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Abstract
Longitudinal time use data afford the opportunity to study within- and between-individual differences, but can present challenges
in data analysis. Often the response set includes a large number of zeros representing those who did not engage in
the target behavior. Coupled with this is a continuous measure of time use for those who did engage. The latter is
strictly positive and skewed to the right if relatively few individuals engage in the behavior to a greater extent. Data
analysis is further complicated for repeated measures, because within-individual responses are typically correlated,
and some respondents may have missing data. This combination of zeros and positive responses is characteristic of a
type of semicontinuous data in which the response is equal to a discrete value and is otherwise continuous. Two-part
models have been successfully applied to cross-sectional time use data when the research goals distinguish between
a respondent's likelihood to engage in a behavior and the time spent conditional on any time being spent, as these
models allow different covariates to relate to each distinct aspect of a behavior. Two-part mixed-effects models
extend two-part models for analysis of longitudinal semicontinuous data to simultaneously address longitudinal
decisions to engage in a behavior and time spent conditional on any time spent. Heterogeneity between and within
individuals can be studied in unique ways. This paper presents applications of these models to daily diary data to
study individual differences in time spent relaxing or engaged in leisure activities for an adult sample.
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The collection of time use data is central to understand-
ing many facets of human life. In the United States, for
example, the Department of Labor supports the collec-
tion of time use data across a wide range of domains to
conduct economic research, understand health, safety,
and family and work-life balance, and make internation-
al comparisons. Time use data may be obtained for a
single occasion in a target population, such as time de-
voted by students to academic study (Mucciardi, 2013),
or for multiple time points to understand patterns of

change in behaviors over time, such as how children's
time spent with their parents changes over time
(Sandberg & Hofferth, 2001).

Arguably, the manner in which time use is measured is a
complex research enterprise, and the subsequent data analysis
can present challenges. Here we consider longitudinal time
use data that are measured using a semicontinuous scale with
zero indicating that an individual did not engage in the behav-
ior and values being positive otherwise. Importantly, we as-
sume that there is interest in understanding correlates of the
likelihood that an individual will engage in the behavior, and
separate from this, interest in understanding correlates of the
extent to which an individual engages in the behavior condi-
tional on any time being spent, as well as the within-subject
variation in time spent about an individual’s conditional mean
time across occasions. We assume that for each measurement
occasion, respondents are asked to report time spent engaged
in a behavior over a specified period of time, such as time
spent on a task or engaged in an activity within a 24-hour

* Shelley A. Blozis
sablozis@ucdavis.edu

1 Department of Psychology, University of California, Davis, CA,
USA

2 California State University Sacramento, Sacramento, CA, USA
3 University of Maryland, College Park, MD, USA

https://doi.org/10.3758/s13428-020-01359-7

Published online: 10 February 2020

Behavior Research Methods (2020) 52:1836–1847

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-020-01359-7&domain=pdf
mailto:sablozis@ucdavis.edu


period, and the question asked daily across multiple days. We
assume a direct correspondence between each period that de-
fines an occasion (e.g., a 24-hour period) and the period dur-
ing which an individual decides to engage in the behavior (i.e.,
the same 24-hour period).

Daily diary of time spent relaxing, engaging
in leisure activities

The National Study of Daily Experiences (NSDE) (Almeida,
2007) was designed to study time spent in various daily activ-
ities considered stressful to people. A sample of 1031 adults of
the NSDE (excluding a subsample of twins and siblings) was
randomly sampled from the Midlife in the United States
(MIDUS) study. Interviews for the NSDE were conducted
between March 1996 and April 1997. For the sample studied
here, participants (54.4% women) were 47.4 years of age on
average (SD = 13.2) and ranged in age from 20 to 74 years.
The goal of the NSDE was to conduct telephone interviews to
obtain self-reports of daily experiences over 8 consecutive
days. The starting day (i.e., the day of the week) of the inter-
view period varied between participants. The mean number of
interview days for this sample was 7.0 (SD = 1.4, minimum =
1, maximum = 8).

We consider the daily measures of time spent relaxing or
engaged in leisure activities, where a single question was used
in the survey to pertain to these types of activities collectively.
The proportions of the sample engaged in these activities by
day of the week are summarized in Table 1, along with the
means, standard deviations, and minimums and maximums of
time spent in hours, conditional on any time being spent. Fig.
1 displays boxplots of the hours spent each day conditional on
any amount of time being spent.

Key features of the data are worth noting. For each day,
scores are positively skewed, with a subset of individuals

reporting no time spent engaged in leisure activities. When
individuals were engaged, the reported daily time spent varied
between individuals, with relatively few individuals reporting
high amounts of time spent, as evidenced by the positive skew
in the daily response distributions displayed in Fig. 1. In ad-
dition to the information provided in Table 1 and Fig. 1, indi-
viduals differed in their activities across days. At the individ-
ual level, the proportion of survey days that an individual
reported engaging in leisure activities ranged from 0 to 1,
indicating that some individuals reported no days of leisure
activities and some reported leisure activities for all survey
days. The daily mean time that individuals were engaged
ranged from 0.33 to 23.8 hours, indicating a wide range in
activity levels. Again at the individual level, the standard de-
viation of daily timemeasures when engaged ranged from 0 to
10.7, with some individuals having relative stability in their
responses across days and others not. To capture these features
of the data and allow for their study, a model is needed that can
(1) distinguish between a response of zero and a positive

