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A B S T R A C T   

Background: Recent studies have demonstrated that passive smartphone and wearable sensor data collected 
throughout daily life can predict anxiety symptoms cross-sectionally. However, to date, no research has 
demonstrated the capacity for these digital biomarkers to predict long-term prognosis. 
Methods: We utilized deep learning models based on wearable sensor technology to predict long-term (17–18- 
year) deterioration in generalized anxiety disorder and panic disorder symptoms from actigraphy data on day
time movement and nighttime sleeping patterns. As part of Midlife in the United States (MIDUS), a national 
longitudinal study of health and well-being, subjects (N = 265) (i) completed a phone-based interview that 
assessed generalized anxiety disorder and panic disorder symptoms at enrollment, (ii) participated in a one-week 
actigraphy study 9–14 years later, and (iii) completed a long-term follow-up, phone-based interview to quantify 
generalized anxiety disorder and panic disorder symptoms 17–18 years from initial enrollment. A deep auto- 
encoder paired with a multi-layered ensemble deep learning model was leveraged to predict whether partici
pants experienced increased anxiety disorder symptoms across this 17–18 year period. 
Results: Out-of-sample cross-validated results suggested that wearable movement data could significantly predict 
which individuals would experience symptom deterioration (AUC = 0.696, CI [0.598, 0.793], 84.6% sensitivity, 
52.7% specificity, balanced accuracy = 68.7%). 
Conclusions: Passive wearable actigraphy data could be utilized to predict long-term deterioration of anxiety 
disorder symptoms. Future studies should examine whether these methods could be implemented to prevent 
deterioration of anxiety disorder symptoms.   

Anxiety disorders have a collective lifetime prevalence of 24.9%, 
making them the most commonly occurring group of disorders after 
substance use disorders (Bruce et al., 2005). Specifically, generalized 
anxiety disorder (GAD) and panic disorder (PD) affects 6 million and 8 
million Americans each year, respectively (Kessler et al., 2012). In
dividuals affected by GAD experience persistent, uncontrollable worry, 
while PD symptoms include sudden episodes of anxiety, often accom
panied by cardiorespiratory and otoneurological discomforts such as 
dizziness and tinnitus (Roy-Byrne et al., 2006). Individuals affected by 
these illnesses experience deterioration in health-related quality of life 
(sleep disturbances, headaches, restlessness) and impairment in the 
ability to complete tasks (Markowitz et al., 1989; Toghanian et al., 
2014). These symptoms are disabling and have a significant toll on both 

national productivity and individual quality of life (Hoffman et al., 
2008). Additionally, these anxiety disorders often require expensive 
primary care services, costing an estimated $33.71 billion in annual US 
public health expenditures (Shirneshan et al., 2013; Wittchen, 2002). 

Despite the clear costs to individuals and society, GAD and PD suffer 
high misdiagnosis rates, estimated at 71.0% and 85.8% respectively by 
one study diagnosing patients with the neuropsychiatric “MINI” scale 
and comparing the results to their existing clinical records (Vermani 
et al., 2011). Furthermore, only an estimated 40% of those suffering 
from anxiety disorders seek treatment in the same year as the first onset 
of disorder (Christiana et al., 2000). These shortcomings in diagnosis 
and treatment contribute to a median delay of eight years between onset 
of anxiety disorders and appropriate treatment (Christiana et al., 2000). 
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During this time period, the disease lowers the quality of life for affected 
individuals and in some cases continues to grow in severity, thereby 
increasing risk due to all-cause mortality in older adults (Lenze and 
Wetherell, 2011). 

Early identification of at-risk individuals allows for the potential to 
offer preemptive, preventative treatments which have proven to be 
effective in reducing prevalence and lowering disorder-associated dis
abilities (Essau et al., 2012; Feldner et al., 2008). For example, a study 
examining the effects a universal anxiety prevention program on school 
children found a significant decrease in anxiety symptoms for children 
who were enrolled, and as a result, received psychoeducation, relaxa
tion, and positive-self-talk within a cognitive behavioral therapy (CBT) 
framework (Lau and Rapee, 2011). The literature also indicates that 
preventative, internet-delivered, cognitive-based therapy has promising 
clinical efficacy in the prevention of anxiety symptoms six weeks after 
intervention (Kenardy et al., 2003). Regardless of methodology, the 
ability to provide effective preventative care and treatment depends on 
timely identification of afflicted individuals. 

