Yarkoni, 2020; Shmueli, 2010) such as study retention. To enable 
panel administrators to employ effective retention strategies 
(e.g., person-specific incentives at future waves), a prediction 
model also has to hold in future waves. In general, to quantify the 
unbiased predictive accuracy, any model must be evaluated on 
new data, which is often achieved by splitting a data set into a 
training-validation and a testing data set. However, the question 
whether a model predicting attrition will also hold in future 
waves or across different longitudinal studies goes beyond this 
form of internal cross-validation. Rather, it aims at the generaliz-
ability of the results. Generalizability concerns the extent to 
which the study results apply across different items assessing the 
same construct (item sampling), across different participants 
(person sampling), across different measurement occasions (time 
sampling), and across different analytical methods (method sam-
pling). As these aspects of longitudinal testing are of particular 
interest for study planning, researchers should ask to what extent 
their prediction models generalize across them.

Predicting Panel Attrition Using 
Machine Learning
A few recent studies have picked up on the notion of temporally 
validating their models of attrition and including nonlinear and 
interaction effects by using machine learning algorithms to pre-
dict attrition in longitudinal studies (Jacobsen et al., 2021; Kern 
et al., 2019; Zinn & Gnambs, 2020). Machine learning algo-
rithms are often recommended to efficiently deal with extensive 
data, collinearity of predictors, and complex relations between 
predictors and outcomes (e.g., Zou & Hastie, 2005). The assump-
tion in these studies is that the reasons for participants to drop are 
complex and that the complexity of the method should match this 
causal complexity. For example, Kern et al. (2019) used different 
sets of predictors with various machine learning algorithms to 
predict attrition in a longitudinal German panel study. To validate 
their prediction models, the authors performed temporal cross-
validation, which consisted of the following steps: A prediction 
model was built using data of all participants present at Wave 1 to 
predict the participation status at Wave 2. The resulting model is 
then tested using all active participants of Wave 2 to predict par-
ticipation status at Wave 3. This validation approach was repeated 
for all 18 survey waves.
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Using baseline variables and information on previous response 
behavior, a random forest algorithm achieved the highest pre-
dictive accuracy with an average area under the curve (AUC) of 
.875.1 However, these promising results must be taken with a 
grain of salt. First, participants were automatically excluded from 
the panel when they were inactive for three waves in a row which 
is problematic because the outcome is logically dependent on a 
set of predictors, leading to inflated accuracies. Second, due to 
the temporal cross-validation scheme, most participants in the 
training data remain in the test data at later waves. Although this 
might seem justified at first glance since the study results do not 
have to generalize to other participants outside the given study 
sample, from a statistical point of view, an overlap of participants 
in training and test data leads to inflated accuracies, especially 
for tree-based algorithms (e.g., Jacobucci et al., 2021).

The Present Study
The present study has three main objectives: First, we aim to 
empirically test the notion that attrition can be predicted more 
accurately by means of machine learning algorithms that are able 
to incorporate nonlinear or interaction effects of heterogeneous 
predictors. To this end, we compare the predictive accuracy of  
a tree-based machine learning algorithm, GBM, and a logistic 
regression model. GBM sequentially combine multiple single 
decision trees that usually have a comparably poor predictive accu-
racy (Breiman, 2001). One advantage of GBM is that researchers 
do not have to a priori parameterize the relationship between 
an outcome and its predictors, which makes them popular for 
supervised classification tasks (e.g., Schroeders et al., 2022).

Second, we are interested in the longitudinal predictive accu-
racy of models on attrition. To validate prediction models, we 
employ a temporal validation approach with strictly disjoint 
training and testing data. This model validation strategy repre-
sents a stricter and more realistic test of predictive accuracy for 
future survey waves that are not bound to a specific group of 
participants. The third goal of this study is to tackle this issue of 
generalizability. Thus, we compare the prediction of attrition 
across two longitudinal large-scale studies that differ greatly in 
their study aims, sample, time frame: While one study is primar-
ily concerned with midlife development of health and well-being 
in the United States with one wave every 9 years, the other is an 
annual German survey on partnership and family dynamics. Both 
studies measure similar constructs in their baseline assessment 
albeit sometimes using slightly different items. In terms of 
dimensions of generalizability, the items, persons, and time 
frame differ to a substantial degree allowing to gauge the gener-
alizability of results across studies.