Table 1 Descriptive statistics for
relaxing/leisure activities
(n = 1031)

Hours spent if engaged

Day Proportion of sample engaged Mean SD Minimum Maximum

Monday .90 3.5 3.0 0.08 24

Tuesday .89 3.2 2.6 0.17 18

Wednesday .90 3.0 2.5 0.08 24

Thursday .89 3.0 2.5 0.08 24

Friday .88 3.0 2.4 0.08 24

Saturday .92 4.1 3.1 0.17 24

Sunday .95 4.7 3.2 0.33 24

Notes: Data source: National Study of Daily Experiences (NSDE) (Almeida, 2007)

Fig. 1 Boxplots of positive reports of daily leisure time by day of week (n
= 1031)
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report of time spent, and thus characterize the likelihood that
an individual will engage in the activity, and (2) characterize
time spent conditional on an individual engaging in the activ-
ity, addressing the day-to-day variation in time spent that dif-
fers between individuals as well. As two-part mixed-effects
models have been successful in addressing key features of
data similar to these, we build upon this modeling framework
for the analysis of time use data. These models and their ex-
tensions are described next.

Two-part models for semicontinuous time use
data

Two-part models (Cragg, 1971) are useful for the analysis of
time use data with many zeros from cross-sectional studies,
and may be preferred to other models. These models rely on
the creation of two variables from the original response: A
binary variable represents whether an individual engaged in
the behavior, and a continuous variable represents the time
spent conditional on any time being spent. Analysis of the
two variables is done independently, such as by applying a
logistic regression model to the binary response and a linear
regression model to the conditional continuous response
(Duan, Manning, Morris, & Newhouse, 1983). Tobit regres-
sion has been used for time use measures with many zeros, but
the method assumes left- or right-censoring of the response.
Values below zero are not possible, however, and so the as-
sumption of left-censoring is deemed inappropriate. Further,
Tobit regression is not naturally set up to allow for different
predictors to relate to the likelihood that one engages in a
behavior and the degree of engagement (Stewart, 2013).
Standard linear regression has also been applied to time use
data that include zeros (Cawley & Liu, 2012), but this ap-
proach also cannot be used to make unique predictions about
the likelihood of engaging in the behavior and the conditional
degree of engagement, in addition to making no particular
accommodation for zeros. Indeed, the goals of the data anal-
ysis need to be carefully considered when selecting a statisti-
cal framework for analysis.

Two-part mixed-effects models

A two-part mixed-effects model extends a two-part model for
application to repeated measures of a semicontinuous vari-
able, and thus provides an appealing approach to the analysis
of repeated measures of time use data. Under the model, each
model part includes one or more random effects to account for
within-subject dependencies in the data. Olsen and Schafer

(2001) and Tooze, Grunwald, and Jones (2002) describe a
model based on a joint distribution linking separate mixed-
effects models for a binary and a continuous response. The
twomodels are linked by covariances between their respective
random effects, and as a result, estimation of the two model
parts is simultaneous. These models are flexible in that differ-
ent response distributions may be used to represent each mod-
el part (e.g., Liu, Cowen, Strawderman, & Shih, 2010). This
can be particularly important for time use data, which in ad-
dition to typically including many zeros, are commonly pos-
itively skewed. Importantly, these models retain the ability to
use different covariates to predict engagement in a behavior
and the level of engagement conditional on any positive level
of engagement.

Two-part mixed-effects models share features common to
mixed-effects models more generally. For example, the
models do not require complete data, and data are assumed
to be missing at random. A general form of the model is
assumed to apply to all members of a population with
one or more of the coefficients of each model part be-
ing subject-specific. The covariance structure is separat-
ed into a within- and a between-subject component. The
within-subject covariance structure describes the varia-
tion and possible covariation of scores between occa-
sions. The between-subject covariance structure de-
scribes the variation and possible covariation of the ran-
dom effects that are used to characterize the repeated
response measures. Maximum likelihood (ML) (Olsen
& Schafer, 2001) or Bayesian estimation (Xing et al.
2017) may be used for estimation of these models.

Using daily diary data from a large study of daily stressors
in adults, we show how these models may be formulated to
study between-subject differences and within-individual vari-
ability in semicontinuous data by relaxing some of the as-
sumptions typically made when applying these models. It is
common in applications of two-part mixed-effects models to
assume homogeneity of variance of a random coefficient
across subjects and of the variance of the occasion-level resid-
ual across occasions and subjects. To relax both of these as-
sumptions, we incorporate features of a mixed-effects location
scale model (Hedeker, Mermelstein, & Demirtas, 2008;
Hedeker & Nordgren, 2013) into a two-part mixed-effects
model. A mixed-effects location scale model is a model for a
single normally distributed variable that includes a sub-model
for the variance of a random intercept so that it can depend on
within- and between-subject covariates, in addition to a sub-
model for the variance of the occasion-level residual so that it
can depend on within- and between-subject covariates.
Additionally, the model for the variance of the occasion-
level residual can include a random subject effect to allow
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between-subject heterogeneity of variance even after
adjusting for covariates.

