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ABSTRACT
This study explored the associations between specific profiles of biological dysregulation and mental
health outcomes in a national, community sample of healthy adults in the United States. A latent class
analysis of data from the Midlife Development in the United States study (n¼ 1,757) was conducted to
determine classes of biological dysregulation. Multinomial logistic regressions of class membership were
employed to determine associations with measures related to depression, including whether or not indi-
viduals had sought treatment, Center for Epidemiological Studies Depression Scale, and both the gener-
alized distress and anhedonia subscales of the Mood and Anxiety Symptoms Questionnaire. Four classes
of dysregulation emerged: baseline/low dysregulation, metabolic and inflammatory dysregulation, para-
sympathetic dysregulation, and SAM pathway dysregulation. Individuals who met the criteria for depres-
sion measures were more likely to be in the metabolic and immune dysregulation and parasympathetic
dysregulation groups as compared to the baseline group. The results suggest that mental health out-
comes, such as depression, are differentially associated with specific profiles of biological dysregulation.
A more nuanced approach to profiles of dysregulation could better inform treatment decisions.

LAY SUMMARY

� Higher levels of allostatic load, which represents the cumulative wear and tear of exposure to stress,
are associated with increased rates of depression and anhedonia. Specifically, parasympathetic dysre-
gulation and immunometabolic dysregulation are associated with negative mental health outcomes
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Introduction

Allostatic load – the cumulative, biological wear and tear
from long-term exposure to stress – is associated with a wide
range of physical and cognitive diseases (McEwen et al.,
2012). Higher levels of allostatic load, as operationalized by a
range of biomarkers, have been associated with cardiovascu-
lar disease (Juster & Lupien, 2012; Mattei et al., 2010;
Rosmond & Bjorntorp, 2000; Santacroce & Crandell, 2014),
Type 2 Diabetes Mellitus (T2DM) (Crews, 2007; Mattei et al.,
2010), rheumatoid arthritis (Straub & Cutolo, 2001; Wilder &
Elenkov, 1999), as well as cognitive and memory decline
(Lucassen et al., 2017; Seeman et al., 2001). Recently, there
has been an increased focus on the relationship between
allostatic load and mental health. Examples include studies
that have found associations between higher allostatic load
and schizophrenia (Berger, Juster, et al., 2018; Berger, Lavoie,
et al., 2018; Nugent et al., 2015; Savransky et al., 2018), bipo-
lar disorder (Brietzke et al., 2011; Kapczinski et al., 2008; Vieta
et al., 2013), major depressive disorder (Juster et al., 2011;
Kobrosly et al., 2013, 2014), and anhedonia (Berger
et al., 2019).

There is also a large body of evidence connecting individ-
ual biomarkers to mental health outcomes (e.g. Dowlati

et al., 2010; Gill et al., 2008; Haapakoski et al., 2015; Kyrou
et al., 2017; Maes et al., 1999; Pervanidou et al., 2007). These
studies have shed light on the biological underpinnings of
mental health disorders. For example, hyperactivity of the
HPA axis, and the resultant hypercortisolemia is one pro-
posed biological pathway for causing major depressive dis-
order (MDD) via hippocampal atrophy (McEwen, 2003).
20–80% of individuals experiencing depression have some
form of HPA axis hyperactivity and a half to three-quarters of
depressed patients have elevated cortisol levels (Pace &
Miller, 2009; Stetler and Miller, 2011). Elevated cortisol levels
in individuals experiencing depression may be the result of a
malfunction in the negative feedback loop that allows the
hippocampus to regulate cortisol (Bowers & Yehuda, 2017;
Pariante & Miller, 2001).

Alternatively, the cytokine hypothesis argues that some
forms of depression are the result of inflammatory processes
triggered by environmental stressors (Bob et al., 2010).
Recent meta-analyses found evidence that blood IL-6 levels
were elevated in patients with major depressive disorder
(Dowlati et al., 2010; Haapakoski et al., 2015).

