Working, parenting and work-home spillover: Gender differences in the work-home interface across the life course

Katherine Y. Linb,c, Sarah A. Burgardb

a Dartmouth College, 105 Silsby Hall, Hanover, NH 03755, United States
b University of Michigan, Ann Arbor, United States

corresponding author. katherine.y.p.lin@dartmouth.edu (K.Y. Lin).

ABSTRACT

In this study, we bring a life course approach to work-family research and ask how work-home spillover changes as men and women move through different parenting stages. We use two waves of the Mid-Life in the United States Study (MIDUS I and II, 1996–2004, N = 1319) and estimate change-score models to document the association between five parenting transitions (becoming a parent, starting to parent a school-aged child, an adolescent, young adult, or adult child) and changes in both positive and negative work-to-home (WHS) and home-to-work (HWS) spillover, testing for gender differences in these associations. We find that moving through parenting stages is related to within-person changes in reports of work-home spillover, and that mothers and fathers encounter changes in spillover at different points in the life course. Our findings detail how transitions through parenthood produce a gendered life course, and speaks to the need for policies to support working parents throughout the life course.

1. Introduction

While once considered “separate spheres”, work and family domains are now more interconnected than ever before (Greenhaus & Beutell, 1985; Voyer, 2002). In the U.S., several demographic trends have shaped the work-family experience of adults, such as the rise of women’s, and particularly mothers’, labor force participation (Goldin, 2006), the increased financial need for families to have dual earners (Warren & Tyagi, 2004), and increased fathers’ involvement in family life and childrearing (Kauffman, 2013; Sayer, 2005). Consequently, more men and women now must simultaneously juggle responsibilities as both parents and employees. Research documenting how individuals combine these social roles has resulted in an extensive empirical literature, examining variation in work-family experiences, as well as their consequences for individual and family well-being (Bianchi & Milkie, 2010).

Much of this research has focused on the transition to parenthood and the experience of parenting young children as moments in the life course that perturb the work-family ecosystem (Bianchi & Milkie, 2010; Martinengo, Jacob, & Hill, 2010). Yet, though the transition into parenthood can present initial challenges to maintaining paid employment, parenting is a life-long role. As children age from infancy to adolescence, parents are continually navigating their roles as mothers and fathers. The meaning and responsibilities of being a parent change, as does the compatibility (or lack thereof) with paid employment. Examining the work and family experiences of only new parents truncates our understanding of parenthood, and ultimately of the work-home interface. Thus, in this article, we strive to broaden our understanding of how working and parenting shape the lives of working parents as they transition across multiple parenting stages. In doing so, we answer the recent call by other work-family and life course scholars to integrate a life course perspective into work-family research (Bianchi & Milkie, 2010; Demerouti, Peeters, & van der Heijden, 2012).

In particular, working parents experience both conflict and hardship as well as rewards and enjoyment, with the balance between the two potentially varying greatly across the life course. During some stages of parenthood, it may be easier to combine parenting and work responsibilities, whereas at other stages it could be more difficult. To capture such ebbs and flows, we study four measures of work-home spillover, defined as the degree to which work positively or negatively influences home, and vice versa (Greenhaus & Beutell, 1985; Greenhaus & Powell, 2006). Work-home spillover is a direct measure of the experience of combining worker and family roles, assessing the degree to which these roles are conflicting or enriching (Goode, 1960; Marks, 1977; Sieber, 1974). Spillover measures have been extensively studied in the work-family literature (for a review of negative spillover see Michel, Kotbrba, Mitchelson, Clark, & Baltes, 2011 and of positive spillover see Crain & Hammer, 2013) but rarely have studies examined both positive and
negative dimensions of spillover. Moreover, many studies focus on a broad range of antecedents to spillover, treating parenthood as mostly a control variable (Martinengo et al., 2010). We contend that a multi-dimensional focus on spillover is important for understanding the work-family experiences of working parents across the life course. For example, earlier stages of parenthood might be associated with increases in negative spillover, as launching a career and building a family can pull one in different directions. However, later stages of parenthood might be characterized by more harmony between working and parenting roles (Rantamaki, Kinnunen, Pulkkinnen, & Kokko, 2012). Spillover is also related to health and well-being. Prior research has documented robust associations with depression (Grzywacz & Bass, 2003), psychological distress (Kelloway, Gottlieb, & Barham, 1999) self-rated health (Frone, Russell, & Barnes, 1996) and health behaviors like physical activity and tobacco/alcohol use (Allen & Armstrong, 2005; Grzywacz & Bass, 2003). This makes studying all four dimensions of spillover crucial to the broader goal of maintaining and improving the health and well-being of working parents.

Moreover, what it means to be a good worker or parent is deeply embedded in our notions of femininity and masculinity (Blair-Loy, 2003; Hochschild, 2012). Scholars have suggested that mothers may be more susceptible to norms of “intensive parenting”, and that the mother identity is particularly inflexible, such that balancing paid labor and mother responsibilities can be especially difficult (Blair-Loy, 2003; Musick, Meier, & Flood, 2016). However, recent fatherhood research suggests that fathers are facing increasing pressures to be more involved in their children’s lives, in addition to being breadwinners, resulting in greater work-family conflict (Kaufman, 2013; Nomaguchi, 2009; Williams, 2010). Yet, our empirical knowledge of gender differences in how the relationship between parenting and work-home spillover ebbs and flows over the life course is thin. Prior research suggests that mothers experience more negative spillover than fathers during initial stages of parenthood, and that this gender gap declines as children age (Hill, 2005; Martinengo et al., 2010; Nomaguchi, 2009). But we know far less about how positive spillover can change differently for men and women across the life course (Crain & Hammer, 2013). In order to better understand how gender differences at interface of work and home shift across the life course, we examine patterns of positive and negative spillover for working mothers and fathers.