Analytical strategy

In analyzing data from the NSDE, we assumed that respon-
dents had an opportunity each day to engage in relaxing or
leisure activities and that a choice was made each day to en-
gage or not engage in such activities. We began by fitting a set
of unconditional models in which the response distribution of
the continuous model part was assumed to follow one of three
distributions: normal, log-normal or gamma distribution. The
latter two distributions are positive and continuous distribu-
tions that may be well suited to addressing the positive skew
observed in the positive time use responses. Using the best-
fitting of these three models, covariates were added to the
model under three different model formulations. First, a two-
part mixed-effects model was applied in the usual way to
study the log odds of engagement and the daily mean time
when engaged. An extended model was then developed to
include the study of possible heterogeneity in both the
within- and the between-subject covariance structures. This
permitted us to study any day-to-day variation in time spent
about an individual’s mean time when engaged and any
between-subject variation in the individual log odds and daily
mean time, both after adjusting for the effects of model covar-
iates that entered the mean structure of the model. This ex-
tended model was then reduced by evaluating the need for
particular covariates. Fixed effects were evaluated using like-
lihood ratio tests with a significance level of .05. Interpretation
of the three models that include covariates is delayed until
after the models are developed and estimates provided.

PROC NLMIXED for SAS version 9.4 software was used
to carry out the analyses. The process of fitting a mixed-effects
model to complex data can be a challenge. The paper by
Kiernan, Tao, and Gibbs (2012) addresses issues for fitting
linear and nonlinear mixed-effects models in SAS, and we
relied on many of the suggestions provided in their paper—
for example, providing reasonable starting values, and begin-
ning with relatively simple models and building up amodel by
increasing its complexity. For the empirical analyses presented
here, we began by fitting fixed effects models and gradually
built up the model by increasing the complexity (e.g., adding
random effects), while updating the starting values for each
model based on estimates obtained by simpler versions of the
model. As we added new parameters to the model, we used
what we thought were reasonable starting values. With regard
to estimation procedures, SAS PROC NLMIXED includes a
few options. We found that using nonadaptive Gaussian quad-
rature, as opposed to the default method of adaptive Gaussian

quadrature, was best for obtaining a solution. Taking guidance
from a simulation study by Carlin,Wolfe, Brown, and Gelman
(2001), we used nonadaptive Gaussian quadrature with a high
number (20) of quadrature points.

Unconditional models for daily leisure time activity
data

We began by fitting an unconditional two-part mixed-effects
model to the data. Let yij be the observed response for indi-
vidual i on day j, where i = 1,..., N and j = 1,..., ni, with N
denoting the total number of subjects and ni the number of
survey days for individual i. Let tij be the day that yij was
observed. From yij two new variables were created: uij = 1 if
yij > 0 and uij = 0 if yij = 0 (if yij was missing, then uij was set to
missing); mij = yij if yij > 0 and was missing otherwise. Next,
let ηij be the logit of the individual engaged in the activity:

ηij ¼ log P uij ¼ 1
� �

= 1−P uij ¼ 1
� �� �� � ð1Þ

The logit in Eq. (1) was assume to follow a mixed-effects
model:

ηij ¼ α0 þ ai ð2Þ

where α0 is the mean logit and ai is a random subject effect
assumed to be independent and identically distributed (i.i.d.)
across subjects as normal with mean equal to 0 and variance
φ2

a. The variance parameterφ2
a characterizes between-subject

variation in the logit.
A positive report of time spent was modeled using a linear

mixed-effects model:

mij ¼ γ0 þ bi þ εij ð3Þ

where γ0 is the mean time spent and bi is a random subject
effect assumed to be i.i.d. normal across subjects with mean
equal to 0 and variance φ2

b. The variance φ2
b represents

between-subject variability in the individual mean times.
The residual εij is the day- and individual-specific part of the
daily response not accounted for by the subject-specific model
given by γ0 + bi. Across days, the set of residuals εi =
(εi1,..., εini )′ was assumed to be i.i.d. normal (with the as-
sumption of normality relaxed later) across subjects with
mean equal to 0 and covariance matrixΘε. The residuals were
assumed to be independent between days with constant vari-
ance:Θε = σ2

εIni, where σ
2
ε was a common variance and Iwas

an identity matrix of order ni. Initially, the residual covariance
structure was assumed to be homogeneous across individuals,
but the dimensions ofΘε could differ between individuals due
to missing data.
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The two sub-models for ηij in Eq. (2) and mij in Eq. (3)
were joined at the second level by a covariance between the
random effects, ai and bi, of the two models:

Φ¼ φ2
a

φba φ2
b

� �

where the covariance φba represents the linear relationship
between the individual-level logit and mean time spent across
days. For instance, a positive covariance would indicate that
higher log odds (or likelihood) of engaging in the activity
corresponds to a higher daily mean time when engaged in
the activity.

