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Abstract

Background. Affective neuroscience and scar theories propose that increased excessive worry,
the hallmark symptom of generalized anxiety disorder (GAD), predicts future declines in
executive functioning (EF). However, the preponderance of cross-sectional designs used to
examine between-person chronic worry–EF relationships has blocked progress on under-
standing their potentially causal within-person associations. Accordingly, this study used
bivariate dual latent change score (LCS) models to test whether within-person increased
GAD severity might relate to future reduced EF.
Methods. Community-dwelling adults (N = 2581, 46 years on average, S.D. = 11.40, 54.71%
female) were assessed for GAD symptom severity (Composite International Diagnostic
Interview-Short Form) across three waves, spaced about 9 years apart. Three aspects of EF
[inhibition, set-shifting, and mixing costs (MCs; a measure related to common EF)], were
assessed with stop-and-go switch tasks. Participants responded to 20 normal and 20 reverse
single-task block trials and 32 mixed-task switch block trials. EF tests were administered at
time 2 (T2) and time 3 (T3), but not at time 1 (T1).
Results. After controlling for T1 depression, LCS models revealed that within-person
increased T1− T2 GAD severity substantially predicted future reduced T2− T3 inhibition
and set-shifting (both indexed by accuracy and latency), and MC (indexed by latency) with
moderate-to-large effect sizes (|d| = 0.51–0.96).
Conclusions. Results largely support scar theories by offering preliminary within-person, nat-
uralistic evidence that heightened excessive worry can negatively predict future distinct aspects
of cognitive flexibility. Effectively targeting pathological worry might prevent difficulties
arising from executive dysfunction.

Pathological worry, the hallmark symptom of generalized anxiety disorder (GAD), has been
reliably linked to deficits in some cognitive skills, such as learning, memory, and facets of
executive functioning (EF) (Moran, 2016; Pietrzak et al., 2012). Pathological worry is defined
as the chronic tendency to anticipate potential future threats. EF refers to a group of complex
cognitive control processes necessary for organizing tasks, assessing risks, decision-making,
managing emotions, and adapting to unanticipated events (Banich, 2009). EF relates closely
to the central executive of the working memory (WM) which retains and alters task-pertinent
information (Baddeley, 2001), and tends to decline with age (Deary et al., 2009). EF deficits
have been linked to problems in career, academics, relationships, self-esteem, as well as
physical and mental health (Snyder, Miyake, & Hankin, 2015). This is likely because EF is
intertwined with accurately registering and recalling facts or events, processing speed,
language, speech fluency, and logical reasoning (Best, Miller, & Jones, 2009; Brown,
Brockmole, Gow, & Deary, 2012). Thus, better understanding how worry leads to EF processes
going awry is important.

In the past five decades, neurocognitive theories have increasingly acknowledged that
executive dysfunction may be a product of excessive worry. The attentional control theory
(Eysenck, Derakshan, Santos, & Calvo, 2007) posits that worry might negatively impinge on
inhibition (refraining from autopilot responses) and set-shifting (switching flexibly between
distinct mindsets) (Miyake & Friedman, 2012). Likewise, affective neuroscience models have
proposed that anxiety disorders are associated with depletion in EF capacities stemming
from interference with the capacity to ignore task-unimportant matters (Beaudreau,
MacKay-Brandt, & Reynolds, 2013). For instance, GAD might be related to ineffective
recruitment of the pregenual anterior cingulate cortex or other EF-linked brain regions that
dampen amygdala hyperarousal (Andreescu et al., 2015). All in all, as pathological worry is
self-perpetuating and emotionally dysregulating, these models propose that worry can reduce
accuracy or increase response time (latency) on EF tests.

Although these theories suggest that worry symptom–EF relationships unfold across a short
time-scale (Beckwé, Deroost, Koster, De Lissnyder, & De Raedt, 2014), such theories might be
extended to encompass more long-term effects using scar models, such as the perseverative
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cognition hypothesis (Brosschot, Gerin, & Thayer, 2006). The per-
severative cognition hypothesis proposes that habitual worry is
the mechanism by which stress leads to long-term deleterious
effects on somatic, cardiovascular, and metabolic health via the
buildup of allostatic load. Supporting these ideas, studies have evi-
denced moderate-to-large relationships between frequent worry
and future acute myocardial infarction as well as chronic heart
disease, even across multiple decades (Davidson, Mostofsky, &
Whang, 2010; Kawachi, Sparrow, Vokonas, & Weiss, 1994;
Kubzansky et al., 1997). Likewise, increased resting systolic and
diastolic blood pressure, cortisol, and body mass index in child-
hood predicted poorer WM in young adulthood (Evans &
Fuller-Rowell, 2013). In addition, excessive morning cortisol
secretion predicted decline on tests of set-shifting and WM 2 to
4 years later in community adults (Beluche, Carrière, Ritchie, &
Ancelin, 2010). Collectively, allostatic load (i.e. accumulating
wear and tear on the body) from chronic worry could possibly
negatively impact EF abilities over decades.