Anhedonia, which represents a reduced or diminished
desire to seek out or respond to pleasureful stimuli, is associ-
ated with multiple mood and personality disorders (American
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Psychiatric Association, 2013; Cho et al., 2019). Anhedonia is
common among individuals with MDD, and treatments for
MDD (e.g. SSRIs) are typically not effective in treating anhe-
donia, which may exacerbate depressive symptoms (Atherton
et al., 2015; Lamontagne et al., 2018; Price et al., 2009).
Anhedonia’s etiology remains unclear, yet research suggests
that dopamine as well as glucocorticoids, such as cortisol,
play a primary role in the disorder (Krugel et al., 2009;
Lamontagne et al., 2018).

The goal of this study is to assess if individual biological
systems or a series of biomarkers across systems are the driv-
ers of the association between allostatic load and MDD-
related outcomes. By exploring the underlying classes of bio-
logical dysregulation, this study bridges the gap between
cumulative allostatic load research and research focused on
individual biomarkers.

Methods

Sample

This study utilized data from the second wave of Midlife
Development in the United States study (MIDUS). MIDUS, is a
national, community sample of non-institutionalized adults in
the United States. The purpose of the study is to better
understand health and well-being as individuals age by
studying behavioral, psychological, and social factors (Ryff
et al., 2006, 2014). MIDUS is a de-identified, publicly available
dataset, therefore institutional review board oversight is not
required. Data for the current study includes individuals who
participated in the MIDUS Biomarkers project. This subsample
includes a subset of individuals who were part of the original
MIDUS study as well as individuals who were part of a new,
Refresher sample that joined at the second wave of the
study. For this reason, and because biomarker data is only
available at a single point in time, this study utilizes a cross-
sectional methodology. The total sample of individuals
included in the analysis is 1,757.

Analysis

Latent GOLD 5.1 (Statistical Innovations, Inc., 2017) was used
to identify latent classes of biological dysregulation and
Stata/MP 16 (StataCorp, 2019) was used to explore the asso-
ciations between these latent classes and measures of
depression and anhedonia while controlling for socio-demo-
graphic covariates. This type of latent class analysis typically
employs a stepwise approach that involves the three-step
process of (1) building a series latent class models and select-
ing the one with the best model fit to the data; (2) assigning
observations to a given class based on posterior class mem-
bership probabilities; and (3) using the assigned classes as
the dependent variable in a multinomial logistic regression
that is regressed on a range of predictor variables while con-
trolling for sociodemographic characteristics (Vermut, 2010).

The latent class analysis fits the data to a series of models
ranging from one to six classes. Model fit statistics used to
assess the models included Bayesian Information Criterion
(BIC), Akaike’s Information Criterion (AIC), Consistent Akaike’s

Information Criterion (CAIC), Log-Likelihood (LL), and boot-
strapped likelihood-ratio chi-square statistic (L2). The boot-
strapping approach provides an advantage over the initial
chi-square statistic in that it allows for relaxing the assump-
tion that the L2 value follows the chi-square distribution. For
this approach, the most parsimonious model, that is, the
model with the fewest latent classes, with a p-value greater
than 0.05 is considered the best model for the data (Vermunt
& Magidson, 2005, 2016a, 2016b).

A supplemental analysis regressed a cumulative, multisys-
tem allostatic load measure of biological dysregulation on
the same mental health variables for comparison purposes
and to better understand how latent profiles of biological
dysregulation differ from a common cumulative measure of
allostatic load. This was completed via a multivariate linear
regression that controlled for the same sociodemographic
variables as the multinomial logistic regression models. A
detailed explanation of how the cumulative, multisystem allo-
static load score was calculated can be found elsewhere (see
Carbone, 2020). The basic approach was to create an average
score across each biological system based on biomarkers
dichotomized into high-risk quartiles of the sample distribu-
tion and then add the systems-level scores to create a cumu-
lative allostatic load measure. This approach has become
more common in allostatic load research in recent years (e.g.
Chen et al., 2012; Friedman et al., 2015; Ong et al., 2017;
Priest et al., 2015; Schwartz, 2017). The scores were log-trans-
formed to ease interpretation of the results in comparison to
the study’s main findings.