To investigate the shape of the response distribution of mij,
three versions of the two-part mixed-effects model were fit to
the data. In Model A1, mij was assumed to be normally dis-
tributed1. Although mij is strictly positive, if the responses are
bell-shaped, then a normal distribution could provide a suit-
able approximation to the response distribution. Alternatively,
if responses are positively skewed, as expected if increasingly
fewer individuals engaged in the behavior to a greater extent,
then a log-normal or gamma distribution, both of which are
positive and continuous distributions, may approximate the
distribution. Model A2 assumed that mij was log-normally
distributed and Model A3 assumed thatmij followed a gamma
distribution. The upper part of Table 2 includes the -2lnL, AIC

and BIC values for Models A1–A3. The model that assumed a
log-normal distribution for mij (Model A2) provided the best
overall fit, based on the model having the lowest AIC (or one
could use the BIC for an equivalent conclusion) value.
This model was provisionally accepted as the best-
fitting unconditional model. From this model, the esti-
mated fixed effect of the logit was 3.2 (SE = 0.10), and
the estimated mean log time spent was 0.93 (SE =
0.02). The estimated variance of the random intercept
of the logit model was 2.98, and that of the log-
normal model was 0.24. The estimated variance of the
residual of the log-normal model was 0.39. Under the
logistic model, the estimated intraclass correlation coef-
ficient was bρ = 2.98/((π2/3)+2.98) = .48, and that for
the log-normal model was bρ = 0.24/(0.39+0.24) = .39,
although it should be noted that both estimates assume
homogeneity of variance across individuals and mea-
surement occasions. In both model parts, an appreciable
portion of the variation in responses is due to both
within- and between-subject differences.

Conditional models for daily leisure time activity data

Covariates were used to study reported time spent engaged in
leisure activities. The covariates were as follows: Agei (cen-
tered to the sample mean age of 47.4 years), gender (coded as
Femi = 1 if female and Femi = 0 if male), and whether the
survey took place on a weekday or weekend (Dayij was coded

1 A t-distribution might also be considered if the response was expected to
have heavy tails.

Table 2 Indices of model fit of two-part mixed models (n = 1031)

Model q -2lnL AIC BIC Models Compared χ2(df) P-value

Unconditional models

A1 6 34567 34579 34608

A2 6 30424 30436 30465

A3 6 30611 30623 30652

Conditional models

B1 22 29776 29820 29929 A2 vs. B1 835(16) < .0001

B2 37 29312 29386 29568 B1 vs. B2 464(15) < .0001

B3 24 29323 29371 29489 B2 vs. B3 11(13) .61

Notes: -2lnL is -2 times the log-likelihood. AIC = Akaike information criterion. BIC = Bayesian information criterion. χ2 is the statistic for a deviance
test with df equal to the difference in model parameters. With regard to the continuous model part, Model A1 assumes a normal probability response

distribution,Model A2 assumes a log-normal probability response distribution: f mijjμlog mijð Þ;σ2
log mijð Þ

� 	
¼ 1

mij

ffiffiffiffiffiffiffi
2σ2π

p exp − 1
2

log mijð Þ−μlog mijð Þ
� �

σ2log mijð Þ

0
@

1
A

8<
:

9=
;;

and Model A3 assumes a gamma probability response distribution with shape (γ) and scale (θ) parameters: f mijjγ; θ
� � ¼ mij

γ−1exp −mij=θð Þ
θγΓ γð Þ , where Γ(γ) is

the standard gamma function of the scale parameter θ. Models A1–A3 assume homogeneity of the within- and between-subject covariance structures.
Model B1 assumes homogeneity of the within- and between-subject covariance structures. Model B2 extends Model B1 to allow heterogeneity of the
within- and between-subject covariance structures. Model B3 is a reduced model based on Model B2 that excludes some covariates used in the different
model parts
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as 1 = Saturday or Sunday and 0 = Monday, Tuesday,
Wednesday, Thursday or Friday). Dayij was centered
about the person’s proportion of survey days that fell
on a weekend, and the proportion of weekend days
(PropDayi) was included to statistically adjust for
between-subject differences. The number of survey days
that fell on a weekend ranged from 0 to 3 across re-
spondents, with a mean of 1.7 and standard deviation of
0.6; corresponding to this, the mean proportion of sur-
vey days falling on a weekend was .23 (SD = .08,
minimum = 0, maximum = .67).

The first model fit to the data, henceforth called Model B1,
represents a typical application of a two-part mixed-effects
model. To include covariates, the model for the logit in Eq.
(2) was extended:

ηij ¼ α0 þ α1Dayij þ α2Femi þ α3Agei

þ α4Dayij*Femi þ α5Dayij*Agei

þ α6Femi*Ageiþα7Dayi*Agei*Femi

þ α8PropDayi þ ai ð4Þ

where α0 is the logit when all covariates are equal to 0, the
coefficients α1, α2 and α3 are the effects of Dayij, Femi

and Agei, each conditional on the interacting covariates
being equal to 0, the coefficients α4, α5, and α6 are the
two-way interaction effects, each also conditional on the
interacting covariates being equal to 0, and α7 is the
three-way interaction effect between the three covariates.
Finally, α8 is the effect of PropDayi conditional on all
other covariates. The model includes a random subject
effect ai assumed to be i.i.d. normal across subjects
with mean equal to 0 and variance φ2

a. The variance

φ2
a characterizes between-subject variation in the logit

after accounting for variation due to covariates and their
interactions. Under a mixed-effects logistic regression
model, the effects in (4) control for the random subject
effect ai (Neuhaus, Kalbfleisch, & Hauck, 1991).

