Evaluating the Construct Validity of Ryff’s Scales of Psychological Well-Being Using Exploratory Structural Equation Modeling

Hsien-Yuan Hsu¹, Tze-Li Hsu², KoFan Lee¹, and Lori Wolff¹

Abstract
The purpose of this study was to evaluate the construct validity of Ryff’s Scales of Psychological Well-Being (SPWB) using exploratory structural equation modeling (ESEM). The data were drawn from the national survey of Midlife in the United States conducted during 1994 and 1995. Measurement models assuming different number of factors (1-6 factors) and considering the effect of negatively wording items were specified and compared to determine optimal number of underlying factors. The discriminant validity was assessed following Farrell’s suggestions. The results showed the discriminant validity was questionable due to five indicators with considerable cross-loadings.

Keywords
construct validity, exploratory structural equation modeling, psychological well-being

Ryff’s Scales of Psychological Well-Being (SPWB) embrace six dimensions of positive functioning (Ryff, 1989)—autonomy (AU), environmental mastery (EM), personal growth (PG), positive relations (PR), purpose in life (PL), and self-acceptance (SA). The stability of these dimensions was supported by substantive studies across the last two decades (Ryff, 2014). Previous researchers have relied on exploratory factor analysis (EFA; Kafka & Kozma, 2002) or confirmatory factor analysis (CFA; Lindfors, Berntsson, & Lundberg, 2006; Ryff & Keyes, 1995; Springer & Hauser, 2006) to investigate SPWB’s factorial structure. However, EFA and CFA are sometimes inappropriate to multidimensional scales; therefore, the findings of aforementioned studies can be misleading (Marsh, Liem, Martin, Morin, & Nagengast, 2011). More specifically, EFA assumes unique variances are independent, while unique variances of negatively wording items of SPWB are dependent (Springer & Hauser, 2006). CFA does not assume independent unique variances, but researchers often constrain cross-loadings to zero, resulting in poor goodness-of-fit to the data and inflated inter-factor correlations that can undermine discriminant validity (Asparouhov & Muthén, 2009; Hsu, Skidmore, Li, & Thompson, 2014; Marsh et al., 2011).

¹University of Mississippi, University, MS, USA
²Sam Houston State University, Huntsville, TX, USA

Corresponding Author:
Hsien-Yuan Hsu, Department of Leadership and Counselor Education, University of Mississippi, 49 Rebel Drive, 103 Guyton Hall, University, MS 38677, USA.
Email: hhsu2@olemiss.edu
Exploratory structural equation modeling (ESEM) is a more appropriate method for evaluating the construct validity of SPWB. ESEM integrates positive features of EFA and CFA (Asparouhov & Muthén, 2009; Marsh, Morin, Parker, & Kaur, 2014). ESEM tends to show a better model-data fit and more accurate estimates of inter-factor correlations compared with CFA (Marsh et al., 2011; Marsh et al., 2014). ESEM has been recently applied to investigate the construct validity of multidimensional scales in psychological (e.g., Booth & Hughes, 2014; Vazsonyi, Ksinan, Mikuska, & Jiskrova, 2015) and educational (e.g., Caro, Sandoval-Hernández, & Lüdtke, 2014; Marsh et al., 2013) studies. The purpose of this study was to evaluate the construct validity of SPWB using ESEM. Specifically, models with different number of factors (1-6 factors) and a method factor associated with negatively wording items were specified and compared to determine an optimal number of factors. We then assessed the discriminant validity following Farrell’s (2010) suggestions.

Method

Data

The data were drawn from the national survey of Midlife in the United States (MIDUS) conducted during 1994 and 1995 (N = 3,487). Participants who did not complete SPWB were excluded, resulting in 3,014 participants, of which 48.5% were males, 87.72% Caucasian, and the average age was 47.07 years (SD = 13.19 years).