Measures

Biomarkers of allostatic load
One limitation of the existing literature is the operationaliza-
tion of allostatic load into a single score that represents dys-
regulation across systems. One approach is to simply sum
scores across biomarkers to create a cumulative risk score
(e.g. Allsworth et al., 2005; Bellatorre et al., 2011; Duru et al.,
2012; Frei et al., 2015; Morrison et al., 2013). Another
approach is to calculate allostatic load scores individually
across the seven biological systems impacted by stress and
then sum the systems-level scores to create an overall allo-
static load score (e.g. Chen et al., 2012; Friedman et al., 2015;
Ong et al., 2017; Priest et al., 2015; Schwartz, 2017). The chal-
lenge with both these approaches is that it eliminates the
ability to understand variance in allostatic load by each bio-
logical system or across multiple biomarkers or systems. The
complexity of the body’s responses to stress suggests that a
more nuanced approach that better identifies the underlying
profiles of dysregulation is warranted. By employing latent
class analysis, which is a newly emerging approach in allo-
static load research (e.g. Forrester et al., 2019), the nuanced
relationships between biomarkers across biological systems
can be better explicated through the identification of under-
lying classes of biological dysregulation.

Twenty-two biomarkers, representing seven biological sys-
tems, were included in the analysis. The biomarkers and their
relevant biological systems are cortisol and D-HEAS (HPA
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axis); epinephrine, norepinephrine, and dopamine (sympa-
thetic nervous system); systolic blood pressure and diastolic
blood pressure (cardiovascular system); the standard deviation
of heart cycle length variability (SDRR), root mean squared
successive differences of the beat-to-beat interval (RMSSD),
low-frequency heart rate variability (LFHRV), and high-fre-
quency heart rate variability (HFHRV) (parasympathetic ner-
vous system); IL-6, fibrinogen, C-reactive protein, E-selectin,
and intercellular adhesion molecule 1 (ICAM-1) (inflammatory
system); HDL cholesterol, LDL cholesterol, and triglycerides
(lipid metabolism); HbA1c, fasting glucose, and insulin resist-
ance (HOMA) (glucose metabolism). Biomarkers were dicho-
tomized into high-risk quartiles based on sample
distributions (1¼ high risk, 0¼ low risk). The approach for
dichotomizing biomarkers is based on an algorithm (Seeman
et al., 1997) that has been used extensively in the literature
(see Beckie, 2012 for a review). For most biomarkers, those in
the highest 25% of the sample distribution were categorized
as high risk. For HDL cholesterol and the parasympathetic
nervous system biomarkers, the lowest 25% of the sample
distribution was categorized as high risk. Cortisol and DHEA-
S, were split so that both the lowest and highest 12.5% were
categorized as high risk. This is an approach that has been
growing in popularity in recent years in an attempt to cap-
ture both hypercotisolemia and hypocortisolemia (Bellingrath
et al., 2009; Hellhammer et al., 2004; Juster et al., 2013).

Mental health measures
Four different measures of mental health were employed in
this analysis. Each measure assessed a specific aspect or
dimension related to, but not necessarily exclusive to, depres-
sion. The first was a self-reported response (1¼ yes, 0¼ no)
to whether or not the respondent had been treated for
depression, anxiety, or another emotional disorder within the
past 12months. The second was whether or not the respond-
ent met the criteria for depression based on the Center for
Epidemiological Studies Depression Inventory (CES-D)
(1¼ yes, 0¼ no). The third and fourth were based on two
subscales from the Mood and Anxiety Symptom
Questionnaire (MASQ). One was the Generalized Distress:
Depression subscale (MASQ-GDD) and the other was the
Anhedonia subscale (MASQ-A) (1¼ yes, 0¼ no for each sub-
scale). These four different measures were employed to
assess the association between latent class membership and
different aspects of depression and mental health, with the
goal of providing a more holistic picture of these
relationships.

Given that the subscales of the MASQ do not have estab-
lished clinical cutoffs, the literature was reviewed to deter-
mine the best cutoffs for this analysis. From a psychometric
perspective, the most desirable cutoff is the one with the
highest and most balanced measures of sensitivity and speci-
ficity. Utilizing this approach, a cutoff value of 25 was used
for the MASQ-GDD (Schalet et al., 2014) and a cutoff of 21
for the MASQ-A (Bredemeier et al., 2010). While multiple clin-
ical cutoffs ranging from 16 to 22 have been proposed for
the CES-D, a meta-analysis found that 20 was likely the best

cutoff value, so it was utilized in this study (Vilagut
et al., 2016).