The model for the log of the positive measure of time spent
in Eq. (3) was extended:

log mijð Þ ¼ γ0 þ γ1Dayij þ γ2Femi þ γ3Agei

þ γ4Dayij * Femi þ γ5Dayij * Agei

þ γ6Femi * Agei þ γ7Dayi * Agei * Femi

þ γ8PropDayi þ bi þ εij ð5Þ

where γ0 is the mean log time when all covariates are equal to
0, the coefficients γ1, γ2 and γ3 are the effects of Dayij, Femi

and Agei, each conditional on the interacting covariates being
equal to 0, and the coefficients γ4, γ5 and γ6 are the effects of
the two-way interactions between the three covariates, also
conditional on the interacting covariates being equal to 0.
The last coefficient, γ8, is the effect of PropDayi conditional
on all other covariates. The model includes a random subject
effect bi assumed to be i.i.d. normal across subjects with mean
equal to 0 and variance φ2

b. The variance φ2
b represents

between-subject variation in the individual means in log time
after accounting for variation due to covariates and their
interactions.

The residual εij in Eq. (5) is the part of the response
not accounted for by the subject-specific model that
now includes covariates. The residuals were assumed
to be i.i.d. log-normal across subjects with mean equal
to 0 and covariance matrix Θε. The residuals were
again assumed to be independent between days with
constant variance. As was done for the unconditional
model, the two sub-models for ηij in Eq. (4) and mij

in Eq. (5) were joined at the second level by a covari-
ance between the random effects, ai and bi, with both ai

Table 3 ML estimates of fixed effects (n = 1031)

Parameter Model B1 Model B2 Model B3

Within-subject

α0 3.5 (0.14) 3.6(0.18) 3.5 (0.15)

Dayij, α1 0.66(0.20) 0.67(0.20) 0.67(0.12)

Femi, α2 −0.58(0.16) −0.72(0.22) −0.59(0.16)
Agei, α3 0.007(0.01) 0.015(0.012) 0.016(0.006)

Dayij∗Femi, α4 0.006(0.25) −0.013(0.25)
Dayij∗Agei, α5 −0.014(0.02) −0.013(0.017)
Femi∗Agei, α6 0.013(0.01) 0.012(0.013)

Dayij∗Agei∗Femi, α7 −0.0003 (0.020) 0.0001(0.020)

PropDayi, α8 1.7(0.98) 1.4(0.097) 1.6(0.98)

Between-subject

γ0 1.0(0.025) 1.0(0.027) 1.0(0.026)

Dayij, γ1 0.40(0.026) 0.36(0.025) 0.36(0.017)

Femi, γ2 −0.18(0.034) −0.19(0.035) −0.19(0.034)
Agei, γ3 0.010(0.002) 0.010(0.0020) 0.010(0.002)

Dayij∗Femi, γ4 0.011(0.035) −.0021(0.034)
Dayij∗Agei, γ5 −0.007(0.002) −.007(0.002) −0.006(0.001)
Femi∗Agei, γ6 −0.005(0.003) −.005(0.003) −0.005(0.002)
Dayij∗Agei∗Femi, γ7 0.003(0.003) .0024(0.0025)

PropDayi, γ8 −0.34(0.21) −0.32(0.22) −0.32(0.22)

Notes: Standard errors are in parentheses. Model B1 assumes homogene-
ity of the within- and between-subject covariance structures. Model B2

assumes heterogeneity of the within- and between-subject covariance
structures. Model B3 is a reduced form of Model B2 to exclude statisti-
cally nonsignificant covariate effects.
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and bi now conditional on the covariates. Thus, the
variances of ai and bi and their covariance are now
the variances and covariance of the random effects con-
ditional on covariates.

ML estimates of the fixed effects of Model B1 are shown in
the first column of results in Table 3. ML estimates of the
common variance σ2

ε and the variances and covariance (and
corresponding correlation) of the random effects ai and bi are
in the first column of results in Table 4. Using a deviance test,
the difference in fit between Models A2 and B1 was statisti-
cally significant (χ²(16) = 835, P < .0001), indicating an im-
provement in model fit after the addition of the covariates to
predict the logit and log time spent (see Table 2). As stated
previously, we delay model interpretation until all three
models have been reported.