We analyze data from two waves of the Mid-Life in the United States Study (MIDUS I and II) to examine within-person changes in both positive and negative work-home spillover by gender and parental stage, indexed by oldest child’s age. Much of prior research has utilized cross-sectional data, which is subject to unobserved selection into working conditions and parenthood that could bias results. We improve on prior research by capitalizing on two waves of data and estimating change-score models to describe the association between changes in spillover and changes in parenting stages. We also test for significant gender interactions to determine whether men and women going through similar parenting transitions report different changes in spillover.

2. Role theories and work-home spillover

The concepts of positive and negative work-home spillover arise from theories of how individuals experience multiple social roles, such as those of parent, spouse, and worker. A role conflict perspective, rooted in a “scarcity” hypothesis, suggests individuals have fixed time and energy. Thus, taking on multiple social roles can lead to tension, as the demands of different roles, by definition, will not overlap entirely, and will compete for an individual’s limited time and energy (Goode, 1960). This idea finds particular applicability in work-family research, as work and family each can be seen as “greedy institutions” that make “total claims” on individuals, demanding full loyalty and undivided attention (Coser, 1974). Working parents may thus perceive their work and home lives as competing for limited time and energy, such as when stress from a work deadline means they are unable to pay attention to their children.

Conversely, a role enhancement perspective highlights the possibility that rather than depleting individuals of scarce or fixed resources, one social role may serve to enhance the experience of another social role. One role might provide resources, such as material wealth or access to social networks, which can be used to enhance performance in the other role (Sieber, 1974). Taking on multiple social roles may also generate a positive, synergistic energy, which could enhance the performance of each role (Marks, 1977). For example, having a steady job could improve perceived ability to parent by providing additional resources for the child, or a good day at work could lead to increased energy and patience to deal with matters at home.

Work-home spillover can be bi-directional, with work having the potential to spill over into home, and vice versa. For example, while a work deadline can deplete one’s ability to spend time with their children, resulting in negative work-to-home spillover (WHS), it is also possible that a hectic morning getting children ready for school prevents one from getting to work on time, resulting in perceptions of negative home-to-work spillover (HWS). Spending time with children at home could leave one relaxed and rejuvenated for the following day’s work-related activities, resulting in perceptions of positive home-to-work spillover (HWS). Prior work has shown that these four constructs, negative and positive WHS and HWS, exhibit low correlations with each other (Aryee, Srinivasas, & Tan, 2005; Gryzwacz & Marks, 2000; Lu, Sia, Spector, & Shi, 2009), demonstrating that each represents a unique experience. Yet, only a few studies have considered all four constructs. We contend that in order to develop a fuller understanding of how taking on multiple roles can shape individual well-being, including adjudicating between role conflict and role enhancement perspectives, we need to examine all four measures of spillover.

3. Applying a life course perspective to work-home spillover: the role of parenting stages

While role theories provide a foundation for understanding how different social roles can shape individual well-being, the meanings of being a parent or being a worker are not uniform across adulthood. Thus, a life course perspective is useful in deepening our understanding of how men and women experience multiple social roles as lives develop and unfold over time. A life course perspective frames social roles as being embedded within the larger life course project of an individual, with transitions between identities and social roles as important moments in a developmental life course trajectory (Elder, Johnson, & Crosnoe, 2003). Applying a life course perspective to role theories suggests that whether and how taking on multiple social roles represents a conflicting or enriching experience depends not only on the social roles themselves, but also on when in the life course individuals enact them.

To that end, we focus on how the roles of parent and worker unfold over time. Research has shown that the responsibilities and rewards of being a parent can vary depending on whether children are infants, school-aged, adolescents, or young adults (Galinsky, 1987). While new parents and parents of toddlers may experience more time-intensive caregiving responsibilities that require significant investment in the home domain, parents of school-aged and adolescent children might encounter more scheduling difficulties as school schedules are reconciled with work schedules. Conversely, though parenting younger children might be more time intensive, it may also be more rewarding, as the close bonds formed between parents and younger children have been shown to promote parental satisfaction and psychological well-
being, compared to parental relationships with older children (Lam, McHale, & Crouter, 2012; Nomaguchi, 2012). Given that the parenting experience shifts as children age, we would expect the ways in which parents combine their work and family responsibilities to also shift over time. We thus examine patterns of work-home spillover across parenting stages, and use oldest child’s age to index the “parental learning curve”, with parents experiencing parenting stages for the first time as their oldest children age (Nomaguchi, 2012).

Additionally, we focus on within-person changes in spillover, as opposed to group differences between parents of different aged children. One of the key limitations of existing research on parenthood and work-home spillover is a reliance on cross-sectional data. Estimates from cross-sectional data rely on between-group differences (parent versus non-parent, or parent of infant versus parent of adolescent), leaving them vulnerable to bias in two ways. First, cross-sectional data cannot rule out unobserved selection into working and parenting roles. We might observe a significant association between spillover and working and parenting if those who select into being a working parent are also more likely to report higher levels of spillover due to some third, unmeasured factor. Second, comparing mean differences across parents of different-aged children does not take into account prior work-family experiences, which are likely to shape current experiences of spillover. For example, how parents fared earlier in combining their work and home roles might shape how they perceive their work and home roles to interact later in the life course. Men and women might apply different strategies to solving their work-family dilemmas, with some women more likely to scale back at work to balance with their parenting responsibilities. This heterogeneity in earlier work-family experiences could lead to very different reports of work-home spillover later, confounding the association between parenting stage and work-home spillover. To ameliorate some of these biases, we analyze within-person changes in reports of spillover.