Covariates
The regression models controlled for a number of demo-
graphic variables. The following variables were included in
each model: age (continuous), sex (female, male), race
(Caucasian, black and/or African American, other), the highest
level of educational attainment (high school diploma or less,
some college or associates degree, bachelor’s degree, graduate
degree), employment status (employed, retired, homemaker,
unemployed and searching for a job or temporarily laid off,
other), and marital status (married, divorced or separated,
never married, other). Each model also controlled for prescrip-
tion medications that represented health conditions and dis-
eases that are specifically linked to biomarkers included in
the analysis. Separate, dichotomous variables (yes, no) were
included for self-reported use of prescription medications for
three conditions: hypertension, high cholesterol, and dia-
betes. Finally, a dichotomous (yes, no) variable was included
based on self-reported use of prescription medication to treat
anxiety or depression.

Results

Latent class analysis

The fit statistics for the latent classes are displayed in Table
1. Based on the diminishing improvement in fit statistics
when moving from four to five classes, as well as the fact
that the four-class model is the most parsimonious model
with a not statistically significant bootstrapped chi-square
value, the four-class model was selected as the one that best
fits this data.

Figure 1 displays the four latent classes of biological dys-
regulation. The x-axis lists all 22 biomarkers included in the
analysis and groups them by biological system, while the y-
axis displays the percentage of observations that fall in the
high-risk quartile of the sample distribution for a given bio-
marker (i.e. conditional probability). Figure 1 shows that indi-
viduals in Cluster 1 experience relatively low levels of
dysregulation – ranging from less than 3% of the sample
experiencing HOMA dysregulation to a high of 27% of the
sample experiencing LDL cholesterol dysregulation – there-
fore this cluster is identified as the baseline group. Cluster 2
represents metabolic and inflammatory dysregulation due to
the high number of observations within this cluster that
demonstrate dysregulation in variables within both lipid and
glucose metabolism systems as well as within the inflamma-
tory system. As compared to the baseline group, the meta-
bolic and inflammatory group has much higher levels of
dysregulation, ranging from 30.49% of individuals experienc-
ing dysregulation in LDL cholesterol to 59.43% of individuals
with a dysregulation in HOMA levels. Cluster 3 is labeled as
parasympathetic systems dysregulation. Individuals in this
group are much more likely to experience dysregulation in
SDRR (75.33%), RMSSD (96.75%), HFHRV (94.32%), and LFHRV
(66.95%), while also experiencing relatively low levels of
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dysregulation across other biomarkers. The final group, clus-
ter 4, is comprised of individuals with high sympathomedul-
lary pathway (SAM pathway) dysregulation. This includes
individuals with a dysregulation in norepinephrine (84.10%),
epinephrine (76.78%), and dopamine (76.77%).

Descriptive statistics

The profile of sociodemographic characteristics for each
latent class of biological dysregulation is displayed in Table 2.
Chi-square and ANOVA tests showed that there were statistic-
ally significant differences across the four groups of biological
dysregulation for all of the covariates (ps< 0.05–0.001).

The baseline group, which contains 34.95% of the sample
(n¼ 614) was predominantly female (58.96%), majority
Caucasian (84.20%), and had a mean age of 49.64. The major-
ity of individuals in this group were employed (62.21%) and
married (67.92%). In terms of education, the largest category
was individuals with a bachelor’s degree (28.66%), followed
by those with some college or associate’s degree (27.20%),
and individuals with a graduate degree (21.66%). A relatively
small proportion of individuals in this group were prescribed
medications for anxiety or depression (9.28%), hypertension
(15.47%), high cholesterol (16.78%), or diabetes (1.30%).

The metabolic and inflammatory dysregulation group,
which made up 22.88% of the sample (n¼ 402), had a higher
number of females (52.74%) than males and had a mean age
of 52.90. This group also had a lower percentage of
Caucasians (63.43%) and the greatest proportion of African
Americans (30.85%) of all the groups. Roughly half of the
members of these groups were married (55.22%) but more
also had a higher proportion of individuals who were either
separated/divorced or never married (21.64 and 18.91%,
respectively). The largest education category for the meta-
bolic and inflammatory dysregulation group was some col-
lege or an associate’s degree (35.82%) followed by a high
school diploma or less (29.35%). Nearly half of the individuals
in this group worked full time (49.00%), while more than
one-fifth were retired (20.65%). This group had the highest
percentage of individuals on prescription medication for
hypertension (42.79%) and the second-highest percentage of
individuals on prescription medication for high cholesterol
(30.10%). 15.42% reported taking a prescription for anxiety or
depression, while one-fifth were on prescription diabetes
medication (21.64%).