To this end, researchers have sought to predict the trajectory of 
anxiety disorders using patient characteristics. These include the type of 
anxiety disorder (e.g. panic disorder with or without agoraphobia), as 
well as clinical variables like severity, duration, and level of disability 
(Spinhoven et al., 2016). While most studies have been cross-sectional in 
nature, the realization that anxiety disorder symptoms are often recur
ring and fluctuate dynamically from period to period has prompted the 
implementation of longitudinal studies (Bruce et al., 2005). For 
example, a study using latent growth mixture modeling (LGMM) found 
that clinical variables (i.e. severity and duration of anxiety) better pre
dicted long term anxiety trajectory compared to diagnostic (type of 
anxiety disorder) and personality trait variables (i.e. neuroticism, ex
traversion) (Spinhoven et al., 2016). A Netherlands longitudinal study 
followed a cohort over an eight-year period to examine long-term pre
dictors of anxiety (Penninx et al., 2008). Subsequent analysis of the data 
found that severity and duration of index episode, comorbid 
depression-anxiety, and earlier onset age were associated with worse 
symptom course trajectories (Penninx et al., 2011). Additionally, the 
“late chronotype” defined in this study–being an evening rather than a 
morning person–was found in later analyses of this longitudinal data to 
be significantly associated with cross-sectional anxiety and major 
depression symptoms (Antypa et al., 2016). Both the Spinhoven and the 
Penninx studies relied on clinical interviews and detailed assessments to 
collect baseline and follow-up data from which predictors of anxiety 
symptoms were derived. While these methods tracked long-term 
changes, they relied on clinical interviews that lasted up to four hours 
in some cases (Penninx et al., 2008), thereby making it challenging to 
scale to larger sample sizes. 

Advancements in the field of machine learning aim to make informed 
predictions that replace the burden of lengthy clinical interviews with 
rapid processing of patient data. A comprehensive literature review of 
works published between 2005 and November 2017 that interrogated 
anxiety disorder through the application of machine learning techniques 
identified twenty studies (Pintelas et al., 2018). While the majority of 
the studies highlighted in this review achieved high prediction accuracy 
(>80%) with the help of novel predictors such as heart-rate measure
ments (Chatterjee et al., 2014) and various biomarkers in the brain’s 
gray matter (Chi et al., 2014), the application of the models were 
diagnostic of cross-sectional anxiety rather than predictive of long-term 
anxiety trajectory. One particular study used self-esteem data collected 
longitudinally (at age 13, 16, and 22) through DSM-IV structural in
terviews to predict anxiety at age 33 (Chen et al., 2015). The application 
of a Bayesian joint model to this data yielded an AUC of 0.75. The model 
was agnostic to the temporality of anxiety predictors since immediate 
anxiety was diagnosed using both present and past symptomatic fea
tures. As such, the clinical utility was diminished given the lack of ca
pacity to predict anxiety trajectory solely from past data. 

Thus, most research has only examined the ability of machine 

learning to cross-sectionally predict anxiety disorders, and the sparse 
longitudinal machine learning research to date has utilized time- 
intensive and costly measures (Balogh et al., 2015; Bor, 2015), 
thereby decreasing the potential to scale this research and utilize it 
within larger populations. Fortunately, passive, continuous sensing of 
movement data is one avenue by which this resource burden can be 
mitigated to yield rich data for predictive purposes. Moreover, research 
in this domain has indicated that passive data can aid in the identifi
cation of digital biomarkers which, when paired with machine learning 
methodologies, can assess psychiatric symptoms with high accuracy 
(Jacobson et al., 2019b; Jacobson et al., 2020; Jacobson and O’Cleirigh, 
2019) and predict symptom change across time (Jacobson et al., 2019b, 
Jacobson & Chung, 2020). This suggests that digital biomarkers formed 
from movement data may have the potential to enable scalable assess
ment of anxiety symptoms, but more research is needed to determine 
whether these digital biomarkers have longitudinal prognostic value. 