4. Gender, parenting stages, and changes in work-home spillover

Past research on work-home spillover has not explicitly examined variation by parenting stage, though many studies account for parenthood status in some way. The most prominent approach examines how having a young child (usually preschool-aged or less than six years of age) shapes spillover (e.g. Aryee et al., 2005; Grzywacz & Marks, 2000; Hill, 2005). However, this approach groups together parents with older children and childless adults in the reference category, potentially biasing the parenthood coefficient towards the null (Nomaguchi & Fetto, 2017). These studies also tend to focus on negative, rather than positive spillover (Crain & Hammer, 2013; Greenhaus & Powell, 2006), which truncates our understanding of how parenthood shapes the full range of spillover experiences. Finally, since much of the research on gender differences in work-family experiences has focused on mothers and fathers of young children we know less about how this gender gap changes as children become adolescents and adults. A wide body of scholarship has demonstrated how parenthood reinforces a gendered division of household labor, and that mothers and fathers participate in different childcare activities (Collins & Russell, 1991; Musick et al., 2016; Sanchez & Thomson, 1997; Sayer, 2005). Such a division of childcare responsibilities could continue across the life course. We utilize past research to develop intuition for how such dynamics could shape gender differences in the way changes in parenting stage could generate changes in work-home spillover.

4.1. Becoming a parent

The bulk of prior research suggests that becoming a parent is associated with an increase in negative spillover (Grzywacz, Almeida, & McDonald, 2002; Grzywacz & Marks, 2000; Innstrand, Langballe, Espnes, Aasland, & Falkum, 2016; Wayne, Mustisca, & Fleeson, 2004; Winslow, 2005) as new parenting responsibilities could prove incompatible with work responsibilities. Prior research on the antecedents of perceived negative spillover has found that home-related characteristics are more likely to influence home-work spillover (HWS) and that work-related characteristics are more likely to influence work-home spillover (WHS) (Byron, 2005; Michel et al., 2011). Such a pattern is known as domain specificity and speaks to the ability of individuals to be able to identify the source of spillover, work or home. Domain specificity suggests that becoming a parent should be more strongly associated with a change in negative WHS compared to WHS, and there is some evidence to support this (Grzywacz et al., 2002; Grzywacz & Marks, 2000; Wayne et al., 2004). Finally, past research has found that new mothers are more likely to report higher levels of negative spillover, with the greatest gender difference in reports of negative WHS, whereas new fathers report higher levels of negative WHS (Hill, 2005; Martinengo et al., 2010; Nomaguchi, 2009). Past research thus suggests the following hypotheses for the nature of the association between becoming a parent and changes in negative spillover:

H1a. Becoming a father will be associated with an increase in negative WHS.

H1b. Becoming a mother will be associated with an increase in negative WHS.

If becoming a parent reduces the compatibility between working and family lives, then we might also expect positive spillover to decrease. Some studies have demonstrated that parents report lower levels of positive HWS, particularly for mothers compared to fathers (Grzywacz & Marks, 2000; Innstrand et al., 2010). Conversely, for men, employment could positively spillover into family if having a job made one feel better about, or enhanced the experience of being a father. As breadwinning remains a dominant activity for fathers (Kauffman, 2013; Williams, 2010), maintaining paid employment while becoming a father could thus be associated with increased positive work to home spillover. This suggests a few hypotheses regarding the relationship between becoming a parent and changes in positive work-home spillover:

H2a. Becoming a father will be associated with an increase in positive WHS (Breadwinner hypothesis).

H2b. Becoming a mother will be associated with a decrease in positive HWS.

4.2. Parenting school-aged children

As children grow older, parenting responsibilities could shift in ways that present new challenges to balancing work and parent roles. Particularly, as children enter school, parental responsibilities could change from more energy-intensive, but primarily home-based activities associated with caring for a toddler, to activities that span work and home domains as school and work schedules are reconciled. For example, Erickson, Martinengo, and Hill (2010) find parents report greater negative WHS as children reach school-age, suggesting that as children age, work may be seen as prohibiting a parent from being fully involved with their child’s developing lives, particularly in school (Erickson et al., 2010). Becoming a parent to a school-aged child could influence negative WHS if work is seen as preventing one from being fully involved in one’s parenting role. It could also influence negative HWS if increased scheduling and management responsibilities at home are seen to conflict with work responsibilities. Moreover, gendered parenting practices could continue as children enter school, with mothers more likely assuming the role of family planner and organizing children’s academic and leisure activities (Hawkins, Amato, & King, 2006). Thus the association between parenting a school-aged child and changes in negative spillover may be stronger for mothers, compared to fathers:
H3. Parenting a school-aged child is associated with an increase in negative WHS and HWS, particularly for mothers.

With respect to positive spillover, parenting a school-aged child might yield less satisfying family-based relationships as children experience growing pains, diminishing the ability for home lives to enrich work lives. Two empirical studies of positive spillover find that those with school-aged and adolescent children report lower levels of positive HWS compared to those who are childless (Gryzwacz et al., 2002), or those with younger children (Lu et al., 2009), supporting this second hypothesis. If mothers were more likely to take on the bulk of the new parenting responsibilities that comes with having a school-aged child, then we might expect the decline in positive spillover to be greater for mothers compared to fathers.

H4. Parenting school-aged children is associated with a decrease in positive WHS and HWS, particularly for mothers.

4.3. Parenting adolescent, young adult and adult children

As much of the work-family literature has focused on the experience of new parents, empirical knowledge on how parenting adolescent, young adult, and adult children can shape work-home spillover is sparse. Moreover, there has been no longitudinal research on this association, which is particularly important, as parents of adolescent and adult children’s work-home spillover may be highly dependent on prior parenting and working experiences. Thus we offer only a few hypotheses regarding the relationship between parenting older children and changes in spillover. For example, as children age into adolescence and adulthood, we might expect parents’ experience of negative WHS and HWS to decline. This is because as children age into adulthood, they become increasingly independent, which could result in a reduction of day-to-day parenting responsibilities, potentially interfering less with paid employment.

H5. Parenting adolescent, young adult, and adult children, is associated with a decrease in negative WHS and HWS, for both mothers and fathers.