Method

Sample and Design
MIDUS. MIDUS is an American national survey carried out by 
the MacArthur Midlife Research Network (Brim et al., 2004). 
Each survey wave consists of a phone interview and additional 
questionnaires that participants have to send back. Starting in 
1995, there was a random digit dialing sample of 4,244 partici-
pants as well as siblings of some of these participants (N = 950) 
and a twin sample (N = 1,914). Subsequent survey waves of 

MIDUS were conducted 9 years later in 2004 (second wave) and 
in 2013 (third wave). More information about MIDUS and the 
data of the first three waves can be found at http://www.midus.
wisc.edu/data/. We consider participants as responding if they 
completed all parts of a survey wave. Therefore, we only use the 
subset of participants who completed all parts of survey at the 
first study wave (N = 6,325).

Pairfam. Pairfam is an annually conducted national survey on 
partnership and family dynamics in Germany (Huinink et al., 
2011). It started in 2008 with a sample of 12,402 participants 
from three age cohorts (1971–1973, 1981–1983, and 1991–
1993). Information about the participants are gathered via com-
puter-assisted personal interviewing. Participants who were 
nonresponding in a previous wave, but did not explicitly decline 
their participation, are contacted again. After two nonresponses 
in a row, participants are excluded from the panel. The scientific 
use file and more information can be accessed at https://www.
pairfam.de/. The following analyses were conducted on a subset 
of N = 11,875, because we excluded 527 participants with implau-
sible values (BMI > 50).

Measures
We used core demographics, health, and personality related vari-
ables that have been shown to correlate with longitudinal attri-
tion in previous studies and were available at baseline, except 
for personality in the pairfam study (see Supplemental Table S1 
at https://osf.io/usjr7/). All categorical variables were dummy 
coded prior to the analysis using the first category as reference. 
The outcome participation status was dichotomously coded, 
irrespective of the reason.

Statistical Analyses
The current analyses are prediction models based on logistic 
regressions and gradient boosted machines. Irrespective of the 
algorithm, one important issue of any prediction is to reduce 
overfit, that is, to reduce the tendency of “statistical models to 
mistakenly fit sample-specific noise as if it were signal” (Yarkoni 
& Westfall, 2017, p. 3) while obtaining the highest predictive 
accuracy possible. To quantify the “true” or unbiased predictive 
accuracy, any prediction model has to be evaluated on new 
data—also called test data or withhold sample (Rocca & Yarkoni, 
2020; Yarkoni & Westfall, 2017). Validating a prediction model 
with new data of an independent study is the most rigorous way 
of testing its generalizability (Dwyer et al., 2018). However, this 
is not always a feasible option and researchers often resort to 
workarounds such as multiple splitting their data into a training 
and testing data set to obtain robust estimates that resolve 
overfitting.

We used the following two validation strategies for the first 
three survey waves of MIDUS and pairfam, respectively: First, 
we ignored the temporal aspect of predicting future events and 
split the data into training data (80%) and testing data (20%; see 
the upper part of Figure 1), that is, training and testing the predic-
tive model was done using the same measurement occasion 
(Wave 2). Second, we added a temporal validation strategy in 
which the aforementioned splitting of the data in strictly disjoint 
training and testing data is combined with temporal model 

http://www.midus.wisc.edu/data/
http://www.midus.wisc.edu/data/
https://www.pairfam.de/
https://www.pairfam.de/
https://osf.io/usjr7/
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validation (see the lower part of Figure 1). More precisely, we 
trained the model on 80% of the data at Wave 1 to predict status 
at Wave 2 and tested the resulting model using the active partici-
pants of the remaining 20% at Wave 2 to predict participation 
status at Wave 3. In doing so, we avoided any overlap of training 
and testing data and were also able to validate the prediction of 
the participation status of a future Wave 3.