Our study applies an ensemble machine learning model to process 
passively collected actigraphy data and predict deterioration in anxiety 
symptoms 17–18 years in the future. As discussed above, the temporal 
component to our analytical procedure is distinct in scope from cross- 
sectional approaches employed in prior studies. Unlike some prior 
studies which used different biomarkers, the current study made use of 
movement data as indexed through an actigraph. Additionally, the 
passively collected data we leverage is less burdensome, less biased, and 
more naturalistic than the clinical interview data that is traditionally 
collected (Chen et al., 2015; Penninx et al., 2008). In a practical sense, 
such data lends itself as a scalable and potentially wide-reaching tool for 
the identification of deterioration in at-risk persons suffering from 
anxiety-related disorders. Based on prior studies indicating a relation
ship between eye movement, sleep and anxiety (Mellman, 2006; Mogg 
et al., 2000), we hypothesized we could predict deterioration in anxiety 
symptoms over 17–18 years with high precision using machine learning 
models based on digital biomarkers formed from movement data. 

1. Methods 

1.1. Participants 

Participants (N = 265; 58.1% female, 41.9% male; age 25–72 years, 
mean 44.3 years; 94.7% White, 1.5% Black, 0.4% Native American/ 
Alaskan/Aleutian Islander, 0.4% Pacific Islander, 0.4% multiracial, and 
0.8% other/no response), as shown in Table 1, were part of the MIDUS 
study completing each of the three phases beginning in 1995 with wave 
1 (MIDUS-1), with subsequent wake-sleep actigraphy data collection in 
wave 2 (MIDUS-2), as well as a wave 3 follow-up (MIDUS-3). The first 
phase, occurring between 1995 and 1996, involved individuals from 

Table 1 
Participant demographics.  

Variables  Frequency Percentage 
(%) 

Gender Male 111 41.9  
Female 154 58.1 

Ethnicity White 249 94.7  
Black 4 1.5  
Native American/Alaskan, Aleutian 
Islander 

1 .4  

Pacific 1 .4  
Multiracial 1 .4  
Other/no 2 .8 

Income $0-9,999 172 64.9  
10,000–24,999 26 9.8  
25,000–49,999 19 7.2  
50,000–74,999 20 7.5  
75,000–99,999 8 3  
100,000+ 9 3.4  
N/A 11 4.2 

Note: Participant (n = 265) sociodemographic characteristics. 
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across the nation aged 25–75 years who completed telephone interviews 
to capture mental health symptoms. The second phase, occurring be
tween 2004 and 2009, collected wearable movement data from partic
ipants out of the UW-Madison study site. In the third phase, occurring 
between 2013 and 2019, participants were re-interviewed regarding 
their mental health symptoms. Five percent of the participants (n = 13) 
had seen a psychiatrist and 11.69% (n = 31) of the participants had seen 
a psychologist in the past 12 months. At baseline, 6.75% (n = 18) and 
1.88% (n = 5) of the participants were diagnosed with PD and GAD, 
respectively. Of those percentages, only 3 persons had both PD and GAD. 
None of those participants diagnosed with PD or GAD had previously 
received antidepressants. MIDUS data collection was reviewed and 
approved by the Education and Social/Behavioral Sciences and the 
Health Sciences IRBs at the University of Wisconsin-Madison. Subjects 
were selected for analysis based on their successful completion of all 
three phases of the study, with participation in the collection of passive 
sleep-wake actigraphy information in wave 2 as the most limiting in
clusion criterion. 

1.2. Measures 

1.2.1. Anxiety disorder assessment using the composite international 
diagnostic interview (CIDI) 

Each participant was interviewed using screening versions of the 
World Health Organizations’ CIDI version 10 (Robins et al., 1988; 
World Health Organization, 1990), assessing symptoms of GAD and PD 
according to the Diagnostic and Statistical Manual III-R criteria. The 
CIDI has demonstrated good test-retest reliability and strong inter-rater 
reliability (Andrews and Peters, 1998) with Kappa scores of 0.41 for 
GAD and 0.84 for PD between lifetime DSM-III diagnoses using the CIDI 
(Semler et al., 1987). As the most widely used summary of self-report for 
depression (Rosenström et al., 2015), the sum score of symptom items 
were used to create a continuous measure of anxiety symptom severity 
at MIDUS-1 and MIDUS-3. This approach to quantification has been 
replicated in other studies with CIDI symptom items (Luutonen et al., 
2013; Orlando et al., 2001; Zainal and Newman, 2019). As our study is 
specifically interested in the ability to predict long term anxiety dete
rioration from these counts, the outcome metric for the model was 
whether there was an increase in the number of total GAD and PD 
symptoms experienced between MIDUS-1 to MIDUS-3. 