Extended model

Model B1 represents a typical application of a two-part mixed-
effects model in which the model assumes homogeneity of the
within- and between-subject covariance structures. In Model
B2, the model is extended to allow for heterogeneity in both
covariance structures. First, the within-subject variance σ2

ε is
allowed to vary according to both within- and between-subject
covariates. That is, the variance is a function of variables that
are measured daily along with the response variable and those
that are subject-specific. This is useful in situations in which
heterogeneity of variance is related to covariates. Particularly
for time use measures, characterizing individual differences in
daily variation in a behavior may be an important element to
better understanding time use. The model for the within-

Table 4 ML estimates of within-
and between-covariance struc-
tures (n = 1031)

Parameter Model B1 Model B2 Model B3

Within-subject

ln(σ2
ε ) −1.0 (0.019) −1.3(0.043) −1.3(0.04)

Dayij, τ1 0.23(0.079) 0.19(0.05)

Femi, τ2 0.15(0.057) 0.14 (0.06)

Agei, τ3 −0.008(0.003) −0.007 (0.002)

Dayij∗Femi, τ4 −0.063(0.10)
Dayij∗Agei, τ5 −0.010(0.006)
Femi∗Agei, τ6 0.003(0.004)

Dayij∗Agei∗Femi, τ7 0.009(0.008)

PropDayi, τ8 −0.48(0.40) −0.51(0.40)
Between-subject

ln(φ2
a ) 1.1(0.11) 1.2(0.17) 1.1(0.11)

Femi, λ1 −0.22(0.21)
Agei, λ2 0.01(0.01)

ln(φ2
b ) −1.5(0.06) −1.3(0.07) −1.3(0.07)

Femi κ1 -.22(0.09) −0.23(0.09)
Agei, κ2 -.0011(0.003)

φab 0.34(0.05) 0.38(0.05) 0.37(0.05)

φ2
w 0.39(0.04) 0.39(0.04)

φwa −0.51(0.09) −0.51(0.09)
φwb −0.18(0.02) −0.17(0.02)
Additional parameters and their estimates

σ2
ε 0.35(0.01) 0.28(0.01) 0.28(0.01)

φ2
a 2.9(0.33) 3.4(0.58) 2.9(0.34)

φ2
b 0.23(0.013) 0.27(0.02) 0.27(0.02)

ρab .40 .37

ρwa -.45 -.51

ρwb -.54 -.54

Notes: Standard errors are in parentheses. Model B1 assumes homogeneity of the within- and between-subject
covariance structures. Model B2 assumes heterogeneity of the within- and between-subject covariance structures.
Model B3 is a reduced form of Model B2 to exclude statistically nonsignificant covariate effects.
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subject variance also includes a random subject effect so that,
even after adjusting for the effects of covariates, the variance
may differ between subjects. The inclusion of a random sub-
ject effect can be useful if, for example, additional sources of
heterogeneity of variance are unknown. Second, the between-
subject covariance structure is allowed to vary according to
between-subject covariates. That is, the variance of each ran-
dom effect is a function of subject-specific covariates. For
instance, whereas Model B1 assumes homogeneity of the var-
iances of the intercepts of both the logit and log-normal
models, Model B2 permits the variances to depend on Femi

and Agei, as described later.

Within-subject heterogeneity Under Model B1, the residual
variance of the continuous model part σ2ε was assumed to be
homogeneous such that variation in an individual's observed

scores about their respective average response across days was
the same across days and individuals. Under Model B2, the
assumption of homogeneity of variance across days and indi-
viduals was relaxed by allowing the residual variance to be
predicted by covariates. This allowed us to study whether the
covariates accounted for variation in the residual variance be-
yond what the covariates could account for in predicting an
individual's daily time spent engaged in leisure activities.
Additionally, a random subject effect was added to the vari-
ance model to test whether between-subject heterogeneity of
the within-subject variation remained after accounting for the
effects of the covariates on the residual variance. The model
for the variance σ2

εi, that now includes subscripts to show that
it can vary according to both daily and subject-level covari-
ates, is given by

σ2εi ¼ exp τ0 þ τ1Dayij þ τ2Femi þ τ3Agei þ τ4Dayij*Femi þ τ5Dayij*Agei þ τ6Femi*Agei þ τ7Dayi*Agei*Femi þ τ8PropDayi þ wi

� �
ð6Þ

where τ0, when exponentiated, is the common (geometric)
residual variance when the covariates are equal to zero
and wi = 0. For any of the effects τ1–τ8, a positive
value indicates that an increase in a covariate corre-
sponds to an increase in the variance, and a negative
value indicates that an increase in a covariate corre-
sponds to a decrease in the variance. Additionally, the
model for the variance in Eq. (6) includes a random
subject effect w i that may covary with the other
subject-level random effects at the second level of the
model:

Φ¼
φ2

a
φba φ2

b
φwa φwb φ2

w

2
4

3
5

where φwa and φwb are the covariances between the
random subject effect of the within-subject variance
model in (6) and the random effects of the logistic
model in Eq. (4) and linear model in Eq. (5), respec-
tively, and φ2

w is the variance of the random subject
effect of the within-subject variance model in (6). The
covariances φwa and φwb represent the linear relation-
ships between the individual-level logits and individual
mean log time measures with the random effect of the
within-subject variance model in (6). Positive covari-
ances would indicate that as either the logit or mean
time spent increases, there is a corresponding increase
in the daily variation in time spent about an individual’s

mean log time. Negative covariances would indicate that
as either the logit or mean log time increases, there is a
corresponding decrease in the daily variation in time
about an individual’s mean log time.