To avoid biased predictions due to highly unbalanced data, 
we used up-sampling to match the sample size of nonrespondents 
to respondents in the training data. The testing data were not 
affected by this procedure. Missing values were imputed sepa-
rately for the training and testing data (i.e., after the 80/20 split) 
using the k-nearest neighbors algorithm implemented in caret. 
Nearest neighbor imputation procedures are hot-deck imputa-
tions in which a given number (k) of observations that are similar 
to the observation with a missing value (according to a distance 
metric, in this analysis the Euclidean distance) are used to replace 
missing values (e.g., Beretta & Santaniello, 2016). We used the 
default settings for imputation which were mean values of k = 5. 
For training the models, we used 10-fold cross-validation. To 
evaluate the classification into respondents and nonrespondents, 
we report balanced accuracy, that is, the mean of sensitivity and 
specificity. Sensitivity represents the ratio of correctly identified 
nonrespondents to all nonrespondents; specificity represents the 
ratio of correctly identified respondents to all respondents. 
Balanced accuracy was calculated for each testing data set of the 
1,000 iterations.

All analyses were conducted using the R package caret 
(Kuhn, 2008) as an interface for modeling and prediction. We 
compared the predictive accuracy of a logistic regression and the 
GBM algorithm of the R package gbm (Version 2.1.5; Greenwell 
et al., 2019). We used the following default settings for the gbm 
tuning parameters: interaction depth of 1, 2, or 3; a minimum leaf 
size of 10; a shrinkage of .10; and number of trees 50, 100, or 
150. As a sensitivity check of so-called hyperparameters on study 
results, we compared the default settings with a larger grid (inter-
action depth of 1, 2, 3, or 4, a minimum leaf size of 10, 20, or 50, 
a sequence of shrinkage values between .001 and .201 using steps 
of .01, and the number of trees 50, 100, 150, 300, or 500). The 
overall number of combinations in the larger grid was 1,260 as 
opposed to nine in the default settings. Considering that we 
split the data 1,000 times, we estimated 1,260,000 models with 

the larger grid compared with 9,000 with the default grid. 
Supplemental Figure S1 (see at https://osf.io/usjr7/) shows the 
balanced accuracies for MIDUS and pairfam and both validation 
strategies for both grids. The results show that the larger grid did 
not lead to any substantial improvement in the predictive accu-
racy. Thus, we focus the presentation and discussion of our 
results on those of the default grid. Annotated analyses scripts are 
available at https://osf.io/usjr7/.

Results
Following a suggestion of an anonymous reviewer, we checked 
whether the quality of the data at hand is eligible to be analyzed 
with the proposed methods. Results of this kind of “prestudy” 
showed that the data can be analyzed with logistic regression and 
GBM, that is, that the prediction accuracy can be reproduced 
given a known missing procedure. More information on these 
analyses can be found in a supplement in the OSF project at 
https://osf.io/usjr7/.

Both samples differ with respect to persons studied, items 
administered, and time frame considered. For example, partici-
pants of MIDUS were on average 21 years old, had an 11 percent-
age points lower share of migration background, and were more 
than twice as likely married than participants of the pairfam 
study. Education level and occupation status were measured dif-
ferently across both studies and MIDUS had more information 
on chronic health conditions and personality than pairfam. With 
respect to attrition, in MIDUS 38% dropped from first to second 
wave (i.e., 2,396 of initially 6,325 participants) and another 20% 
from the second to third wave (1,283). In pairfam, 27% dropped 
out from first to second wave (i.e., 3,174 of the initial 11,875 
participants) and another 9% from second to third wave. We pro-
vide an extensive Supplemental Table S1 showing descriptive 
statistics of all predictor variables for MIDUS and pairfam, 
respectively, and correlation plots of all predictor variables and 
participation status in the OSF project.