Measures

In MIDUS, each dimension is measured by three 7-point Likert-type items (see the appendix), where at least one item is negatively worded. Following Springer and Hauser’s (2006) study, the category *do not know* was recoded as missing, and the remaining categories were recoded from 1 to 6, where a larger number represented a stronger agreement with the items’ description. Responses on the negatively wording items were reverse coded. Our preliminary analysis showed that those analytical items were mildly skewed (skewness ranged from −0.032 to −1.855), which can be appropriately handled by the robust weighted least squares estimator described as following (Lei, 2009).

Data Analysis

Seven models were specified—*Model1* to *Model6* assumed one to six factors, respectively, while *Model7* added a method factor associated with negatively worded items to *Model6*. Data were analyzed in ordinal-scale using a robust weighted least squares estimator in Mplus, namely, a mean- and variance-adjusted weighted least squares (WLSMV) estimator. We adopted the pairwise deletion approach accommodated in WLSMV estimator to handle missing data (Asparouhov & Muthén, 2010). The rotation method of ESEM was Geomin (Asparouhov & Muthén, 2009). The model fit was evaluated by χ² statistics and fit indices—comparative fit index (CFI), Tucker–Lewis index (TLI), and root mean square error of approximation (RMSEA) with cutoff values (e.g., CFI, TLI ≥ 0.95; RMSEA ≤ 0.06) recommended by Hu and Bentler (1999). χ² difference (Δχ²) tests were conducted to compare relative fit of nested models that are differed in number of factors (e.g., five-factor model vs. six-factor model). The 90% confidence interval (CI) of RMSEA was also examined for model comparison (Preacher, Zhang, Kim, & Mels, 2013).

Discriminant validity. We compared the average variance extracted (AVE) of each factor with the shared variance between factors (Farrell, 2010). The factor’s AVE is the average amount of squared factor loadings of its indicators, while shared variance is the squared correlation between
Discriminant validity is supported when the AVE for any two factors is larger than the maximum shared variance.

Results and Discussion

Model1 had the worst goodness of fit, $\chi^2(\text{df}) = 8,203.860 (135)$, $p < .05$; CFI = 0.718, TLI = 0.680, RMSEA = 0.141. Models with an increasing number of factors (Model2-Model6) showed better goodness of fit. Model6 performed statistically better than all other five models, $\chi^2(\text{df}) = 680.824 (60)$, $p < .05$, CFI = 0.978, TLI = 0.945, RMSEA = 0.059. These results indicated that there were six substantive factors. Compared with Model6, Model7 added an additional method factor to account for negatively wording items. This model demonstrated an adequate fit, $\chi^2(\text{df}) = 185.836 (52)$, $p < .05$, CFI = 0.994, TLI = 0.981, RMSEA = 0.034, and fit significantly better than Model6 with $\Delta\chi^2(\text{df}) = 357.961 (8)$, $p < .05$ and non-overlapping 90% CI of RMSEA, Model6 = [0.055, 0.063]; Model7 = [0.030, 0.039]. Therefore, Model7 was chosen as the optimal model.

Table 1 presents the correlations (SE) and shared variances between factors in Model7.

<table>
<thead>
<tr>
<th>Factor</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Autonomy</td>
<td>—</td>
<td>.238</td>
<td>.135</td>
<td>.032</td>
<td>.020</td>
<td>.127</td>
</tr>
<tr>
<td>2. Environmental mastery</td>
<td>.488 (0.020)*</td>
<td>—</td>
<td>.184</td>
<td>.081</td>
<td>.044</td>
<td>.367</td>
</tr>
<tr>
<td>3. Personal growth</td>
<td>.367 (0.023)*</td>
<td>.429 (0.023)*</td>
<td>—</td>
<td>.024</td>
<td>.055</td>
<td>.114</td>
</tr>
<tr>
<td>4. Positive social relationships</td>
<td>.180 (0.034)*</td>
<td>.284 (0.037)*</td>
<td>.156 (0.038)*</td>
<td>—</td>
<td>.009</td>
<td>.174</td>
</tr>
<tr>
<td>5. Purpose in life</td>
<td>.140 (0.030)*</td>
<td>.210 (0.033)*</td>
<td>.235 (0.040)*</td>
<td>−.093 (0.098)</td>
<td>—</td>
<td>.208</td>
</tr>
<tr>
<td>6. Self-acceptance</td>
<td>.356 (0.022)*</td>
<td>.606 (0.025)*</td>
<td>.337 (0.024)*</td>
<td>.417 (0.067)*</td>
<td>.456 (0.050)*</td>
<td>—</td>
</tr>
</tbody>
</table>