1.2.2. Passive movement data 
Passive sensing data on wake-sleep rhythms was obtained from the 

Mini Mitter Actiwatch©-64 wearable device. This information was 
collected across seven consecutive, uninterrupted days, binned into 
epochs of thirty second intervals. For each participant, this equates to 
data across seven rest/sleep periods and six activity periods. Raw data 
on the total activity counts, maximum activity counts, average activity 
counts/minute, wake time, percent wake time, total number of wake bouts, 
average number of wake bouts, sleep time, percent sleep time, and total 
number of sleep bouts defines the sleep/rest and active periods. Addi
tionally, the Actiware 5 software has generated a variety of summary 
statistics on activity and sleep, including sleep onset latency (in minutes), 
time dozing before rising in minutes (i.e. snooze time), percent sleep effi
ciency, and wake after sleep onset (WASO) in minutes. 

Sleep onset latency is the total time elapsed in minutes between the 
start of a rest interval and the initiation of sleep, or the time required for 
sleep onset from the start of a participant’s attempt to fall asleep. Snooze 
time is the total time elapsed in minutes between the termination of sleep 
and the end of a rest interval, or the time from when a participant wakes 
up to when they get out of bed. Sleep efficiency is a descriptor that 
combines three additional metrics, scored total sleep, interval duration, 
and total invalid time. Scored total sleep is the number of epochs between 
the start and end times of an interval scored as “sleep” and multiplied by 
the epoch length in minutes. The interval duration is the total time in 
minutes between the beginning and end of an interval, and total invalid 

time is a count of the epochs where the activity counts exceed the 
threshold of possible value for that interval and is therefore a measure of 
hardware/software error collection/reporting. With these three metrics, 
sleep efficiency is defined as the proportion or percentage of scored total 
sleep time to interval duration after correcting for spurious data through 
total invalid time. WASO is the total number of wake epochs spanning an 
interval of sleep multiplied by the epoch interval time in minutes. Taken 
together, these statistics are representative of circadian activity patterns 
and irregularities. 

1.2.3. Active anxiety symptom monitoring comparison 
At the suggestion of an anonymous reviewer, we also utilized the first 

observed anxiety data from the following questions during the second 
wave as a baseline comparison to determine whether conventional 
measurements using five face-valid indicators of anxiety symptoms 
prognostically predict GAD and PD symptoms. The current face-valid 
indicators were: “Did you feel nervous”, “Did you feel jittery”, “Did 
you feel restless or fidgety”, “Did you feel calm and peaceful?”, and “Did 
you feel afraid”, each of which were rated on a 0 (“None of the Time”) to 
4 (“All of the Time”) Likert scale. These items reflected the first observed 
measurements from within a daily diary study and included a total of 
196 of the participants. 

1.3. Planned analysis 

1.3.1. Feature engineering 
Summary statistics for each of 19 sleep actigraphy variables were 

calculated from the MIDUS-2 sleep actigraphy dataset (see Fig. 1 for a 
graphical illustration of the full feature engineering and analysis pipe
line). These included the maximum, minimum, mean, median, mode, 
standard deviation, skewness, kurtosis, root mean square of successive 
differences (RMSSD), and quantiles ranging from 20th percent up to 
80th percent in 20 percent increments. Differential Time-Varying Effect 
Models (DTVEMs) interrogating lag relationships between 1 and 5 time 
points later were implemented to return derivative actigraphy features 
describing potential autoregressive relationships (Jacobson et al., 
2019a). Spectral analysis was also performed on this data to capture 
additional features reflecting underlying periodicities. The resulting 
feature set consisted of 800 features. The predictive outcome of interest 
was defined by a difference of the composite GAD and PD questionnaire 
response scores between MIDUS-1 and MIDUS-3, representing a change 
in anxiety across 17–18 years. 