Between-subject heterogeneityUnderModel B1, the variance
of the random effects of the logit model and the log-normal
model were assumed to be homogeneous, such that variation
in these random effects, conditional on the covariates of the
respective models in Eqs. (4) and (5), was the same
across individuals. Here the assumption of homogeneity
of variance across individuals is relaxed by allowing
each variance of these two random effects to be predict-
ed by the between-subject covariates Femi, Agei and
their interaction (between-subject variation in these ran-
dom effects was not thought to vary according to the
proportion of survey days that fell on a weekend, and
so PropDayi was not included in these models). This
allowed us to study whether these covariates could ac-
count for variation in the random effects after control-
ling for these covariates as predictors of the individual's
logit or mean log time. The models for the random
effect variances φ2

a and φ2
b now can vary according to

subject-level covariates as follows:

φ2
a ¼ exp λ0 þ λ1Femi þ λ2Agei þ λ3Femi*Ageið Þ ð7Þ

φ2
b ¼ exp κ0 þ κ1Femi þ κ2Agei þ κ3Femi*Ageið Þ ð8Þ
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where λ0 and κ0, when exponentiated, are the (geometric)
variances of the respective random effects when the covariates
are equal to zero. The effects λ1, λ2 and λ3, relating to Femi,
Agei and their interaction, respectively, are predictors of the
random intercept variance of the logistic model, and κ1, κ2 and
κ3, relating to Femi, Agei and their interaction, respectively,
are predictors of the random intercept variance of the log-
normal model. Positive values of these covariates would cor-
respond to a greater degree of between-subject variation in the
random effect (after adjusting for the covariates in Eqs. (4) and
(5)), and negative values would correspond to a lower degree
of between-subject variation in the random effect (again, after
adjusting for the covariates in Eqs. (4) and (5)). As the vari-
ances of the random effects are functions of covariates, the
variance-covariance matrix of the random effects is
interpreted as having elements that are adjusted for the effects
of covariates. Reported in Table 2, a deviance test compares
the fit between Models B1 and B2 (χ²(15) = 464, P < .0001),
indicating an improvement in fit after allowing for heteroge-
neity of the within- and between-subject covariance struc-
tures. ML estimates of the fixed effects are provided in the
second column of results in Table 3, and estimates of the
parameters that defined the within- and between-subject co-
variance structures are given in the second column of results in
Table 4. Again, we delay model interpretation until later.

Reduced model

The effects of the covariates inModel B2 were evaluated and a
reduced model (henceforth called Model B3; the Appendix
provides syntax for fitting Model B3) was formed to provide
a data description using a model that was parsimonious rela-
tive to Model B2. The three-way interaction between Femi,
Agei and Dayij, was evaluated first, followed by the two-way
interactions and then the main effects; an effect was excluded
from the model if it was not statistically significant at the .05
level. For the final model obtained, a deviance test compares
the fit between Models B2 and B3 (χ²(13) = 11, P = .61),
indicating no appreciable decrease in fit after excluding a se-
lect subset of covariates (see Table 2).

From Table 3, the estimated effects of the covariates for the
mixed-effects logistic regression model are interpreted here,
noting that the estimated effects are conditional on the random
subject effects. The estimated log odds that an individual en-
gaged in leisure activities, if the respondent was male, at the
sample mean age of 47.4 years, whose proportion of survey
days taking place on a weekend was equal to the mean pro-
portion of 0.23, and whose random effect for the logit inter-
cept was equal to zero, was bα0 =3.5 (SE = 0.15). The log odds
tended to be higher if the survey day fell on a weekend (bα1

=0.67, SE = 0.12) and lower if the respondent was female (bα2

= −0.59, SE = 0.16). Older individuals were also more likely
to engage (bα3 = 0.02, SE = 0.006). These effects were each
adjusted for each other and for between-subject differences in
the proportion of weekend days surveyed (bα8 = 1.6, SE =
0.98), as well as controlling for the random effect ai.

The estimatedmean log time spent, conditional on any time
being spent, for males at the sample mean age and at the
sample mean proportion of survey days falling on a weekend
was bγ0 = 1.0 (SE = 0.03), which when exponentiated is about
2.7 (geometric) mean hours per day. Mean log time tended to
be higher for weekends at the sample mean age of 47.4 years
(bγ1 = 0.36, SE = 0.02), with the effect of a weekend being
attenuated according to an increase in a respondent’s age (bγ5 =
−0.006, SE = 0.001). For males, older age corresponded to
higher mean log time (bγ3 = 0.010, SE = 0.002), with the
relative effect of age attenuated for females (bγ6 = −0.005,
SE = 0.002). Relative to males, females at the sample mean
age of 47.4 years had a lower mean log time (bγ2 = −0.19, SE =
0.034). Each of these effects was adjusted for the other effects,
as well as for between-subject differences in the proportion of
weekend days surveyed (bγ8 = −0.32, SE = 0.22).

From Table 4, within-subject variance of daily log time
about an individual’s mean log time across days was greater
if the survey took place on a weekend versus a weekday (bτ1 =
0.19, SE = 0.05), greater if the respondent was female (bτ2 =
0.14, SE = 0.06), and reduced for older respondents (bτ3 =
−0.007, SE = 0.002). Each of these effects was adjusted for
the other effects, as well as for between-subject differences in
the proportion of weekend days surveyed (bτ8 = −0.51, SE =
0.40).