Regarding short-term effects, ample data lend credence to
these theories. After adjusting for anxiety symptoms, two recent
meta-analytic studies pooling data across 24 samples showed
that worry had significant small-to-moderate between-person
relationships with EF (Zetsche, Bürkner, & Schulze, 2018) and
WM (Moran, 2016). However, the study of worry–EF associations
has largely been a cross-sectional enterprise, leaving the question
of causality to debate. To date, five experiments offer support for
the causal role of worry on EF using non-emotional (or neutral)
tasks (Hallion, Ruscio, & Jha, 2014; Hayes, Hirsch, & Mathews,
2008; Leigh & Hirsch, 2011; Stefanopoulou, Hirsch, Hayes,
Adlam, & Coker, 2014; Williams, Mathews, & Hirsch, 2014).
For instance, compared to thinking positive or neutral thoughts,
worrying impaired WM and inhibition on accuracy and timed
tests in persons with GAD (Stefanopoulou et al., 2014). In gen-
eral, these experiments support the notion that EF deficiencies
might be a downstream consequence of excessive worry.

Despite their importance, experiments that induced worry to
test its momentary impact on EF might not extend to naturalistic
contexts across various stages of adult life. Unlike short-term
effects, buildup of allostatic load leading to dysregulation of the
hypothalamus–pituitary adrenal axis likely explains the long-term
effects of chronic worry on EF across decades. For instance,
chronic stress and worry predicted reduced EF-linked prefrontal
cortex activity and heightened amygdala reactivity 13 years later
(Kim et al., 2013). Thus, a way to advance the field on this
topic is to examine how excessive worry results in EF problems
in adulthood across multiple occasions, beyond a single laboratory
visit. Although prospective observational data involve no explicit
manipulation of the predictor to permit strong causal inferences
(Shadish, Cook, & Campbell, 2002), they move us closer toward
causal models.

At present, at least five such studies in adults have been con-
ducted. First, among Swedish community adult twins, neuroti-
cism was negatively correlated with visuospatial WM,
processing speed, and recognition memory at baseline
(Wetherell, Reynolds, Gatz, & Pedersen, 2002); however, in this
study, neuroticism did not predict 9-year cognitive decline. By
comparison, even slight worry symptoms in older adults predicted
decreased visual attention, recall, and EF 2 to 3 years later
(Pietrzak et al., 2012, 2014). Similarly, in another study on
older adults, increased anxious symptoms predicted verbal mem-
ory deterioration across 12 years (Gulpers, Oude Voshaar, van
Boxtel, Verhey, & Köhler, 2019). Also, higher GAD symptoms

predicted EF decline 3.4 years later in community-dwelling men
(Kassem et al., 2017). Based on this emerging body of longitudinal
evidence, worsening of GAD symptoms might predict weakened
EF across longer time periods.

Yet another limitation is that these studies’ use of two-wave
regression analyses informs between-person (nomothetic) rela-
tionships, but not within-person (idiographic) patterns of growth.
Thus, little is known about idiographic, dynamic, prospective
effects of change in GAD severity on future change in EF con-
structs. One cutting-edge method that can achieve this goal is
bivariate dual latent change score (LCS) modeling (McArdle,
2009). As anxiety–EF models propose both within- and between-
person changes across time, it is essential to apply suitable ana-
lyses. Further, the direction and magnitude of between- and
within-person relationships among variables might not corres-
pond to each other (Fisher, Medaglia, & Jeronimus, 2018). LCS
techniques allow inferences regarding idiographic change pro-
cesses by establishing temporal precedence as well as adjusting
for between-person variation, regression to the mean, and meas-
urement error (Wright et al., 2015). Further, relative to multilevel
modeling, this latent variable method accounts for lagged depend-
ent variables (Falkenström, Finkel, Sandell, Rubel, & Holmqvist,
2017).

However, thus far, at least two prospective anxiety–cognition
studies have applied this potent method. Supporting affective
neuroscience and scar theories, rise in anxiety severity predicted
steeper reductions in cognitive functioning within older adults
across 2 years (Tetzner & Schuth, 2016); nonetheless, as the latter
study had two time points, it cannot speak to whether growth in
symptoms predicted subsequent worsening of EF. Recently, in a
relatively healthy, cognitively-intact, twin sample, anxiety prone-
ness predicted more reductions in attention and processing
speed across 6 years (Petkus, Reynolds, Wetherell, Kremen, &
Gatz, 2017); however, this study did not include worry symptom
or EF measures. Taken together, heightened GAD might forecast
larger future decreased EF over long durations.

Accordingly, by using bivariate dual LCS models, the current
study aimed to clarify how within-person increased GAD severity
might predict future shifts in unique EF components across 18
years in a community-adult sample. This endeavor offers novel
contributions. It adds to one-time assessment and experimental
designs that have dominated the field and is a step toward causal
inferences. Also, most EF–anxiety research has centered on using
emotional (or ‘hot’) EF paradigms (Hallion, Tolin, Assaf, Goethe,
& Diefenbach, 2017). This is surprising as the aforementioned
neurocognitive models hypothesize specific inverse relationships
among worry or anxiety and ‘cold’ EF. Importantly, these theories
center on shifting, inhibition, and mixing costs (MCs) i.e. EF
domains that are understudied in GAD. Moreover, theories and
evidence that highlight the inverse connection between cold EF
and worry are growing (e.g. Moran, Bernat, Aviyente, Schroder,
& Moser, 2015). This study thus fills a gap by testing the poten-
tially instrumental effect of increased abnormal worry on change
in non-emotional (or ‘cold’) EF aspects across time. Further, in
developmental psychopathology, the 18-year duration offers dis-
tinct viewpoints for this research aim as between-person negative
GAD–EF relationships have been found over similar periods (e.g.
Zhang et al., 2015). Also, assessing for change in GAD symptoms
can inform clinicians about persons at risk of EF decline. Based
on the theories and evidence reviewed, we hypothesized that ele-
vated GAD severity would be related to decreased inhibition, set-
shifting, and MCs.
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Method