Individuals in the parasympathetic dysregulation group,
22.65% of the sample (n¼ 398), were split between males
and females (50.25 and 49.75%, respectively) and were the
oldest group on average with a mean age of 57.70. This

Table 1. Fit statistics for latent classes of biological dysregulation.

Models LL Npar L2 BIC(L2) AIC(L2) AIC3(L2) CAIC(L2) df Bootstrapped chi2 p-value Classification error

1-Cluster (21,853.26) 22.00 19,342.58 6,379.76 15,872.58 14,137.58 4,644.76 1,735.00 <0.001 0.000
2-Cluster (20,688.33) 45.00 17,012.73 4,221.75 13,588.73 11,876.73 2,509.75 1,712.00 <0.001 0.035
3-Cluster (20,182.73) 68.00 16,001.52 3,382.38 12,623.52 10,934.52 1,693.38 1,689.00 0.018 0.081
4-Cluster (19,787.67) 91.00 15,211.40 2,764.11 11,879.40 10,213.40 1,098.11 1,666.00 0.084 0.080
5-Cluster (19,606.92) 114.00 14,849.91 2,574.46 11,563.91 9,920.91 931.46 1,643.00 0.134 0.093
6-Cluster (19,451.06) 137.00 14,538.17 2,434.57 11,298.17 9,678.17 814.57 1,620.00 0.14 0.099
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group had a high proportion of Caucasians (83.92%) and the
lowest percentage of African Americans (10.55%). This group
had the lowest percentage of employed individuals (45.98%)
and the highest percentage of retired individuals (28.39%).
Two-thirds of individuals in this group were married
(67.84%). Individuals with some college or an associate’s
degree were the largest educational category (29.65%) fol-
lowed by those with a bachelor’s degree (27.14%). This group
had the highest proportion of individuals on prescription
medication for high cholesterol (35.68%) with a similar pro-
portion taking medication for hypertension (35.43%). 18.59%
were on medication for anxiety or depression, while 14.32%
were on diabetes medication.

The final group was SAM pathway dysregulation and it
consisted of 19.52% of the full sample (n¼ 343). This group
was majority female (58.89%) with a mean age of 50.16. It
was primarily Caucasian (69.39%) but had the second-highest
percentage of African Americans (18.95). The group had a
majority of individuals who were married (57.73%) followed
by those who were never married (20.12%). 58.31% of indi-
viduals in this group were employed with nearly one-third
having some college or an associate’s degree (29.37%) fol-
lowed by those with a bachelor’s degree (26.86%). Nearly
one-quarter of individuals in this group were taking

prescription medication for hypertension (23.32%), with a
slightly smaller proportion taking medication for high choles-
terol (19.53%), and fewer individuals taking medication for
anxiety or depression (10.50%) or diabetes (4.66%).

Multinomial logistic regression

Treatment
The results of the multinomial logistic regression models are
displayed in Table 3. Adjusting for age, sex, race, educational
attainment, employment status, marital status, and prescrip-
tion medications, there was not a statistically significantly
greater risk for those who had been treated for depression,
anxiety, or another emotional disorder in the past 12months
of being in any of the three classes of biological dysregula-
tion as compared to being in the baseline group.

CES-D
Individuals who met the CES-D criteria for depression were at
80% greater risk of being in the metabolic and inflammatory
dysregulation group as compared to the baseline group than
those who did not meet the CES-D threshold criteria (ARR ¼
1.80, 95% CI: 1.13, 2.88). Those who met the CES-D criteria

Table 2. Sample descriptive statistics stratified by latent class.