Note. Lower diagonal contains correlations (SE) between factors; upper diagonal contains shared variances. *$p < .05$.

Our results supported that there were six substantive factors, which is in line with previous studies using CFA (e.g., Lindfors et al., 2006; Ryff & Keyes, 1995; Springer & Hauser, 2006) but against one study using EFA (Kafka & Kozma, 2002). However, our study revealed smaller magnitudes of inter-factor correlation compared with previous CFA studies. For instance, in a comparable study analyzing the same data as the current study, Springer and Hauser (2006) found that all inter-factor correlations were above .763 (see Table 7 in their study) after controlling for method effects (e.g., negative wording items). Other studies using CFA also reported similar findings—high inter-factor correlations of SPWB (e.g., Lindfors et al., 2006). The above findings are echoed by prior studies indicating inappropriately forcing cross-loadings to zero led to inflated inter-factor correlations (Asparouhov & Muthén, 2009; Marsh et al., 2009). Note that the factor structure of SPWB derived from the ESEM in the current study cannot be overgeneralized to other populations, and future studies are needed to cross-validate our findings.

Discriminant Validity

The estimated inter-factor correlations from Model7 were all positive except for correlation between PR and PL (−.093, $p > .05$). The magnitudes of factor correlation ranged from −.093 to .606, resulting in shared variances ranging from .009 to .367. Table 2 presents pattern coefficients of each indicator and AVE (ranging from .184 [PR] to .536 [SA]) for each factor. Three factors
(EM, PR, and PL) had AVE lower than the maximum shared variance, which can be an evidence of lack of discriminant validity of SPWB (Fornell & Larcker, 1981).

Lack of discriminant validity may be attributable to five problematic indicators (EM2, PG3, PR2, PR3, and PL2, highlighted in Table 2). For example, PG3 had a small loading on the target factor PG (.209) but a large cross-loading on factor PL (.695). The variances of these problematic indicators were not mainly explained by the corresponding theory-driven factors. Similarly, Clarke, Marshall, Ryff, and Wheaton (2001) also identified four problematic SPWB indicators, and three of them (i.e., EM2, PR2, and PL2) were also found in the current study. As suggested by Clarke et al., all problematic indicators need to be modified or replaced.

Taken together, the factorial structure of SPWB determined by ESEM included six underlying factors with small to moderate inter-factor correlations, a method factor associated with negatively worded item, and five problematic indicators. Problematic indicators led to lower AVE of three

Appendix

Wording and Order of Items in MIDUS.

<table>
<thead>
<tr>
<th>Construct</th>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU</td>
<td>AU1</td>
<td>"I tend to be influenced by people with strong opinions." (N)</td>
</tr>
<tr>
<td></td>
<td>AU2</td>
<td>"I have confidence in my own opinions, even if they are different from the way most other people think."</td>
</tr>
<tr>
<td></td>
<td>AU3</td>
<td>"I judge myself by what I think is important, not by the values of what others think is important."</td>
</tr>
</tbody>
</table>

(continued)
factors (EM, PR, and PL) and contributed to the lack of discriminant validity of SPWB. Researchers should be cautious in interpreting the scores measured by these problematic indicators.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

References