Participants

This was a secondary analysis using the Midlife Development in
the United States (MIDUS) dataset with three waves of data col-
lection: 1995 to 1996 [time 1 (T1)]; 2004 to 2005 [time 2 (T2)];
and 2012 to 2013 [time 3 (T3)] (Ryff & Lachman, 2018; Ryff
et al., 2017). This study was exempted from IRB approval as it
used a publicly available dataset that can be obtained from the fol-
lowing online data repository: https://www.icpsr.umich.edu/icpsr-
web/ICPSR/series/203. Participants (n = 2581) averaged 46.00
years (S.D. = 11.40, range = 24–74 years) at baseline, 54.71% were
female, and 41.70% had college education. The sample comprised
mostly White participants (92.02%), and the remaining 6.98%
were African American, Asian, Native American, or Pacific
Islander.

Measures

EF tests were administered as part of a larger battery of
neuropsychological assessments (Lachman, Agrigoroaei, Tun, &
Weaver, 2014). The BTACT was administered at T2 and T3
(but not at T1), whereas GAD was assessed at all waves. The
EF subtests in the BTACT evidenced adequate convergent
validity (e.g. rs = 0.41–0.52 with other EF tests) and discriminant
validity (e.g. rs = 0.16–0.17 with immediate and delayed
recall tests) (Lachman et al., 2014). Strong 4-week retest reliability
(r = 0.82–0.83) has also been documented. Moreover, the
telephone-administered EF subtests used in this study showed
strong convergent validity (r = 0.76) with those administered in
person.

Inhibition
The Stop-and-Go Switch Task (SGST; Tun & Lachman, 2006) –
Reverse condition – was used to assess inhibition using accuracy
(performance scores) and latency (response time). SGST
Single-Task block trials were composed of Normal and Reverse
conditions. Respondents replied ‘GO’ or ‘STOP’ in response to
‘GREEN’ or ‘RED’ signs respectively in the normal condition.
The opposite rule applied in the reverse condition i.e. respondents
replied ‘STOP’ for ‘GREEN’ and ‘GO’ for ‘RED’. Latencies were
registered in milliseconds (ms) i.e. duration between the sign
and correct answer given. Higher latency marked slower response
times. Initially, 20 normal block trials were administered, followed
by 20 reverse SGST Single-Task block trials.

Set-shifting
Ability to transit smoothly between unique mental sets was
indexed by accuracy and latency (ms) on the SGST Mixed-Task
Switch block trials (Tun & Lachman, 2006). Participants had to
respond correctly to shifts in normal and reverse conditions at
random times of two to six trials based on the signs
‘NORMAL’ or ‘REVERSE’ across 32 trials. More information
on data reduction for this measure can be found in Lachman
et al. (2014).

Mixing costs
MCs, a measure related to common EF (WM ability to facilitate
staying on task), was computed. MCs refer to the difference
between latencies (ms) during recurring trials of mixed blocks
compared to recurring trials of single blocks (Smith, Banich, &
Friedman, 2019). Consistent with theory (Rubin & Meiran,

2005), the MC index has consistently evidenced a large associ-
ation with the common EF latent factor (r = 0.59) that encapsu-
lates set-shifting, inhibition, and WM updating capacities
(Smith et al., 2019). Further, using MCs to approximate common
EF prevents overlap with set-shifting, a problem inherent with
other indices, such as global switch costs (Vandierendonck,
Liefooghe, & Verbruggen, 2010).

Generalized anxiety disorder severity
GAD severity was measured with the Composite International
Diagnostic Interview-Short Form (CIDI-SF; Kessler, Andrews,
Mroczek, Ustun, & Wittchen, 1998) derived from the
Diagnostic and Statistical Manual for Mental Disorders-Third
Version-Revised (DSM-III-R; Wittchen, Zhao, Kessler, & Eaton,
1994) criteria. Eight item ratings that were most concordant
with current DSM-5 criteria were averaged to form a GAD sever-
ity score, ranging from 1 (never experienced symptoms) to 4
(experienced symptoms on most days). These included the fre-
quency at which participants experienced excessive and unrealistic
worry about multiple things and six associated symptoms (‘were
restless because of your worry’, ‘were irritable because of your
worry’, ‘had trouble falling or staying asleep’, ‘had trouble keeping
your mind on what you were doing’, ‘were low on energy’, ‘had
sore or aching muscles because of tension’) in the past 12 months
on a four-point Likert-scale (1 = never, 2 = less than half the days,
3 = about half the days, 4 = on most days). In this study, internal
consistencies (Cronbach’s α) for the GAD severity scale were
0.71, 0.70, and 0.71 at T1, T2, and T3, respectively. The
CIDI-SF was developed to replicate GAD diagnoses using
the full CIDI. It has a high degree of sensitivity (96.6%),
specificity (99.8%), and global agreement with the GAD
diagnosis (99.6%) (Kessler et al., 1998). Also, 100% of persons
who met DSM-III-R-defined GAD criteria also met
DSM-IV-defined GAD criteria in a previous study (Abel &
Borkovec, 1995). Further, the CIDI-SF showed good retest
reliability (agreement = 0.89; κ = 0.69) (Kessler et al., 1998).
Based on the CIDI-SF, the proportion of participants who had
GAD at each time point was 2.33, 2.03, and 1.96%, respectively.
Those with GAD had higher average symptom severity than
those without GAD at T1 (3.39 v. 2.34, d = 0.84), T2 (3.28 v.
2.23, d = 0.88), and T3 (3.25 v. 2.21, d = 0.88), indicating that
those diagnosed with GAD using the CIDI reportedly worried
more days than not in the past year.