1.3.2. Non-linear dimension reduction 
An unsupervised deep neural network autoencoder was utilized prior 

to modeling the outcome data to reduce the 800 features down to 50 
features prior to modeling. The deep autoencoder consisted of 10 layers 
with exponential linear unit activation functions. Layer density varied 
from 2000 down to 50 units. Implementation of this neural net bottle
neck reconstructed a condensed representation of the feature input 
space that could then be fed into a machine learning framework. 

1.3.3. Model development and validation 
Similar to prior research showing strong predictive performance of 

ensemble models (Jacobson & Nemsure, 2020; Nemesure et al., 2020), 
we utilized an ensemble approach to predict long-term anxiety symptom 
deterioration. Specifically, we utilized neural network models, splines, 
ridge regression, random forests, general linear models, gaussian pro
cess, extreme gradient boosting, k-nearest neighbors, and support vector 
machine models as base-learners. All models were run with four-fold 
cross validation with maximum correlation between the predicted and 
actual change in the number of anxiety symptoms between MIDUS-1 and 
MIDUS-3. Any best-tuned hyperparameter configuration of a model 
capable of making predictions was retained, and its prediction was saved 
as a feature within a new feature space. This new ensemble feature 
vector was then fed into an extreme gradient boosted tree (“xgBoost”) 
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tree model with four-fold cross validation to ultimately predict anxiety 
deterioration. Model predictions were standardized to be between 0 and 
1. Next, performance of this final model was quantified using a confu
sion matrix and an associated ROC-curve. 

1.3.4. Comparison to traditional assessment approaches 
Based on suggestions from an anonymous reviewer, we also 

compared the predictive performance of these deep learning ensembles 
with passive sensing data against simple logistic regression based on 
active self-reported anxiety measurements. Thus, we utilized a four-fold 
cross validation approach to predict symptom anxiety symptom deteri
oration using active five face-valid anxiety measurements in the middle 
assessment period. 

2. Results 

Out-of-sample cross-validated results suggested that the features 
extracted from the deep autoencoder could significantly predict which 
persons would experience symptom deterioration across 17–18 years 
(AUC = 0.696, CI [0.598, 0.793], see Fig. 2; see Appendix A for the 
performance of the lower level models). The sensitivity was 84.6% and 
specificity was 52.7% based on the point closest to 1 on the AUC curve (i. 
e. Euclidean distance) (Perkins and Schisterman, 2006). This results in a 
predicted balanced accuracy of 68.7%. 

The results of the deep autoencoder and ensemble pipeline were then 
compared with traditional approaches within psychology (i.e. logistic 
regression with active survey measurement data based on symptom 
reports in the intervening years predicting long-term anxiety symptom 
deterioration. The results suggested that the conventional approaches 
did not predict long-term deterioration in anxiety symptoms with 

greater than chance (AUC = 0.505). This suggests that the deep 
autoencoder and ensemble pipeline using the passive sensing data holds 
far greater predictive validity than more conventional approaches. 

3. Discussion 

The current model utilizes longitudinal passive sensing data 
collected across 17–18 years to predict symptom deterioration associ
ated with GAD and PD. The results suggest that this model has the 
capability to predict anxiety symptom deterioration with an above 
chance accuracy across almost two decades (84.6% sensitivity, 52.5% 
specificity), which suggests that this approach could hold prognostic 
value in evaluating the potential to identify GAD and PD symptom 
deterioration. The results are especially notable because they suggest an 
ability to predict change in long-term GAD and PD symptoms, whereas 
previous studies have leveraged predictive models within more restric
tive, cross-sectional paradigms (Fukazawa et al., 2019; Sano et al., 
2013). GAD and PD are heavily burdensome (Szkodny et al., 2014) and 
often go undetected (Fifer et al., 1994), therefore the efforts presented 
herein offer a potentially promising approach for the early prevention 
interventions related to GAD and PD symptoms. 