Figure 2 shows the balanced accuracies of 1,000 iterations for 
the logistic regressions and the GBM models for both studies and 
both validation approaches. Overall, it was not possible to accu-
rately differentiate between nonrespondents and respondents. In 
the following, we will consider the results of the traditional 80/20 

Figure 1. Different Cross-Validation Approaches in a Longitudinal Study Context. Excluded participants at Wave 2 are represented by the white 
section of the rectangle.

https://osf.io/usjr7/
https://osf.io/usjr7/
https://osf.io/usjr7/


Jankowsky and Schroeders 173

validation approach first. The amount of overfit (i.e., difference 
in the balanced accuracies between training and testing sample) 
was less pronounced for the logistic regressions (a difference in 
balanced accuracies of <.01 for MIDUS and .01 for pairfam) 
than for the GBM (.04 for MIDUS and .03 for pairfam). In general, 
both algorithms yielded almost identical balanced accuracies.

Next, we focus on the disjoint temporal cross-validation. As 
to the question whether GBM outperforms logistic regression, 
the findings are mixed: Logistic regression yielded averaged 
balanced accuracies of .56 (MIDUS) and .55 (pairfam), and 
GBM achieved .59 (MIDUS) and .55 (pairfam) in the 80/20 tem-
poral validation. Considering the much higher computational 
effort, the more complex (and ambiguous) model interpretation 
in GBM, and the mediocre overall balanced accuracies, the dif-
ferences were—as in the traditional 80/20 validation approach—
rather small and negligible.

To evaluate whether the respective models can be used for 
predicting attrition in future waves, the comparison of accura-
cies across both approaches are of particular interest. A decline 
in accuracies between the traditional 80/20 and the disjoint 
80/20 approach was observed: For MIDUS, the averaged bal-
anced accuracies of the 80/20 approach were higher (logistic 
regression: .61, GBM: .60) than those of the 80/20 temporal 
validation approach (.56 and .59, respectively). For pairfam, the 
nontemporal approach yielded higher averaged balanced accu-
racy values of .58 (logistic regression) and .59 (GBM) than the 
temporal validation with both .55. In summary, the already inac-
curate prediction models lost further predictive accuracy when 
validated in a longitudinal framework.

The corresponding specificities and sensitivities for all mod-
els can be found as Supplemental Figures S3 und S4 in the OSF 
project (see at https://osf.io/usjr7/). For MIDUS, the averaged 
sensitivities were .53 (logistic regression) and .55 (GBM) and 
thus lower than the averaged specificities (.59 and .62, respec-
tively). For pairfam, the averaged sensitivities were .55 (logistic 

regression) and .53 (GBM), hence nearly the same as the aver-
aged specificities (.54 and .57, respectively). To conclude, these 
differences are rather small, but for MIDUS, the group of 
respondents could be detected slightly more accurately com-
pared with the nonrespondents. These sensitivities translate to 
positive predictive values (i.e., the proportion of true nonre-
spondents of all participants who were flagged as nonrespond-
ents) of .39 (logistic regression) and .41 (GBM) for MIDUS and 
.21 (logistic regression) and .22 (GBM) for pairfam.

Which Variables Predict Attrition?
For an overview of variable importances, we present the standard-
ized regression coefficients of the logistic regression models aver-
aged across all 1,000 iterations in Table 1. Overall, there was little 
consistency in regression coefficients across both surveys. For 
example, in MIDUS, the highest level of education was the  
predictor with the largest effect on attrition, whereas the level of 
education was not among the most important predictor variables 
in pairfam. Age had a negative effect on attrition in MIDUS (i.e., 
older participants were more likely to participate again) and a 
positive one in pairfam. In pairfam, the migration background was 
the second-most important variable, whereas in MIDUS migra-
tion background played no significant role in predicting attrition.

Discussion
High rates of systematic attrition can lead to biased results of 
studies using longitudinal data (Heffetz & Reeves, 2019; Little & 
Rubin, 2002). We argued that the optimal way to deal with attri-
tion is to prevent it as best as possible, for example, with target-
specific incentives. To achieve this goal, predicting attrition in 
future survey waves is more important than explaining possible 
underlying causal relationships of attrition. Thus, we focus on the 
prediction of attrition using machine learning algorithms in a 

Figure 2. Balanced Accuracies for Predicting Attrition in MIDUS and pairfam. The boxplots represent the interquartile range, the solid line 
represents the median, and the whiskers 1.5 times the interquartile range. Balanced accuracy values of 200 randomly selected values are displayed as 
jittered distribution on the right with outliers as triangles. 

https://osf.io/usjr7/
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longitudinal validation framework. The results of this study 
showed that the issue of attrition cannot be easily solved by 
applying more complex statistical models, that is, GBM did not 
outperform logistic regression analyses in predictive accuracy.