Procedure

Interviewers administered the SGST over the phone at a standar-
dized location during times chosen by participants for conveni-
ence and to reduce surrounding distraction. A computerized
system managed when sound stimuli (e.g. instructions and
block trials) were played. Each cognitive testing session was
recorded as a digital auditory file and analyzed afterward. On
average, the cognitive tests took about 20 min to administer. For
the highest sound quality, participants were encouraged to use
landlines. Further, during testing, they were asked to not write
and to close their eyes to minimize cognitive load (Vredeveldt,
Hitch, & Baddeley, 2011). Before the test, research personnel
briefly examined if participants could hear the interviewer clearly
by instructing respondents to repeat a series of numbers back to
them. The volume was then altered accordingly as required for
4% of the cases with slight hearing difficulties (Lachman et al.,
2014). In the normal condition, participants were instructed,
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‘Every time I say RED you will say STOP, and every time I say
GREEN you will say GO’. In the reverse condition, they were
directed, ‘Every time I say RED you will say GO, and every
time I say GREEN you will say STOP’. Before the actual trials,
practice runs were given for each condition. The entire cognitive
testing script, preprocessing, and stimulus presentation details of
the BTACT switch task can be found at the test developers’ web-
site (http://www.brandeis.edu/projects/lifespan).

Data analyses

We performed structural equation modeling with the lavaan
package (Rosseel, 2012) using R software. Prior to estimating
models, we screened the data for non-normality by applying the
rule of skewness ⩾±3 and kurtosis ⩾±7 as markers of univariate
outliers, and Mahalanobis distance values to identify multivariate
outliers (West, Finch, & Curran, 1995). As several non-normal
distributions were identified in the data, we opted to use max-
imum likelihood with robust (MLR) estimators for all of our ana-
lyses (Yuan & Bentler, 2000). Aberrations from univariate and
multivariate normality distributions are not uncommon in health
and cognitive data (Cain, Zhang, & Yuan, 2017). Also, as non-
normal data could result in biased fit tests and standard errors,
MLR estimators adjust for such non-normality and offer more
precise parameter and standard error estimates (Brown, 2015).
Further, prior to analysis, six cases with multivariate outliers
were removed from the dataset.

To judge goodness-of-fit of all models, we used the χ2 index.
Models with χ2 values that were not statistically significant indi-
cated that the model had good fit. As five comparisons were
made, we applied a Bonferroni correction and set the α value to
0.05/5 = 0.01 to guard against type 1 error (Simes, 1986).
Further, we assessed if models surpassed heuristic cut-offs of
practical fit indices: confirmatory fit index (CFI; Bentler, 1990;

CFI ⩾ 0.95); root mean square error of approximation (RMSEA;
Steiger, 1990; RMSEA⩽ 0.050). To handle missing data, we
used full information maximum likelihood suitable for our data
presumed to be missing at random (Graham, 2009).
Unstandardized regression estimates were shown.

To test if the measures were assessed along the same scale at all
time points, we examined the equivalence of factor loadings (λs),
intercepts (τs), and residual variances (εs) (Millsap & Yun-Tein,
2004). Tests of configural invariance were based on global
model fit as well as statistical significance of the λs. To assess met-
ric invariance, we constrained λs to be equal across all waves and
compared the fit of the constrained model to the configural
model. Next, we tested scalar invariance by comparing a model
with both λs and τs constrained to equality to the model with
only λs constrained across waves. Last, we evaluated strict invari-
ance by juxtaposing a fully constrained model (i.e. equality con-
strained λs, τs, and εs) to a model with scalar invariance. We
used change in fit indices to evaluate measurement invariance
at each step (Meade, Johnson, & Braddy, 2008). Change in CFI
and RMSEA values of >−0.010 and +0.025, respectively, from
the unconstrained to constrained model suggest that the uncon-
strained model is preferable.