Being a parent to an older child may provide a sense of fulfillment as one watches their child age and mature, and this could consequently spill over into one’s work life, providing energy (and more time) to fulfill one’s work responsibilities. However, prior research suggests that there might be gender differences in these patterns. Mothers are more likely to be involved in the day-to-day management of children’s lives, and this closeness can continue as children reach maturity and their relationships with their mothers to improve over time (Thornton, Orbuch, & Axinn, 1995). Conversely, fathers are more likely to spend time in leisure activities with their children. This could translate into more variable quality in the relationship with their children as they grow older, gain independence and leave the household (Hawkins et al., 2006). To the extent that such shifts in familial relationships spill over into parents’ work lives, this implies a possible increase in positive HWS, particularly for mothers.

H6. Parenting adolescent, young adult, and adult children is associated with an increase in positive HWS, particularly for mothers.

6. Measures

6.1. Negative and positive WHS and HWS

Perceived spillover measures were calculated from a series of survey items in the MIDUS self-administered questionnaire that assessed how often in the past year a respondent experienced a variety of ways the work or home domain could spill over into the other. Negative WHS (W1 and W2 alpha = 0.82) was assessed using the following items: 1) Your job reduces the effort you can give activities at home. 2) Stress at work makes you irritable at home. 3) Your job makes you feel too tired to do things that need attention at home. 4) Job worries or problems distract you when you are at home. Negative HWS (W1 and W2 alpha = 0.79) was assessed with the following items: 1) Responsibilities at home reduce the effort you can devote to your job. 2) Personal or family worries and problems distract you when you are at work. 3) Activities and chores at home prevent you from getting the amount of sleep you need to do your job well. 4) Stress at home makes you irritable at work. Positive WHS (W1 alpha = 0.73, W2 alpha = 0.71) was assessed with the following items: 1) The things you do at work help you deal with personal and practical issues at home. 2) The things you do at work make you a more interesting person at home. 3) Having a good day on your job makes you a better companion when you get home. 4) The skills you use on your job are useful for things you have to do at home. Positive HWS (W1 alpha = 0.68, W2 alpha = 0.71) was assessed with the following items: 1) Talking with someone at home helps you deal with problems at work. 2) Providing for

2 While some of this is probably due to respondent recall or refusal (i.e., reporting presence of children in W1 or W2, but not providing their ages, or older respondents who do not remember their children’s ages), this restriction largely drops those who gained or lost non-biological children either through adoption or relationship formation or dissolution. While this pathway into parenthood is an important and increasingly prominent one, we lack the sample size to be able to fully test associations between this kind of parenting transition and work-home spillover.
what is needed at home makes you work harder at your job. 3) The love and respect you get at home makes you feel confident about yourself at work.

4) Your home life helps you relax and feel ready for the next day’s work.

Responses to each item ranged from 1 “All the time” to 5 “Never”. We reverse-code each item such that a higher score indicated a greater amount of spillover. Measures of positive and negative WHS and HWS were calculated by taking the mean response to the four items. We used all the information provided by the respondents, and thus a spillover score was calculated for a respondent even if they did not answer all of the survey items. Less than 1% of the sample had any of their spillover scores calculated from fewer than four items, and the majority among that small group had spillover measures calculated from three items.

Similar to previous research, we find that these measures of work-home spillover capture four separate dimensions of the work-home interface. A correlation matrix (available on request) reveals that the highest correlation between the four measures is between negative WHS and negative HWS, at \(r = 0.49 \). Importantly, the correlations between measures of positive and negative spillover are close to zero, demonstrating that lack of strain between work and home does not imply that these domains are perceived as mutually enhancing.

6.2. Oldest child age and parenting transitions

We measure parenting transitions based on reports of a respondent’s oldest child’s age collected at W2, as this marks their first time making a particular transition. We consider parents whose oldest child is between the ages of 0 and 5 to have made the transition to being a new parent. We consider becoming a parent to a school-aged child as having one’s oldest child between the ages of 6-11. Having one’s oldest child’s age be between the ages of 12 and 17 years of age is considered becoming a parent to an adolescent; between 18 and 25 years of age is considering becoming a parent to a young adult; between 26 and 34 years of age is considered becoming a parent to an adult child. Respondents who report their oldest child being 35 years or older is considered to have “remained” a parent to an adult child.

Due to the almost decade long difference between W1 and W2, parents who recently underwent the transition to parenting a school-aged child are somewhat heterogeneous with respect to their W1 parenting stage – some were non-parents at W1, had a child between W1 and W2, and saw their child age to school-aged by W2 (\(N = 41 \)). Others were already parents at W1, and had their child age into older school-age by W2 (\(N = 61 \)). We test the sensitivity of our analyses by combining these two groups by estimating models where these two groups are separated. We find that the results for these two groups are substantively similar, though parents who were not parents at W1 and then became parents of school-aged children at W2 (the former category) reported greater increases in negative WHS. No differences were found for other spillover measures. Thus, we present results for parents of school-aged children at W2 grouped together, regardless of their W1 parenting status. We comment more on how this coding decision influences our findings in the results and discussion.

6.3. Potential confounders and mediators

Our models account for confounding by parent age, as well as assess to what extent our focal relationship is mediated by characteristics of other children in the household, and parent’s work hours. Older parents are more likely to have older children, and given the known age patterns of spillover, we obtain estimates of the relationship between parenting transitions and spillover net of this pattern. Respondent age was self-reported. We also estimate models that account for youngest child age, as well as whether or not a respondent gained multiple children between the two waves. Changes in oldest child’s age may be associated with changes in spillover partly due to related changes in family composition, such as having more children. Thus, our models include indicators of youngest child age, and whether or not a respondent gained 1, 2, and 3+ children (reference category = no change in total number of children). This also includes an indicator for whether or not a respondent lost a child, though such an event is relatively rare in this sample. We also estimate models that account for changes in work hours, as one reason spillover change could be associated with changes in oldest child age is that parents may adjust work hours to accommodate shifting parental responsibilities, which could lead to a change in perceptions of spillover. Work hours were ascertained by respondent self-report of total hours worked during an average week at all of their jobs. Though prior research has found a wide variety of antecedents of spillover (Crain & Hammer, 2013; Michel et al., 2011) we are interested in the relationship between parenting transitions and changes in work-home spillover rather than all determinants of spillover. Thus, we only account for the above limited number of potential confounders and mediators to minimize the risk of over controlling.