From a practical point of view, a central question is which 
strategy in dealing with attrition—target-specific incentives, 
equal distribution of incentives, over- or refreshment sampling—
is most promising or cost-effective. The answer to this seemingly 
straightforward question depends on several parameters. For the 
following thought experiment, we focus on three of these param-
eters: (a) the overall available resources, (b) the percentage of 
participants who remained instead of dropping out, and (c) the 
positive predictive value of a prediction model. Let us assume 
that there is a budget of €20,000 available to implement retention 
measures to retain as much as possible of 1,000 (of 4,000) par-
ticipants that are at risk of dropping out at a next survey wave. As 
a first strategy, one could prophylactically provide all 4,000 par-
ticipants with incentives worth €5 such as sending thank you and 
birthday cards. With small investments per person, assuming a 
persuading effect of 5%, 50 of 1,000 at-risk participants could be 
converted.

A second approach could be to incentivize only those partici-
pants identified at risk of dropping out by a predictive model with 
€50 and assume that this will have the desired effect (staying 
active participants in the study) on 50% of them. The success of 
this second strategy depends on the predictive accuracy of the 
model. Within the budget of €20,000, using a perfect prediction 
model (positive predictive value = 1), it would be possible to  
persuade 200 participants to stay in the study (i.e., €20,000 / 
€50 = 400 participants, all of them get correctly flagged and 
funded, and half of them get convinced to stay). A model with a 
positive predictive value of .40 (as in our results for MIDUS) 
would still result in 80 participants (i.e., €20,000 / €50 = 400 par-
ticipants, 40% of them get correctly flagged and funded, and half 
of them get convinced to stay). With a dropout rate of 25%, a 
model that is as accurate as random guessing would have a posi-
tive predictive value of .25 and result in 50 convinced partici-
pants (i.e., €20,000 / €50 = 400 participants, 25% of them get 
correctly flagged and funded, and half of them get convinced to 

stay). Thus, even small increments in positive predictive value 
translate into more successful retention of participants. However, 
there is no one-size-fits-all strategy that researchers must apply, 
rather the conditions of the individual longitudinal study have to 
be taken into account.

A third approach to deal with attrition could be to renounce 
the attempt of persuading participants and to sample new partici-
pants to replace all dropouts (refreshment). The cost of this 
approach depends on the number of waves a participant has been 
active (because the participants’ “value” accumulates across 
study waves) and on the resources needed for an assessment 
(e.g., online surveys are more economical than extensive exami-
nations by medical professionals). However, retaining partici-
pants is always preferable over recruiting new ones (e.g., for 
analyzing intraindividual trajectories).

On the Generalizability of Prediction Models
The results concerning the variable importance were not general-
izable across studies. In the introduction, we proposed four 
dimensions of generalizability: item sampling, person sampling, 
time sampling, and method sampling. First, different items and 
operationalizations of the same constructs (e.g., education and 
occupation) could have led to differences in variable impor-
tances. But also different cultural contexts could have a moderat-
ing effect. For example, although the participants’ migration 
background was defined in the same way in both studies, it could 
have a diverging effect due to different cultural and political 
implications in the United States and Germany (e.g., Berry et al., 
2006). Second, the participants of MIDUS and pairfam already 
differed from each other at the respective baseline assessments. 
These different populations combined with the different topics of 
the panels also contributed to the nongeneralizability of effects: 
MIDUS is primarily concerned with midlife development of 
health and well-being, maybe leading to higher responding rates 
in older participants. In pairfam, younger nonsingle participants 
are more likely to participate again, which fits in with the fact 
that pairfam is a survey on partnership and family dynamics. 
Third, in MIDUS the survey waves are 9 years apart, whereas 

Table 1. Averaged Standardized Coefficients of the Logistic Regression Models.