Afterward, to test how T1− T2 change in GAD severity pre-
dicted T2− T3 change in an EF construct within persons, we
used bivariate dual LCS models (McArdle, 2009). Figure 1 dis-
plays this multivariate model. By examining latent change of a
construct across two consecutive waves, its course can be modeled
in terms of its baseline level and differences in scores between
each period. The following equation computes for within-person
T2− T3 change in EF:

DEF[T2–T3] = aX × EFS + bX × EF[T2] + dY

× DGAD[T1–T2] (1)

Fig. 1. Bivariate dual LCS models of GAD severity and EF. EF, executive function; GAD, generalized anxiety disorder; LCS, latent change score; T1, time 1; T2, time 2;
T3, time 3. Note: Of most interest to this study is the coupling parameter (δY) that indicates the effect of T1− T2 change in GAD severity predicting T2− T3 change in
EF while adjusting for other parameters in the model. In each bivariate LCS model, EF serves as a placeholder for one of the three EF constructs examined in this
study (inhibition, set-shifting, and MCs).
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whereΔEF indicates the latent difference in an EF construct between
T2 and T3, αX indicates the between-person constant change param-
eter linked to the latent slope (EFS), and βX indicates the within-
person self-feedback processes called the proportional effect.
Importantly, the coupling parameter (δY) indicates the within-
person effect of 9-year change in GAD severity on future 9-year
change in EFdomains. The term ‘EF’ in Equation (1) is a placeholder
for five separate models that tested unique EF components: inhib-
ition (accuracy and latency); set-shifting (accuracy and latency);
and MCs. All models controlled for T1 major depressive disorder
(MDD) severity.†1 To achieve parsimonious, theoretically synced,
and interpretablemodels, we fixed residual variances that were nega-
tive or not statistically significant to zero. Last, in all our finalmodels,
we estimated an additional parameter (covariation between EF vari-
ables at T2 and T3) suggested by the modification indices. Inclusion
of this parameter was informed by theory and the goal of achieving
well-fittingmodels (Hertzog, Dixon, Hultsch, &MacDonald, 2003).
For all data involving response times, the average latencies orMCs of
the single- and mixed-task block trials were used (Lachman et al.,
2014). Cohen’s d effect size was calculated using the formula

d = 2r/
�������
1− r2

√
, where r =

�������������
t2/(t2 + df)

√
(Dunlap, Cortina,

Vaslow, & Burke, 1996; Dunst, Hamby, & Trivette, 2004). Thus,
d values of 0.2, 0.5, and 0.8, represent small, moderate, and large
effect sizes, respectively (Cohen, 1988).

Results

Longitudinal measurement invariance

Across all occasions, we observed invariance of factor structure
(configural), λs (metric), τs (scalar), and εs (strict). Table 1
shows the fit indices for all the measurement invariance models
for the one-factor GAD severity model across three time points,
as well as six-factor model of GAD severity and the five EF con-
structs across T2 and T3. The satisfactory absolute and relative fit
indices suggested that strict invariance was supported. Thus,
across each wave, latent GAD severity and EF scores were mea-
sured along the same scale, allowing for meaningful comparisons
of latent scores across different waves.

Inhibition and GAD severity

The LCS models showed good fit for inhibition indexed by accur-
acy [χ2(df = 13) = 12.398, p = 0.495, CFI = 1.000, RMSEA = 0.000]

Table 1. Longitudinal measurement invariance of GAD severity across waves (standardized estimates)

χ2 df p CFI RMSEA

One-factor model of the GAD severity scale

Time 1 69.787 14 <0.001 0.950 0.078

Time 2 62.929 14 <0.001 0.946 0.079

Time 3 42.958 14 <0.001 0.975 0.056

Level of measurement invariance one-factor model of GAD

Configural (varying λ, τ, ε across time) 79.314 27 <0.001 0.984 0.055

Metric (equal λ, varying τ, ε across time) 93.791 37 <0.001 0.984 0.047

Scalar (equal λ, τ, varying ε across time) 146.139 47 <0.001 0.973 0.054

Strict (equal λ, τ, ε across time) 161.292 59 <0.001 0.973 0.049

Tests of measurement invariance of 8-item GAD severity

Configural invariance v. metric invariance Δχ2 (df = 10) = 11.952, p = 0.288, ΔCFI =−0.000, ΔRMSEA =−0.008

Metric invariance v. scalar invariance Δχ2 (df = 10) = 58.236, p < 0.001, ΔCFI =−0.011, ΔRMSEA = +0.006

Scalar invariance v. strict invariance Δχ2 (df = 12) = 15.733, p = 0.204, ΔCFI =−0.001, ΔRMSEA =−0.005

Six-factor model of GAD severity scale and five EF constructs

Time 2 94.503 39 <0.001 0.978 0.048

Time 3 69.753 39 0.002 0.988 0.037

Level of measurement invariance six-factor model of GAD severity scale and five EF constructs

Configural (varying λ, τ, ε across time) 98.015 68 0.01 0.992 0.026

Metric (equal λ, varying τ, ε across time) 106.145 73 0.007 0.992 0.027

Scalar (equal λ, τ, varying ε across time) 112.212 78 0.007 0.991 0.026

Strict (equal λ, τ, ε across time) 115.911 84 0.012 0.992 0.024

Tests of measurement invariance of six-factor model of GAD severity scale and five EF constructs

Configural invariance v. metric invariance Δχ2 (df = 5) = 9.131, p = 0.104, ΔCFI =−0.001, ΔRMSEA = +0.001

Metric invariance v. scalar invariance Δχ2 (df = 5) = 6.007, p = 0.306, ΔCFI =−0.000, ΔRMSEA =−0.001

Scalar invariance v. strict invariance Δχ2 (df = 6) = 4.725, p = 0.580, ΔCFI = 0.000, ΔRMSEA =−0.001

GAD, generalized anxiety disorder; EF, executive functioning; CFI, confirmatory fit index; RMSEA, root mean square error of approximation; λ, factor loading; τ, factor intercept; ε, item residual
variance; Δ, change in fit statistic.