7. Analytic strategy

To model the influence of parenting transitions, we estimate change-score models predicting change in spillover between waves 1 and 2 (Allison, 1990; Johnson, 2005). The change-score model is derived when we subtract the cross-sectional model of spillover at time 1 from the parallel equation for time 2. More precisely, we can imagine that spillover at two different time points can be estimated with the following equations:

\[
Y_{1i} = \beta_0 + \beta_1 X_{1i} + \beta_2 S_i + \epsilon_{1i} \quad (1)
\]

\[
Y_{2i} = \beta_0 + \beta_1 X_{2i} + \beta_2 S_i + \epsilon_{2i} \quad (2)
\]

Eq. (1) is for time 1 and Eq. (2) is for time 2. \(Y_{1i} \) represents reported spillover at time 1 and \(Y_{2i} \) represents reported spillover at time 2, for individual \(i \). \(X \) is a dummy variable for whether or not an individual undergoes a specific parenting transition (and in the case of analyzing transitions, \(X \) is assumed to be 0 for all respondents as they have not undergone the specific transition (Johnson, 2005)). \(S \) is a series of time-constant individual-level predictors and \(e_i \) is a time-specific, individual-level, error term. We assume that the constant term and regression coefficients are the same for spillover at time 1 and time 2. When we subtract Eq. (1) from Eq. (2), we obtain the following:

\[
\begin{align*}
Y_{2i} - Y_{1i} &= \beta_1 X_{2i} + \epsilon' \\
\end{align*}
\]

This subtraction differences out time-constant individual-level variables, as well as the constant term. Importantly, this provides an estimate of the average within-person change in spillover (\(\beta_1 \)) associated with each specific parenting transition (i.e. from non-parent to new parent, from new parent to parent of a school-aged child), relative to how spillover may change for individuals experiencing other parenting transitions, over the same period of time. Implicitly, this approach estimates change in spillover relative to prior parenting stage (i.e. those parenting adolescents were all parenting schooling-aged children in the prior wave). This analytic approach also has the advantage of calculating average change that is not biased by time-invariant individual-level characteristics (such as unobserved selection into parenthood or work environments, or stable reporting bias). Estimates however are still subject to bias from unobserved time-varying characteristics. In the two-wave context, \(\beta_1 \) is equivalent to the fixed-effects pooled time-series estimator (Allison, 1990; Johnson, 2005). Thus, we estimate all of our models using the fixed-effects option in the XTREG procedure in Stata 14.1. All models are estimated with robust standard errors.
errors, accounting for clustering at the family level, to adjust for non-
random sampling of twins and siblings in the MIDUS sample.

We first estimate a model that includes only parenting transitions as
the key predictor of change in spillover, to obtain the bivariate asso-
ciation between transitions in parenting stage and changes in spillover
(M1). As parenting transitions are strongly correlated with age, in
a second model, we add a control for the respondent’s age to net out
developmental influences in changes in spillover (M2) (Rantanen et al.,
2012). If the association between parenting stages and spillover change
were due entirely to the aging process of the parents (i.e., older parents
parenting older children) we might observe a reduction of the coeffi-
cients on parenting transitions with the inclusion of this control. If as-
sociations persist with the inclusion of age, this would support the idea
that parenting transitions have a unique influence on change in spil-
lover, independent of the aging process of the parents. In a third model
we adjust model estimates for youngest child age, as well as transitions
in total number of children (M3). If model estimates decrease then it is
possible that spillover change associated with parenting transitions are
in part due to related changes in presence of younger children, or total
number of children in the household. Finally in our last model we ad-
just model estimates for changes in total work hours (M4). Parents may
make adjustments to their work schedule to accommodate family
transitions and this may be one possible mechanism for why spillover
change can change with parenting stage. Introducing these factors in a step-
wise manner allows us to estimate both the full association between
change in parent stage and change in spillover, as well as the portion
that is related to changes in family and work environments.

Utilizing a change-score approach differences out all stable, in-
dividual-level characteristics, including gender. Thus, in order to obtain
gender-specific estimates of the association between parenting stage
and spillover, we estimate two models – one for men and one for
women – for each model progression (M1–M4), and each measure of
work-home spillover (negative WHS and HWS, positive WHS and
HWS). We then estimate a third model (for each model progression and
each measure of spillover), pooling male and female samples, and in-
teracting every covariate with gender, to test whether men and women
undergoing similar parenting transitions report different changes in
spillover.

Our reference group in the multivariate models are those who re-
main childless between the two waves. As childless adults are not ex-
periencing any work-home spillover changes related to parenthood, we
consider their changes in spillover over follow up as a “baseline” level
of change to which we compare parenting transition-related changes in
the multivariate context. To assess whether the associations between
different parenting transitions and spillover differ from each other (i.e.
transition to new parent vs. transition to parenting school-aged child),
rather than from those who remain non-parents, we predict spillover
change for each parenting transition with model estimates, holding all
other variables at their means, using the “margins” command in Stata
14.1. This allows us to test for significant differences between each pair
of parenting transitions. We report any significant differences in the
text.

8. Results

Table 1 presents descriptive information about our analytic sample. On
average, negative spillover (WHS and HWS) declines slightly for
both men and women during this observation window, with men’s
scores declining faster compared to women’s (p < 0.01). Positive
spillover (WHS and HWS) increases over the same window, with no
significant gender difference. About 6% of men and 7% of women re-
main childless, while about 2% become new parents and 7–8% become
parents of school-aged children. About 11% of men and women become
parents to adolescent children, while the remainder of the sample ex-
perienced later parenting stage transitions. Slightly less than a quarter
of our sample remain parents to adult children. The average age at
baseline is in the early 40s, with men slightly older than women. The
majority of our sample do not experience change in the total number of
children they have between the two waves. However, just less than 10% gain
an additional child, and about 8% gain more than two children between
the two waves. On average, we observe declines of about 3–4
work hours for both men and women between the two waves.