No. MIDUS pairfam

Variable M SD Variable M SD

 1 Highest level of education −.30 .02 Full–time employment .24 .03
 2 Age −.27 .03 Migration background .19 .02
 3 Sex −.25 .02 Homemaker .15 .02
 4 Instrumental activities of daily living .19 .02 Number of household members −.13 .02
 5 Widow or widower .16 .02 Age .13 .03
 6 Separated .15 .02 Vocational training .11 .01
 7 Agreeableness .15 .02 Self-employed .11 .02
 8 Conscientiousness −.15 .02 Unemployed .11 .02
 9 Physical health, self-evaluated −.14 .02
10 Divorced .13 .02
11 Never been married .12 .02
12 Current employment—Retired −.12 .03
13 BMI −.12 .02

Note. MIDUS: Midlife in the United States; pairfam: Panel Analysis of Intimate Relationships and Family Dynamics. Regression coefficients <.10 are not displayed.
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pairfam has annual survey waves and therefore places a higher 
burden on the resources of participants. However, regardless of 
the mechanisms underlying these differences, a model developed 
using MIDUS data cannot be used to predict attrition in pairfam 
and vice versa.

In addition to this nongeneralizability across items and per-
sons, which also is true for cross-sectional studies, the nongener-
alizability across measurement occasions is a specific that 
complicates matters in longitudinal studies. There is a very plau-
sible explanation for this: If participants with certain characteris-
tics drop out more likely, some of them will be no longer active 
participants at the next survey wave, altering the population for 
which nonresponse is to be predicted at a following survey wave. 
Either the same predictors also contribute to the prediction of non-
response for the remaining individuals at future waves or their 
effects and importance also shift. The results of this study support 
the latter notion, that is, the reasons why people dropout change 
jointly with the participants. However, if one and the same model 
does not apply to or fit equally well for multiple survey waves, it 
is not useful for proactively planning survey retention strategies.

More Complex Models Are Not Better Suited 
to Predict Attrition
With respect to the last dimension of generalizability, the method 
sampling, the results are intriguing: The more complex data-
driven models did not lead to substantial incremental in predictive 
accuracy in comparison with simple, logistic models. From this, 
one can conclude that the effects are mostly linear and that for 
reasons of parsimony a less complex model is preferable over 
computationally extensive and harder to interpret algorithms. The 
question arises, however, why other recent studies using machine 
learning algorithms to predict survey attrition reported relatively 
high predictive accuracies (e.g., Kern et al., 2019; Zinn & 
Gnambs, 2020). There are two reasons: First, in studies reporting 
higher accuracies, the previous response status was used as a pre-
dictor variable that, on one hand, was the most important predictor 
variable. However, on the other hand, this information is not 
available in longitudinal surveys without temporal nonrespond-
ents (i.e., participants coming back at later study waves) as in this 
study. Second, it has been found that machine learning algorithms 
outperforming more simple models is often due to an insufficient 
distinction between training and testing samples (e.g., Jacobucci 
et al., 2021). In this study and in contrast to the traditional valida-
tion approach, we used a validation approach that also guarantees 
disjoint training and testing samples in a longitudinal context. 
Consequently, our predictive accuracies were lower.

To sum up, our rather strict approach at testing the accuracy of 
attrition models involving different survey occasions, two greatly 
differing longitudinal studies, and the comparison of a more 
basic modeling approach with a complex machine learning algo-
rithm shed light on seldom asked, let alone solved problems 
within survey retention research. Since attrition models could not 
be generalized across studies and measurement occasions and 
their predictive accuracies were low in general, there is no clear 
answer to the question how to best tackle the issue of longitudinal 
attrition. However, under specific assumptions, even models with 
relatively low accuracies could be a useful tool for targeted 
incentives and for survey planning.
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Note

1. In the current case of classification, area under the curve 
(AUC) values range from .50 to 1.00, the former indicating 
an accuracy as good as a random guess and the latter a per-
fect discrimination between groups.
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