†The notes appear after the main text.

1680 Nur Hani Zainal and Michelle G. Newman

https://doi.org/10.1017/S0033291720000422 Published online by Cambridge University Press

https://doi.org/10.1017/S0033291720000422


and latency [χ2(df = 12) = 39.081, p < 0.001, CFI = 0.968,
RMSEA = 0.030]. Steeper within-person increase in GAD severity
predicted future decline in inhibition (accuracy: b =−0.006,
p < 0.001, d =−0.61; latency: b = 0.003, p < 0.001, d = 0.59).
Table 2 shows more details.

Set-shifting and GAD severity

The models showed good fit for set-shifting marked by both
accuracy [χ2(df = 13) = 24.982, p = 0.023, CFI = 0.970, RMSEA =

0.022] and latency [χ2(df = 12) = 39.819, p < 0.001, CFI = 0.965,
RMSEA = 0.030]. Greater increase in GAD severity significantly
predicted future decline in set-shifting (accuracy: b =−0.005,
p < 0.001, d =−0.51; latency: b = 0.005, p < 0.001, d = 0.96).
Table 3 elaborates on these results.

Mixing costs and GAD severity

The models demonstrated good fit for MCs [χ2(df = 13) = 6.945,
p = 0.905, CFI = 1.000, RMSEA = 0.000]. More growth in GAD

Table 2. Two bivariate dual LCS models for inhibition (indexed by accuracy and latency) and GAD symptoms

Inhibition (accuracy) and GAD

Model fit χ2 (df = 13) = 12.398, p = 0.495, CFI = 1.000, RMSEA = 0.000, AIC = 18 568.902, SABIC = 18 602.830

Parameter estimate ΔGADT1−T2→ΔINHAT2−T3 MDDT1→ΔINHAT2−T3

Within-person bivariate coupling effects (δ) b (S.E.) Cohen’s d b (S.E.) Cohen’s d

−0.006*** (0.000) −0.61 0.016 (0.009) 0.07

Inhibition (accuracy) GAD

b (S.E.) Cohen’s d b (S.E.) Cohen’s d

Between-person initial status

Mean (S.E.) −0.001 (0.019) −0.00 2.855*** (0.016) 6.34

Variance (S.E.) 0a 0.112*** (0.010) 0.40

Between-person constant change (α)

Mean (S.E.) −0.013 (0.022) −0.02 −0.017 (0.011) 0.06

Variance (S.E.) 0a 0a

Residual variance

s2
e 1.002*** (0.101) 0.36 0.15*** (0.007) 0.73

s2
e(T1 INHA − T2 INHA correlation) 0.182*** (0.037) 0.18

Between-person INHA – GAD correlation, b (S.E.) 0.007 (0.015) 0.02

Inhibition (latency) and GAD

Model fit χ2 (df = 12) = 39.081, p < 0.001, CFI = 0.968, RMSEA = 0.030, AIC = 3591.361, SABIC = 3628.116

Parameter estimate ΔGADT1−T2→ΔINHLT2−T3 MDDT1→ΔINHLT2−T3

Within-person bivariate coupling effects (δ) b (S.E.) Cohen’s d b (S.E.) Cohen’s d

0.003*** (0.000) 0.59 0.003 (0.003) 0.03

Inhibition (latency) GAD

b (S.E.) Cohen’s d b (S.E.) Cohen’s d

Between-person initial status

Mean (S.E.) 0.931*** (0.004) 8.54 2.855*** (0.016) 6.35

Variance (S.E.) 0.057*** (0.007) 0.31 0.112*** (0.010) 0.40

Between-person constant change (α)

Mean (S.E.) 1.239*** (0.007) 6.61 −0.017 (0.011) −0.06

Variance (S.E.) 0a 0a

Residual variance

s2
e 0.039*** (0.001) 0.89 0.149*** (0.007) 0.73

s2
e(T1 INHL− T2 INHL correlation), b (S.E.) 0.027*** (0.002) 0.59

Between-person INHL – GAD correlation, b (S.E.) −0.000 (0.003) −0.00

b, unstandardized parameter estimates; S.E., standard error; INHA, inhibition accuracy; INHL, inhibition latency; GAD, generalized anxiety disorder; MDD, major depressive disorder; CFI,
confirmatory fir index; RMSEA, root mean square error of approximation; AIC, Akaike information criteria; SABIC, sample-adjusted Bayesian information criteria.
aParameter estimate was fixed to 0 to facilitate model convergence.
***p < 0.001.
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severity substantially predicted future increase in MCs (b = 0.005,
p < 0.001, d = 0.54). Table 4 expands on this set of findings.
Online Supplementary Table S1 presents between-person descrip-
tive statistics of study variables.2

Discussion

To our knowledge, this empirical study was the first to examine
how naturalistic within-person 9-year change in GAD severity

predicted future 9-year change in EF components in
community-dwelling adults. Analyses revealed that within-person
increased GAD severity predicted subsequent reduced inhibition,
set-shifting, and MCs with moderate-to-large effects. Of note is
that results cannot be explained by between-person variance,
prior EF or MDD, measurement error, or regression to the
mean. Also, as opposed to the current within-person findings,
prior between-person research found small, null, or even positive
relationships between EF and GAD severity (see Leonard &