Tables 2A and 2B displays characteristics of the subsamples ex-
periencing each parenting stage, separately for men and women. In
terms of average age of those in each parenting transition, we can see a
general life course pattern. There is slightly greater age variation
among those who remain never parents, with a standard deviation of
about 7 years, compared to 3–5 years for other parenting stages. Age of
respondents increases with parenting stage, with those that become
new parents, or parents of school-aged children on average younger
than those who are parenting older children (ages in the early 30 s vs.
40s). Age of youngest child also increases with parenting stage. New
parents, and parents of school-aged and adolescent children, are more
likely to gain additional children as their oldest child ages into different
different age brackets, compared to parents who have adult children. For
example, 48.2% of fathers and 32.6% of mothers who start parenting
a school-aged child also gain an additional child between the two waves.
In contrast, about 90% of mothers and fathers of young adults experi-
ence no change in the total number of children. On average, working
hours decline with parenting stage, though we see the biggest declines in
work hours among those who remain parents to adult children. This
is likely because this is the oldest group, and thus also likely to be
entering their retirement years.

We note here that our new parents are a very select, and small group
(N = 16 new fathers, N = 11 new mothers). The average age at base-
line for this group implies that many of these parents are having their

Table 1

<table>
<thead>
<tr>
<th>Variable</th>
<th>Men</th>
<th>Women</th>
<th>Gender diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in Total Number of Children</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No change</td>
<td>79.1%</td>
<td>80.3%</td>
<td></td>
</tr>
<tr>
<td>Gain 1 child</td>
<td>9.7%</td>
<td>8.4%</td>
<td></td>
</tr>
<tr>
<td>Gain 2 children</td>
<td>5.0%</td>
<td>4.3%</td>
<td></td>
</tr>
<tr>
<td>Gain 3+ children</td>
<td>3.8%</td>
<td>4.1%</td>
<td></td>
</tr>
<tr>
<td>Lost a child</td>
<td>2.5%</td>
<td>2.9%</td>
<td></td>
</tr>
<tr>
<td>Change in Total Work Hours</td>
<td>–4.32</td>
<td>–2.73</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>736</td>
<td>583</td>
<td></td>
</tr>
</tbody>
</table>

* ***p < 0.001, **p < 0.01, *p < 0.05.*
first child in their early 30s, which is relatively late in the U.S. context. Those who are parenting school-aged children have a comparable age at baseline (also in the early 30s), which this implies that many had their first child in their early to mid-20s. While we include this sample in our analyses, as becoming a new parent is a crucial parenting transition, the atypical nature of this sample suggests that we should interpret our new-parent estimates with caution. Our sample of new parents could be a selective group who have chosen to delay childbearing in order to accommodate career growth, which would have implications for their reports of work-home spillover.

Table 3 displays coefficients from change-score models of negative work-home spillover (WHS). The leftmost column starts with a bivariate association between parenting stages and negative WHS. The second column adds a control for age, the third includes youngest child age, and change in total number of children. The rightmost column starts with a bivariate model, we report a statistically significant increase in negative WHS for both mothers and fathers. This is likely due to the small and selective nature of our new parent sample. However, we observe that mothers who start to parent school-aged children report a statistically significant increase in negative WHS (β = 0.25, p < 0.05). This coefficient remains significant with the inclusion of respondent age, and but becomes insignificant with the inclusion of other child characteristics, and change in work hours. However, the point estimates do not change drastically across models, with the final model's β = 0.25.

As mentioned previously, due to our coding scheme, parents of school-aged children include two types – those who are parenting recently school-aged children (i.e. 5–8 year olds) and were childless at W1, as well as those who are parenting children in older school-ages (i.e. ages 9–12) and were already parents in W1. In analyses not shown, we find that parents in the former group drive much of this estimated increase in negative spillover. This makes intuitive sense for two reasons: first, we observe their change in spillover from being childless to parenting a school-aged child, which could be understood as undergoing two parenting transitions, and thus related to greater changes in spillover. Second, relative to parents with older school-aged children, parents with younger school-aged children are also those who have recently made the transition into parenting a school-aged child, which is also likely to be associated with higher levels of spillover. Parents who already had children in W1 were parenting older school-aged children (i.e. ages 10–12) and probably already had time to adjust to

Table 2A

<table>
<thead>
<tr>
<th>Change in # of children</th>
<th>Remain never parent</th>
<th>New Parent</th>
<th>School-aged child</th>
<th>Adolescent</th>
<th>Young Adult</th>
<th>Adult Child</th>
<th>Remain adult child</th>
</tr>
</thead>
<tbody>
<tr>
<td>No change</td>
<td>100%</td>
<td>0.00%</td>
<td>7.14%</td>
<td>65.43%</td>
<td>87.85%</td>
<td>90.91%</td>
<td>88.89%</td>
</tr>
<tr>
<td>Gain 1 child</td>
<td>31.25%</td>
<td>48.21%</td>
<td>24.69%</td>
<td>5.52%</td>
<td>3.03%</td>
<td>1.85%</td>
<td></td>
</tr>
<tr>
<td>Gain 2 children</td>
<td>43.75%</td>
<td>28.57%</td>
<td>4.94%</td>
<td>2.76%</td>
<td>1.52%</td>
<td>1.23%</td>
<td></td>
</tr>
<tr>
<td>Gain 3 + children</td>
<td>25.00%</td>
<td>16.07%</td>
<td>4.94%</td>
<td>2.21%</td>
<td>1.52%</td>
<td>2.47%</td>
<td></td>
</tr>
<tr>
<td>Lost child</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>1.66%</td>
<td>3.03%</td>
<td>5.56%</td>
<td></td>
</tr>
<tr>
<td>Change in work hours</td>
<td>−0.29</td>
<td>−1.88</td>
<td>−2.54</td>
<td>1.80</td>
<td>−2.36</td>
<td>−3.68</td>
<td>−12.23</td>
</tr>
<tr>
<td>(14.83)</td>
<td>(13.66)</td>
<td>(12.77)</td>
<td>(16.54)</td>
<td>(15.35)</td>
<td>(16.20)</td>
<td>(22.03)</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>42</td>
<td>16</td>
<td>56</td>
<td>81</td>
<td>181</td>
<td>198</td>
<td>162</td>
</tr>
</tbody>
</table>