Baseline

Metabolic &
inflammatory
dysregulation

Parasympathetic
dysregulation

Neuroendicrine
dysregulation

-Test of statistical
significance across
latent classesa

n (%) n (%) n (%) n (%)
p-ValueVariable 614 (34.95) 402 (22.88) 398 (22.65) 343 (19.52)

Age [M (SD)] 49.64 (11.38) 52.90 (11.62) 57.70 (11.32) 50.16 (13.42) <0.001
Sex <0.05
Female 362 (58.96) 212 (52.74) 198 (49.75) 202 (58.89)
Male 252 (41.04) 190 (47.26) 200 (50.25) 141 (41.11)

Race <0.001
Caucasian 517 (84.20) 255 (63.43) 334 (83.92) 238 (69.39)
Black and/or
African American

67 (10.91) 124 (30.85) 42 (10.55) 65 (18.95)

Other 30 (4.89) 23 (5.72) 22 (5.53) 40 (11.66)
Education <0.001
High school diploma
or less

138 (22.48) 118 (29.35) 98 (24.62) 52 (23.11)

Some college/
Associates degree

167 (27.20) 144 (35.82) 118 (29.65) 87 (29.37)

Bachelor’s degree 176 (28.66) 79 (19.65) 108 (27.14) 109 (26.86)
Graduate degree 133 (21.66) 61 (15.17) 74 (18.59) 95 (20.66)

Employment status <0.001
Employed 382 (62.21) 197 (49.00) 183 (45.98) 200 (58.31)
Retired 84 (13.68) 83 (20.65) 113 (28.39) 53 (15.45)
Homemaker 39 (6.35) 24 (5.97) 29 (7.29) 16 (4.66)
Unemployed/
temp layoff

17 (2.77) 22 (5.47) 17 (4.27) 12 (3.50)

Other 92 (14.98) 76 (18.91) 56 (14.07) 62 (18.08)
Marital status <0.001
Married 417 (67.92) 222 (55.22) 270 (67.84) 198 (57.73)
Separated/divorced 97 (15.80) 87 (21.64) 64 (16.08) 60 (17.49)
Never married 78 (12.70) 76 (18.91) 33 (8.29) 69 (20.12)
Other 22 (3.58) 17 (4.23) 31 (7.79) 16 (4.66)

Prescription for anxiety
or depression

57 (9.28) 62 (15.42) 74 (18.59) 36 (10.50) <0.001

Prescription for
hypertension

95 (15.47) 172 (42.79) 141 (35.43) 80 (23.32) <0.001

Prescription for high
cholesterol

103 (16.78) 121 (30.10) 142 (35.68) 67 (19.53) <0.001

Prescription for diabetes 8 (1.30) 87 (21.64) 57 (14.32) 16 (4.66) <0.001
aChi-square tests were used to test for statistically signficant differences across latent classes for each of the covariates except age, for which an ANOVA test
was employed.
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had 71% greater risk of being in the parasympathetic dysre-
gulation group as opposed to the baseline group (ARR ¼
1.71, 95% CI: 1.04, 2.82). There was not a statistically signifi-
cant difference between the SAM pathway dysregulation
group and the baseline group.

MASQ-GDD
Individuals who met the MASQ-GDD subscale criteria had a
78% greater risk (ARR ¼ 1.78, 95% CI: 1.08, 2.96) of being in
the metabolic and inflammatory dysregulation group as com-
pared to the baseline group. MASQ-GDD was not associated
with a higher risk of membership in either the parasympa-
thetic dysregulation or the SAM pathway dysregula-
tion groups.

MASQ-anhedonia
With respect to anhedonia, individuals who met the MASQ
criteria for this subscale had nearly twice the risk of being in
the metabolic and inflammatory dysregulation group (ARR ¼
1.95, 95% CI: 1.01, 3.75) than in the baseline group. Neither
parasympathetic dysregulation nor SAM pathway dysregula-
tion was statistically significantly different from the base-
line group.

Supplemental analysis

A supplemental analysis was completed utilizing a more trad-
itional allostatic load measure of cumulative, systems-level
dysregulation. Results of a series of multivariate linear regres-
sion models showed that seeking treatment for anxiety,
depression, or another emotional disorder was not associated
with cumulative allostatic load (p¼ 0.50). Individuals who
met the criteria for the CES-D has 13% higher cumulative
allostatic load (B¼ 0.129, p< 0.01), while those who met the
MASQ general distress subscale and anhedonia subscale cri-
teria had 14% and 21% higher cumulative allostatic load
scores, respectively, than those who did not meet the criteria
for each subscale (MASQ GDD B¼ 0.144, p< 0.01; MASQ
anhedonia B¼ 0.212, p< 0.01).