Table 3. Two bivariate dual LCS models for set-shifting (indexed by accuracy and latency) and GAD symptoms

Set-shifting (accuracy) and GAD

Model fit χ2 (df = 13) = 24.982, p = 0.023, CFI = 0.970, RMSEA = 0.022, AIC = 18 607.870, SABIC = 18 641.797

Parameter estimate ΔGADT1−T2→ΔSETAT2−T3 MDDT1→ΔSETAT2−T3

Within-person bivariate coupling effects (δ) b (S.E.) Cohen’s d b (S.E.) Cohen’s d

−0.005*** (0.000) −0.51 0.003 (0.010) 0.01

Set-Shifting (Accuracy) GAD

b (S.E.) Cohen’s d b (S.E.) Cohen’s d

Between-person initial status

Mean (S.E.) −0.002 (0.019) −0.00 2.855*** (0.016) 6.34

Variance (S.E.) 0a 0.112*** (0.010) 0.39

Between-person constant change (α)

Mean (S.E.) −0.004 (0.022) 0.01 −0.017 (0.011) −0.05

Variance (S.E.) 0a 0a

Residual variance

s2
e , b (S.E.) 1.001*** (0.053) 0.69 0.149*** (0.007) 0.73

s2
e(T1 SETA− T2 SETA correlation), b (S.E.) 0.124*** (0.028) 0.16

Between-person SETA – GAD correlation, b (S.E.) 0.004 (0.016) 0.02

Set-shifting (latency) and GAD

Model fit χ2 (df = 12) = 39.819, p < 0.001, CFI = 0.965, RMSEA = 0.030, AIC = 6962.532, SABIC = 6999.287

Parameter estimate ΔGADT1−T2→ΔSETLT2−T3 MDDT1→ΔSETLT2−T3

Within-person bivariate coupling effects (δ) b (S.E.) Cohen’s d b (S.E.) Cohen’s d

0.005*** (0.000) 0.96 0.001 (0.004) 0.00

Set-shifting (latency) GAD

b (S.E.) Cohen’s d b (S.E.) Cohen’s d

Between-person initial status

Mean (S.E.) 1.171*** (0.006) 7.20 2.855*** (0.016) 6.34

Variance (S.E.) 0.058*** (0.016) 0.13 0.112*** (0.010) 0.39

Between-person constant change (α)

Mean (S.E.) 1.495*** (0.009) 6.17 −0.017 (0.011) −0.05

Variance (S.E.) 0a 0a

Residual variance

s2
e , b (S.E.) 0.102*** (0.010) 0.36 0.149*** (0.007) 0.73

s2
e(T1 SETL− T2 SETL correlation), b (S.E.) 0.049*** (0.005) 0.37

Between-person SETL – GAD correlation, b (S.E.) 0.001 (0.004) 0.01

b, unstandardized parameter estimates; S.E., standard error; SETA, set-shifting accuracy; SETL, set-shifting latency; GAD, generalized anxiety disorder; MDD, major depressive disorder; CFI,
confirmatory fit index; RMSEA, root mean square error of approximation; AIC, Akaike information criteria; SABIC, sample-adjusted Bayesian information criteria.
aParameter estimate was fixed to 0 to facilitate model convergence.
***p < 0.001.
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Abramovitch, 2019 and online Supplementary Table S1). This is
consistent with prior studies showing little relationships between
within and between person findings (Fisher et al., 2018).
Developmental affective neuroscience (Beaudreau et al., 2013)
and scar theories (Ottaviani et al., 2016) may help explain these
findings.

Why did 9-year increase in GAD severity predict greater future
9-year reductions in inhibition and set-shifting accuracy? Such data
lend further weight to scar theories, which propose and show that
heightened (v. lowered) anxiety severity creates a long-term effect
on allostatic load and thus predicts cognitive impairment, even
across long periods (e.g. 10–17 years; Gimson, Schlosser,
Huntley, & Marchant, 2018). On that note, long-term impact of
chronic worry on allostatic load may effect cardiovascular and
neurobiological changes in septo-hippocampal areas and left
amygdala-ventral medial prefrontal cortex connectivity, thereby
contributing to EF decline across multiple decades (Johansson
et al., 2010, 2013; Makovac et al., 2016; Thurston, Kubzansky,
Kawachi, & Berkman, 2006). Importantly, these regions have
been viewed as crucial for effective emotion regulation
(Carnevali, Thayer, Brosschot, & Ottaviani, 2018). Taken together,
worry-induced long-term physiological changes (e.g. reduced heart
rate variability, increased cortisol release in the hypothalamic–pitu-
itary–adrenal axis) could have compromised emotion regulation
skills and adversely affected EF capacities across decades.