Table 2B

<table>
<thead>
<tr>
<th>Change in # of children</th>
<th>Remain never parent</th>
<th>New Parent</th>
<th>School-aged child</th>
<th>Adolescent</th>
<th>Young Adult</th>
<th>Adult Child</th>
<th>Remain adult child</th>
</tr>
</thead>
<tbody>
<tr>
<td>No change</td>
<td>100%</td>
<td>0.00%</td>
<td>26.09%</td>
<td>73.91%</td>
<td>90.15%</td>
<td>89.12%</td>
<td>88.89%</td>
</tr>
<tr>
<td>Gain 1 child</td>
<td>72.73%</td>
<td>32.61%</td>
<td>15.94%</td>
<td>4.55%</td>
<td>2.72%</td>
<td>3.65%</td>
<td></td>
</tr>
<tr>
<td>Gain 2 children</td>
<td>27.27%</td>
<td>21.74%</td>
<td>8.70%</td>
<td>1.52%</td>
<td>1.36%</td>
<td>1.46%</td>
<td></td>
</tr>
<tr>
<td>Gain 3 + children</td>
<td>0.00%</td>
<td>19.57%</td>
<td>1.45%</td>
<td>0.76%</td>
<td>3.40%</td>
<td>5.84%</td>
<td></td>
</tr>
<tr>
<td>Lost child</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>3.03%</td>
<td>3.40%</td>
<td>5.84%</td>
<td></td>
</tr>
<tr>
<td>Change in work hours</td>
<td>−1.49</td>
<td>−2.55</td>
<td>−3.54</td>
<td>1.62</td>
<td>0.57</td>
<td>−1.54</td>
<td>−9.47</td>
</tr>
<tr>
<td>(18.41)</td>
<td>(13.82)</td>
<td>(18.21)</td>
<td>(17.63)</td>
<td>(17.90)</td>
<td>(16.97)</td>
<td>(21.05)</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>41</td>
<td>11</td>
<td>46</td>
<td>69</td>
<td>132</td>
<td>147</td>
<td>137</td>
</tr>
</tbody>
</table>
All hypothesis tests are two-tailed. **p < 0.01, *p < 0.05.

Gender differences calculated from a fully-interacted model. All hypothesis tests are two-tailed. **p < 0.01, *p < 0.05.

The transition, so we observe a smaller increase in negative spillover.

Group differences notwithstanding, this suggests that as women begin parenting school-aged children, they face an increase in friction between their work and home lives, leading to an increase in perceived negative spillover from home to work. The magnitude of the coefficient in model 2 represents a change of about two-fifths a standard deviation in change in negative HWS (0.25/0.62). Moreover, some of the association could be due to the likelihood of mothers with school-aged children having more children in the household or making adjustments to work schedules. Examining Table 2B, we see that mothers of school-aged children are more likely than other women to gain children in the household over this observation period. Interestingly, though we observe a statistical significance in our women-only models, and no association for men-only models, this gender difference is not statistically significant. This suggests that the more significant difference in changes in spillover is between mothers of different aged children (vs. women who remain childless), rather than between mothers and fathers of similarly aged children, with regards to negative HWS.

To investigate whether spillover change associated with different parenting transitions differed from each other (rather than from those of childless adults) we predicted spillover change from each model, holding other variables at their mean levels. Examining predicted change in spillover, we find that parenting a school-aged child (M2: $\beta = 0.31$) is not only different from remaining childless at the $p < 0.01$ level, but is also different from the subsequent parenting transition, parenting an adolescent (M2: $\beta = 0.06$), at the $p < 0.05$ level even when adjusting estimates for parent’s own age. This difference is reduced to insignificance with the inclusion of changes in other child characteristics and work hours. We also find that parenting a school-aged child (M4: $\beta = 0.25$) is also statistically different from parenting an adult child (M4: $\beta = -0.07$), holding age, other child characteristics and changes in work hours at their mean levels. This demonstrates how parenting a school-aged child is associated with a unique increase in negative HWS that likely declines when children enter adolescence and adulthood.

Moving ahead in the life course, we find a similar pattern in decline in negative HWS as we did for negative WHS – that parenting older children, particularly as children age into adulthood, is associated with a decline in negative spillover. However, much of this association is reduced to insignificance when accounting for parent’s own age, also similar to patterns found for negative WHS. In the unadjusted model for mothers, the decline in negative HWS starts when children become young adults. Mothers of similarly aged children do not experience a decline, and this gender difference is significant at the $p < 0.05$ level. Both mothers and fathers of adult children experience declines in negative HWS ($\beta = -0.09$, $p < 0.05$ for fathers and $\beta = -0.15$, $p < 0.01$ for mothers who start parenting an adult child). These coefficients are reduced to insignificance with the inclusion of age, which suggests that these patterns may be due to more developmental, or aging-related, processes rather than transitions in parenting stage. In comparison to the estimated change for mothers of school-aged children, later parenting stages are associated with about half the magnitude of change. This demonstrates that while negative spillover does decline later in the life course, the magnitude of the decline can be