Discussion

This study sought to both identify underlying classes of bio-
logical dysregulation and to assess the degree to which
membership in classes of dysregulation was associated with
depression-related mental health outcomes. The findings

suggest that individuals who met the criteria of the CES-D
were at a higher risk, as compared to those who did not, of
being in the metabolic and inflammatory dysregulation
group and the parasympathetic dysregulation group as
opposed to being in the baseline group. In addition, those
who met the criteria for the MASQ anhedonia subscale and
the MASQ general distress depression subscale were at a
greater risk of experiencing metabolic and inflammatory
dysregulation.

It is important to note that these findings may generalize
beyond depression to other mental health disorders.
Anhedonia is not a symptom that is exclusive to depression.
It is experienced by individuals afflicted by a number of dis-
orders including – but not limited to – schizophrenia, social
anxiety, and posttraumatic stress disorder (Shankman et al.,
2014). Therefore, these findings should also be considered in
light of their implications for emotional disorders
more broadly.

The use of latent class analysis adds to previous research
on cumulative biological risk, as it disaggregates the associ-
ation between specific biomarkers and systems and mental
health outcomes. While the findings from the multivariate lin-
ear regression models for cumulative, multisystem dysregula-
tion completed in the supplemental analysis aligned with the
multinomial logistic regression results, that model is not able
to identify which biological systems are driving the associ-
ation. A such, these findings align with new research that has
emerged in recent years that focuses on the important roles
of systems-level and cross-systems biological dysregulation.
Examples of this emerging research include the growth in
the utilization of Polyvagal Theory and the developing field
of immunometabolism.

Porges (1995, 2001) introduced Polyvagal Theory as a
means of explaining the relationship between parasympa-
thetic nervous system functioning and behavior. Specifically,
respiratory sinus arrhythmia (i.e. high-frequency heart rate
variability) is utilized as a measure of parasympathetic ner-
vous system functioning, often referred to as vagal tone
(Porges, 1995, 2001). While certain fundamental components
and assumptions of Polyvagal Theory as they relate to human
evolution have been disputed (see Grossman & Taylor, 2007),
parasympathetic nervous system functioning as operational-
ized by measures of heart rate variability (HRV) continues to
be an area of intense and diverse research. In a systematic
review and meta-analysis of 150 case-control and treatment
studies, Alvares et al. (2016) found that HRV among individu-
als with psychiatric disorders was statistically significantly
lower than controls without psychiatric disorders. In addition,

Table 3. Multinomial logistic regression results.

n

Metabolic & inflammatory dysregulation Parasympathetic dysregulation SAM pathway dysregulation

ARR 95% CI ARR 95% CI ARR 95% CI

Treated for anxiety/depression 1,747 1.43 (0.98, 2.10) 1.46 (0.99, 2.13) 0.9 (0.60, 1.35)
CES-D 1,751 1.80 (1.13, 2.88) 1.71 (1.04, 2.82) 1.29 (0.78, 2.14)
MASQ-GDD 1,756 1.78 (1.08, 2.96) 1.40 (0.81, 2.42) 1.44 (0.85, 2.43)
MASQ-Anhedonia 1,756 1.95 (1.01, 3.75) 1.86 (0.94, 3.67) 1.31 (0.63, 2.73)

All relative risk ratios were adjusted for age, sex, race, educational attainment, employment status, marital status, and whether or not participants were pre-
scribed medication for anxiety or depression, hypertension, high cholesterol, and diabetes. The baseline cluster is the reference group for all adjusted risk ratios
(ARRs).

Bold values are statistically significant at p < 0.05.
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while each of the other subgroups (mood disorder, anxiety
disorder, and substance dependence) were statistically signifi-
cantly different from the control group, individuals with
psychotic disorders had the largest effect size (Hedges g ¼
�0.952, 95% CI �1.105, �0.800, p< 0.00). Brown et al. (2018)
completed two meta-analyses, one of clinical trials and the
other of community studies, to assess the association
between HRV and depression among older adults and found
that decreased HRV was associated with increased levels of
depression. Specifically, low-frequency HRV, but not high-fre-
quency HRV, was associated with depression. In all, the cur-
rent state of research suggests that a more nuanced
conceptualization and operationalization of parasympathetic
nervous system functioning may be necessary to better
understand this system’s role in mental health outcomes.