Results that rise in GAD severity predicted elevated inhibition
and shifting latencies as well as MCs might mean that increased
GAD leads to more inefficiencies or uncertainty about responses
over time. The long-term effect of chronic worry on allostatic load
might impact biomarkers that reinforce the GAD severity-slower
latencies relationship and raise the tendency to mind wander
(Makovac et al., 2019). Further, results fit with other studies

using LCS models and showing that decreased sense of well-being
predicted larger decline in perceptual speed across 13 years in
older adults (Gerstorf, Lövdén, Röcke, Smith, & Lindenberger,
2007). In addition, findings aligned with other LCS-based data
that older adults’ rise in depressive symptoms predicted future
reduced perceptual speed over 15 years (Bielak, Gerstorf, Kiely,
Anstey, & Luszcz, 2011). Overall, increased allostatic load prob-
ably co-occurred with compensatory tactics (e.g. effortful process-
ing) that compromised speed across time. More longitudinal
studies can shed light on the validity of these conjectures.

Study limitations merit consideration. First, as the MIDUS
project did not measure baseline EF, we could not test if change
in EF predicted later change in GAD symptoms, which could
have been examined using the bivariate dual LCS models had
the data been present. This is a tenable hypothesis as research sug-
gests that EF capacities are needed to regulate emotions optimally
(Teper, Segal, & Inzlicht, 2013). Moreover, research suggests that
EF issues can independently predict future GAD, and both EF
problems and GAD symptoms can aggravate one another longitu-
dinally (Zainal & Newman, 2018). Prospective studies could
explore this. Also, despite controlling for baseline MDD symp-
toms, non-worry-specific rise in other disorder symptoms
might predict EF decline (Stordal et al., 2005) and it is possible
that our findings are not specific to GAD. Similarly, upcoming
studies can determine if the effects of heightened worry extend
to other forms of EF excluded here. In addition, future research
should test these predictions in heterogeneous samples given
the lack of socio-economic and ethnic diversity herein.
Replication efforts with DSM-5-diagnosed (v. DSM-III-R used
in this study) are also needed. Differences in symptom duration
(past 6-month v. 12-month) and the replacement of unrealistic
worry by uncontrollable worry might alter findings. Moreover,

Table 4. Bivariate dual LCS models for MCs (a measure related to common EF) and GAD symptoms

Mixing costs and GAD

Model fit χ2 (df = 13) = 6.945, p = 0.905, CFI = 1.000, RMSEA = 0.000, AIC = 18 192.889, SABIC = 18 226.816

Parameter estimate ΔGADT1−T2→ΔMCT2−T3 MDDT1→ΔMCT2−T3

Within-person bivariate coupling effects (δ) b (S.E.) Cohen’s d b (S.E.) Cohen’s d

0.005*** (0.000) 0.54 −0.002 (0.008) −0.01

Mixing costs GAD

b (S.E.) Cohen’s d b (S.E.) Cohen’s d

Between-person initial status

Mean (S.E.) 0.003 (0.019) 0.01 2.855*** (0.016) 6.34

Variance (S.E.) 0a 0.112*** (0.010) 0.39

Between-person constant change (α)

Mean (S.E.) 0.007 (0.022) 0.01 −0.017 (0.011) 0.05

Variance (S.E.) 0a 0a

Residual variance

s2
e , b (S.E.) 1.007*** (0.151) 0.24 0.149*** (0.007) 0.73

s2
e (T1 MC− T2 MC correlation), b (S.E.) 0.282 (0.041) 0.07

Between-person MC – GAD correlation, b (S.E.) 0.003 (0.014) 0.01

b, unstandardized parameter estimates; S.E., standard error; EF, executive functioning; GAD, generalized anxiety disorder; MDD, major depressive disorder; CFI, confirmatory fit index; RMSEA,
root mean square error of approximation; AIC, Akaike information criteria; SABIC, sample-adjusted Bayesian information criteria.
aParameter estimate was fixed to 0 to facilitate model convergence.
***p < 0.001.
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results could change if extensive (v. brief) EF tests were used.
Relatedly, retrospective symptom reporting likely added recall
biases to the measurement process. Complementing self-reports
with assessments that tapped into present or past few
day symptoms could have remedied such issues. Additionally,
unmeasured third variables (e.g. genetic factors heightening risk
for future EF decline and increased worry; Lee et al., 2008) may
have affected the results, and merit further study. Nonetheless,
chief strengths of this paper include the large sample size,
18-year study period, use of reliable and valid EF and symptom
assessments, and test of longitudinal measurement equivalence
prior to analyses.

With all that said, if future studies were to replicate this set
of results, it might suggest that treatments meant to target
GAD symptoms could generalize beyond those symptoms to
prevent future executive dysfunction decline. Encouragingly,
data pooled across 17 non-randomized and randomized con-
trolled trials (RCTs) have shown that mindfulness-based inter-
ventions (MBIs) could both reduce worry and augment WM
and inhibition (Chiesa, Calati, & Serretti, 2011). Nonetheless,
most MBIs were tested in healthy populations, and only one
study so far offered preliminary evidence that its benefits
could extend to habitual worriers (Wetherell et al., 2017).
Also, as initially suggested by two recent RCTs (Course-Choi,
Saville, & Derakshan, 2017; Grol et al., 2018), the field might
profit from more studies determining the short- and long-term
efficacy of cognitive-behavioral therapy and various forms of
cognitive training on both worry symptoms and unique EF
domains. Plausibly, successfully reducing excessive worry either
through tried-and-tested or novel methods might generalize to
other symptoms and EF issues, and offer another potential
avenue for future research.
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