Our model demonstrated a balanced accuracy of 68.7%, with an AUC 
of 0.696. Such results illustrate the prospective viability of using 
passively collected biomarkers to develop informed predictions on long- 
term anxiety progression. A sensitivity of 84.6% indicates that the model 
is highly accurate in its ability to correctly identify positive results (those 
with anxiety deterioration); on the other hand, a specificity of 52.7% 
shows that it is not as effective in correctly categorizing those without 
anxiety deterioration. The relatively low specificity may lead to a higher 
number of false negatives and is therefore an area for future model 

Fig. 1. Data analysis pipeline. Nineteen raw actigraphy variables for N = 265 individuals across 7 distinct time points were processed using basic descriptive 
statistics, differential time varying effect modeling (DTVEM) and spectral analysis approaches to derive 800 features. This new feature space was processed through a 
deep autoencoder to compress the information space into a summative subset of 50 features for ensemble machine learning regression modeling. Several lower level 
models were applied to predict deterioration within a cross-validated framework. The resulting predictions of these lower level models were used as features for the 
ensemble (Extreme Gradient Boosting) model. The predictions of this ensemble model were analyzed for accuracy, sensitivity, and specificity in the construction of an 
AUC curve for assessment. 
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improvement. Nevertheless, given the pernicious nature of anxiety dis
orders, it is likely preferable to correctly identify susceptible individuals 
at a higher rate and risk unnecessary treatment on a smaller subset of 
healthy individuals. 

Our model’s AUC of 0.696 is on par with comparable machine 
learning studies that predict anxiety across shorter periods of time 
(ranging from same-day to two years) using various physical and psy
chological characteristics (Chen et al., 2015; Pintelas et al., 2018). This 
above-chance predictive capacity suggests a potential for clinical utility. 
As an additional benefit, the collection of passive actigraphy informa
tion for model utility results in a process that is less obtrusive for the 
patient and less time-consuming for the provider when compared with 
previous prediction pipelines. Ultimately, this approach has the poten
tial to result in improved quality of care for the patient as well as better 
cost efficiency in diagnosing disease. 

One distinguishing feature of this project is the long term horizon of 
prediction. Predicting the course of anxiety 17–18 years into the future 
is significantly longer compared to existing studies involving either 
cross-sectional diagnostics (Antypa et al., 2016; Chatterjee et al., 2014; 
Chi et al., 2014), or short term predictive windows of 1–2 years (Mån
sson et al., 2015; Murphy et al., 2008). Making long term predictions 
may allow for the opportunity to intervene in less intrusive and more 
effective ways. Given the relationship of this data to movement, it may 
also suggest that future research should explore the relative perfor
mance of biofeedback from digital devices as a potential prevention 
intervention strategy. If developed and validated in future work, 
biofeedback prevention interventions could be delivered via altered 
suggestions via smartwatches to change small behavioral patterns. The 
potential to deliver prevention interventions is particularly important, 
since anxiety disorders are disruptive to many everyday activities and in 
some cases become more severe over time, posing increased all-cause 
mortality risk for adults (Lenze and Wetherell, 2011). 