Between-subject variation in the logit (conditional on co-
variates) did not differ appreciably between males and females
or with regard to age, indicating comparable degrees of
between-subject variation in the individual logits at each level
of the two covariates. Between-subject variation in the log
mean time (conditional on covariates) was lower for females
relative to males (bκ1 = −0.23, SE = 0.09), indicating greater
homogeneity among females relative tomales. Variation in the
log mean time did not vary appreciably with regard to age.

Finally, the random effects, after adjusting for the effects of
covariates, were moderately related to each other. In particu-
lar, a higher likelihood to engage in leisure activities was pos-
itively related to the daily mean log time (bρab = .37, 95% CI:
[.32, .42]), but likelihood to engage and daily mean log time
were both negatively related to the within-subject daily varia-
tion in time spent (bρwa = −.51, 95% CI: [−.55, −.46]; bρwb =
−.54, 95% CI: [−.50, −.58], respectively), indicating that
greater stability in time spent tended to correspond to a lower
likelihood to engage and a lower daily mean log time across
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days. It is important to mention as a final note that a deviance
test done to evaluate the need for the random effect in the
within-subject variance model indicated that between-subject
heterogeneity of the within-subject variance remained after
adjusting for the effects of covariates (χ²(3) = 416, P < .0001).

Comparing the different models

The key difference between the typical application of a two-
part mixed-effects model (here, Model B1) and an extended
version (here, Model B2), is that the latter allows for hetero-
geneity of both the within- and between-subject covariance
structures. Thus, greater insight can be gained about a behav-
ior by allowing covariates to predict the different sources of
variation. For the leisure time data, covariates were particular-
ly informative about heterogeneity of variation in daily time
about a person’s mean time, and heterogeneity of variance
remained even after accounting for these covariates. With re-
gard to heterogeneity of variance in the random effects at the
subject level, between-subject variation in the mean log time
(adjusting for covariates) was greater for males relative to
females, suggesting that males differ from each other to a
greater extent than females with regard to daily mean time.

Discussion

Two-part models are useful in addressing research questions
that relate to the likelihood that individuals will engage in a
behavior, and separate from this, the extent of engagement
given that any time was spent. In this way, two-part models
may be preferred over other methods that do not make this
distinction in a measured response. This is particularly rele-
vant for time use data if a segment of a population does not
engage in the target behavior and it is important to understand
not only whether people engage in the behavior, but if they do,
to what extent. A two-part model can be extended to a two-
part mixed-effects model given repeated-measures data. A
two-part mixed-effects model addresses dependencies in re-
peated measures by including random effects in each of the
two model parts. The model permits one to study of the tra-
jectories of the likelihood that individuals will engage in a
behavior over time and the trajectories of the extent of engage-
ment when engaged.

In a typical application of a two-part mixed-effects model,
homogeneity of the within-subject and the between-subject
covariance structures is assumed. For the within-subject co-
variance structure, an assumption of homogeneity of variance
for the continuous model part implies that the degree of vari-
ation in an individual’s observed responses about their fitted
mean response across the repeated measures does not differ
appreciably between individuals. For the between-subject co-
variance structure, an assumption of homogeneity of variance

for both the binary and the continuousmodel parts implies that
the degree of between-subject variation in the random effects
(e.g., random intercepts) is constant at all levels of any
between-subject covariates.

An important feature of two-part mixed-effects models is
their flexibility in how these models can be formulated. As
illustrated in this paper, the distributions of the binary and the
continuous response can be assumed to follow a distribution
of one’s choosing. Here, we considered a logistic distribution
for the binary response, and a normal, log-normal and gamma
distribution for the continuous response. Other distributions
for either model part are possible. This paper serves to high-
light a particularly interesting aspect of this modeling frame-
work, namely that it is possible to model the within-subject
variation in scores across repeated measures, either by includ-
ing covariates to study how or why individuals may differ in
their variation in responses over time, or by including a ran-
dom effect to document that there is heterogeneity of varia-
tion. It is also possible to model variation in the random effects
that may be attributable to covariates. As illustrated using the
empirical example presented in this paper, there was a notable
difference between males and females in the variance of
the random intercept for the continuous model part, sug-
gesting a greater degree of individual differences be-
tween males than between females in time spent en-
gaged in leisure activities. Not only did the extension
of the model to allow for heterogeneity of variance in
both the within-subject and between-subject components
improve model fit, but interesting aspects of time spent
in leisure activities were also brought to light.

Open Practices Statement: The data set used in the example
is available for download at https://www.icpsr.umich.edu/
icpsrweb/. This study was not preregistered.

Appendix

/ * SAS PROC NLMIXED may be used to fit a two-part
mixed-effects model to repeated measures of semicontinuous
data. The GENERAL model statement allows for the mixture
of response distributions for the binary and continuous out-
comes. For the continuous model part, the variance of the
residuals may include within- and between-subject covariates
and a random subject effect to allow for heterogeneity
of variance. For both the binary and the continuous
model parts, the variance of the random effects may
include between-subject covariates to allow for hetero-
geneity variance. Different sets of covariates may be
used in each of the three model parts.

Below is syntax for fitting a model to daily reports
of time spent in leisure activities using data from the
National Study of Daily Experiences (NSDE) (Almeida,
2007). Two new daily response variables were created
prior to fitting the model:
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