The past decade has seen increased recognition of the
interplay between metabolic and immune function. This has
led to a growth in biomedical literature focused on what is
now known as immunometabolism (Mathis & Shoelson, 2011;
Murray et al., 2015). Research in this area suggests a complex,
recursive relationship and interaction between the immune
and metabolic systems. This two-way relationship creates
complicated interactions and positive reinforcing loops, such
as when inflammation from multiple sources (e.g. cancer,
diet, infection, or injury) leads to changes in systems-level
metabolic functions, which then trigger cellular level changes
in the metabolic functioning of immune cells, in turn result-
ing in modifications to immune system functioning (Buck
et al., 2017).

Given that immunometabolic research is relatively new,
much additional work is needed to explicate the complex
relationships between metabolic and immune function at
both the cellular and whole-body levels (Buck et al., 2017;
Man et al., 2017; O’Neill et al., 2016). The results of this study
suggest that allostatic load researchers should further explore
the immunometabolic perspective in their research. As immu-
nologists and metabolic researchers continue to consider
how these two biological systems interact and result in bio-
logical dysregulation and disease, allostatic load researchers
should consider how environmental stressors influence meta-
bolic and immune processes as well as interactions between
these systems.

While allostatic load research to date has explored the
role of immune system dysregulation as it relates to mental
health, such as the application of cytokine theory as previ-
ously discussed (Bob et al., 2010), combining immune and
metabolic dysregulation may result in a clearer picture of
common comorbidities as they relate to MDD. Specifically,
obesity, diabetes, and metabolic syndrome are common
MDD comorbidities (Anderson et al., 2001; Dunbar et al.,
2008; Olvera et al., 2015). While the causality and directional-
ity of the relationship between mental health and metabolic
disorders is complex and likely reciprocal, a better under-
standing of the immunometabolic processes through the
allostatic load theoretical lens may allow researchers and
clinicians to identify the best targets for interventions that
are most likely to break this reciprocal cycle.

These findings reinforce the need to integrate an under-
standing of the biological processes that are associated with

the etiology of mental health disorders. By considering the
unique underlying biological systems associated with specific
mental health disorders, specific and targeted interventions
can be identified and implemented to affect these systems.

Limitations

The findings of this study must be considered in light of its
limitations. First, latent class analysis is an exploratory tech-
nique and the findings of any analysis should be used pri-
marily to guide future research. Second, like most studies of
allostatic load, the operationalization of high-risk biomarkers
is based on the sample distribution, therefore the findings
are sample-specific and may not generalize to a larger popu-
lation. Third, the measure of treatment is a triple-barreled
question, as it asks about treatment for depression, anxiety,
or another emotional disorder. If these disorders were disag-
gregated into multiple questions, it is possible that significant
associations between individual disorders and specific classes
of dysregulation may emerge. Finally, individuals in two of
the latent classes of biological dysregulation are statistically
significantly different from those in the baseline group on a
number of variables, yet the ARRs and their corresponding
confidence intervals show that there is not much distinction
between the two biologically dysregulated groups. One
potential reason for this is the relatively high level of meta-
bolic and immune dysregulation in the parasympathetic dys-
regulation group as compared to the baseline group. While
this dysregulation does not rise to the level seen in the
immune and metabolic dysregulation group, it does differ
from the baseline group. Future research should explore this
issue and better differentiate the role of each type of dysre-
gulation as well as how they interact.

Conclusion

The findings of this study have important implications for
future research related to parasympathetic nervous system
dysregulation, immunometabolic dysregulation, and mental
health outcomes. Parasympathetic nervous system dysregula-
tion and immunometabolic dysregulation continue to be
developing fields of research that can be integrated into the
understanding of the biological etiology of mental health dis-
orders such as MDD. This approach can aid researchers in
developing effective treatments to reduce the prevalence of
these disorders. Allostatic load theory can be employed as
the conceptual framework for integrating these perspectives
and ensuring that a holistic biological perspective is main-
tained by researchers as they work to address issues of men-
tal health.
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