The results of our investigation are encouraging, demonstrating the 

potential of utilizing passive sensor data for machine learning models to 
make long-term predictions. However, there are several limitations. A 
low specificity of 52.7% suggests our current model may be over
sensitive. To remedy this, future efforts can screen out individuals who 
may be false positives according to longitudinal re-assessments with 
subsequent application of traditional measures to detect and treat po
tential symptom deterioration instead. Given the requirement of 
participation in all three phases of MIDUS, there may also have been 
confounding in terms of the level of compliance as well as with age in the 
analyzed cohort (e.g. older individuals at baseline may not have passed 
away). Another confounding factor concerns the nature of our pre
dictors. Because sleep-based data was used, it is possible that the 
captured deterioration reflected behaviors associated with chronic 
insomnia, rather than those stemming primarily from GAD and PD. 
Additionally, because the data we used was collected in three distinct 
phases over a 17–18 year interval, the resulting model may not account 
for more nuanced temporal changes that may have occurred between 
these collection periods. Future studies may address this weakness by 
adding more frequent outcome assessments to capture the finer dy
namics of symptom change and potentially increase the accuracy of the 
model. At the same time, the collection of more data can mitigate issues 
of oversensitivity and ultimately lead to a more direct and detailed 
prediction of GAD. This could also allow for more fine-grained assess
ments of potential sequential comorbidities, as anxiety and depressive 
disorder symptoms are often dynamically linked across time (de Graaf 
et al., 2003; Hek et al., 2011; Lamers et al., 2011; Jacobson et al., 2017; 
Jacobson and Newman, 2014, 2016). Indeed, while the study has shown 
promise in the ability to predict GAD and PD symptom deterioration 
over long periods of time using passive sensing information, it does not 
explore the dynamics and impacts of related, co-occurring psychological 
processes on this deterioration. Although the current research examined 
predictive performance within a research setting, further work is needed 
to determine whether similar methods would have performance in real 
world applications (e.g. where participants might have very irregular 
and sporadic wear patterns). By extension, the low prevalence of GAD 
and PD in the analyzed cohort limits generalizability to clinical pop
ulations. Subsequent research will benefit from deployment in these 
settings. Taken together, such efforts will prove invaluable for informing 
development and refinement of evidence-based interventions. It is also 
important to note that MIDUS did not assess anxiety disorder outside of 
GAD and PD diagnoses, and therefore this analysis did not fully capture 
other anxiety symptom trajectories. 

Overall, this research demonstrates significant promise in the ability 
to preemptively predict GAD and PD symptom exacerbation. Early 
identification of potential symptom deterioration has the potential to 
offset disease burden and/or related comorbidities (“Effective Recog
nition and Treatment of Generalized Anxiety Disorder in Primary Care,” 
2004). Studies have indicated that first presentation of GAD and PD 
symptoms for many individuals is in a primary care setting and is 
oftentimes incorrectly diagnosed, thereby limiting subsequent treatment 
opportunities (Allgulander, 2006). Although more research is needed to 
determine whether this pipeline would work well in production in pri
mary care settings, this research may suggest that wearable movement 
data might have the potential to add high prognostic value and could 
help to narrow the longstanding wait between symptom deterioration 
and treatment initiation. 
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Appendix A 

Lower Level Model AUCs.   

Lower Level Model AUCs 

avNNet 0.51384 
bagEarth 0.56767 
bagEarthGCV 0.627615 
Blasso 0.505632 
blassoAveraged 0.502092 
Bridge 0.537496 
Cforest 0.629224 
Ctree 0.464355 
ctree2 0.55037 
Cubist 0.518828 
Earth 0.493804 
Gamboost 0.558899 
gaussprLinear 0.660927 
gaussprPoly 0.508851 
gaussprRadial 0.625201 
gbm 0.57821 
gcvEarth 0.588268 
glm 0.550853 
glmboost 0.57982 
glmnet 0.516575 
glmStepAIC 0.652398 
icr 0.538622 
kernelpls 0.53122 
kknn 0.622063 
knn 0.492758 
lars 0.610396 
lars2 0.497103 
leapBackward 0.51046 
leapForward 0.504345 
leapSeq 0.592855 
lm 0.643869 
lmStepAIC 0.67364 
mlp 0.523656 
mlpML 0.543772 
mlpWeightDecay 0.487287 
mlpWeightDecayML 0.535726 
nnet 0.515127 
nnls 0.478919 
parRF 0.512955 
pcaNNet 0.579176 
pcr 0.542002 
penalized 0.543772 
pls 0.507242 
ppr 0.581107 
ranger 0.50354 
rbfDDA 0.506759 
rf 0.612005 
rlm 0.523495 
rpart 0.526955 
rpart1SE 0.436112 
rpart2 0.517058 
RRF 0.521242 
RRFglobal 0.50177 
rvmLinear 0.476505 

(continued on next page) 
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(continued ) 

Lower Level Model AUCs 

rvmRadial 0.525587 
simpls 0.541036 
spls 0.484551 
svmLinear 0.672192 
svmLinear2 0.550048 
svmLinear3 0.600418 
svmPoly 0.477148 
svmRadial 0.590924 
svmRadialCost 0.658674 
svmRadialSigma 0.58674 
treebag 0.574992 
widekernelpls 0.534599 
WM 0.56767 
xgbDART 0.507 
xgbLinear 0.52607 
xgbTree 0.55375  
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