<table>
<thead>
<tr>
<th>Parenting stage</th>
<th>Men</th>
<th>Women</th>
<th>Gender Diff</th>
<th>Men</th>
<th>Women</th>
<th>Gender diff</th>
<th>Men</th>
<th>Women</th>
<th>Gender diff</th>
<th>Men</th>
<th>Women</th>
<th>Gender diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remain never parent (ref)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Parent</td>
<td>0.11</td>
<td>-0.32</td>
<td>0.20</td>
<td>-0.28</td>
<td>-0.00</td>
<td>-0.22</td>
<td>-0.01</td>
<td>-0.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parenting school-aged child</td>
<td>0.00</td>
<td>0.11</td>
<td>0.09</td>
<td>0.14</td>
<td>-0.12</td>
<td>0.12</td>
<td>-0.12</td>
<td>0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parenting adolescent</td>
<td>-0.10</td>
<td>0.06</td>
<td>0.01</td>
<td>0.10</td>
<td>-0.14</td>
<td>0.10</td>
<td>-0.18</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parenting young adult</td>
<td>-0.13***</td>
<td>0.03*</td>
<td>-0.01</td>
<td>0.08</td>
<td>-0.17</td>
<td>0.05</td>
<td>-0.19</td>
<td>-0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parenting adult child</td>
<td>-0.14*</td>
<td>-0.05</td>
<td>0.00</td>
<td>0.01</td>
<td>-0.23</td>
<td>0.05</td>
<td>-0.25</td>
<td>-0.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remain parent to adult child</td>
<td>-0.25***</td>
<td>-0.15*</td>
<td>-0.09</td>
<td>-0.09</td>
<td>-0.40</td>
<td>0.16</td>
<td>-0.36</td>
<td>-0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age at Baseline</td>
<td>0.003</td>
<td>-0.001</td>
<td>0.003</td>
<td>-0.001</td>
<td>-0.003</td>
<td>0.001</td>
<td>-0.003</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Change in # of children</th>
<th>Men</th>
<th>Women</th>
<th>Gender Diff</th>
<th>Men</th>
<th>Women</th>
<th>Gender diff</th>
<th>Men</th>
<th>Women</th>
<th>Gender diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>No change (ref)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain 1 child</td>
<td>0.16</td>
<td>-0.05</td>
<td>0.15</td>
<td>-0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain 2 children</td>
<td>0.12</td>
<td>-0.09</td>
<td>0.12</td>
<td>-0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain 3 or more children</td>
<td>0.36***</td>
<td>0.28</td>
<td>0.36*</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lost child</td>
<td>-0.08</td>
<td>-0.01</td>
<td>-0.13</td>
<td>-0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Youngest child age</td>
<td>0.010</td>
<td>0.002</td>
<td>0.010*</td>
<td>0.005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Change in work hours</th>
<th>Men</th>
<th>Women</th>
<th>Gender Diff</th>
<th>Men</th>
<th>Women</th>
<th>Gender diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in work hours</td>
<td>0.01***</td>
<td>0.01***</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N</th>
<th>736</th>
<th>583</th>
<th>736</th>
<th>583</th>
<th>736</th>
<th>583</th>
<th>736</th>
<th>583</th>
</tr>
</thead>
<tbody>
<tr>
<td>r2</td>
<td>0.054</td>
<td>0.018</td>
<td>0.056</td>
<td>0.018</td>
<td>0.067</td>
<td>0.025</td>
<td>0.101</td>
<td>0.077</td>
</tr>
</tbody>
</table>

Table 3
Coefficients and standard errors from change-score models of negative WHS, MIDUS I and II (1996–2004), N = 1319.

MID: Bivariate | MID + Age | MID + Age + Other child vars | MID + Age + Other Child Vars + Work hrs

<table>
<thead>
<tr>
<th>Parenting stage</th>
<th>Men</th>
<th>Women</th>
<th>Gender Diff</th>
<th>Men</th>
<th>Women</th>
<th>Gender diff</th>
<th>Men</th>
<th>Women</th>
<th>Gender diff</th>
<th>Men</th>
<th>Women</th>
<th>Gender diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remain never parent (ref)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Parent</td>
<td>0.11</td>
<td>-0.32</td>
<td>0.20</td>
<td>-0.28</td>
<td>-0.00</td>
<td>-0.22</td>
<td>-0.01</td>
<td>-0.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parenting school-aged child</td>
<td>0.00</td>
<td>0.11</td>
<td>0.09</td>
<td>0.14</td>
<td>-0.12</td>
<td>0.12</td>
<td>-0.12</td>
<td>0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parenting adolescent</td>
<td>-0.10</td>
<td>0.06</td>
<td>0.01</td>
<td>0.10</td>
<td>-0.14</td>
<td>0.10</td>
<td>-0.18</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parenting young adult</td>
<td>-0.13***</td>
<td>0.03*</td>
<td>-0.01</td>
<td>0.08</td>
<td>-0.17</td>
<td>0.05</td>
<td>-0.19</td>
<td>-0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parenting adult child</td>
<td>-0.14*</td>
<td>-0.05</td>
<td>0.00</td>
<td>0.01</td>
<td>-0.23</td>
<td>0.05</td>
<td>-0.25</td>
<td>-0.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remain parent to adult child</td>
<td>-0.25***</td>
<td>-0.15*</td>
<td>-0.09</td>
<td>-0.09</td>
<td>-0.40</td>
<td>0.16</td>
<td>-0.36</td>
<td>-0.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age at Baseline</td>
<td>0.003</td>
<td>-0.001</td>
<td>0.003</td>
<td>-0.001</td>
<td>-0.003</td>
<td>0.001</td>
<td>-0.003</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Change in # of children</th>
<th>Men</th>
<th>Women</th>
<th>Gender Diff</th>
<th>Men</th>
<th>Women</th>
<th>Gender diff</th>
<th>Men</th>
<th>Women</th>
<th>Gender diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>No change (ref)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain 1 child</td>
<td>0.16</td>
<td>-0.05</td>
<td>0.15</td>
<td>-0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain 2 children</td>
<td>0.12</td>
<td>-0.09</td>
<td>0.12</td>
<td>-0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain 3 or more children</td>
<td>0.36***</td>
<td>0.28</td>
<td>0.36*</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lost child</td>
<td>-0.08</td>
<td>-0.01</td>
<td>-0.13</td>
<td>-0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Youngest child age</td>
<td>0.010</td>
<td>0.002</td>
<td>0.010*</td>
<td>0.005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Change in work hours</th>
<th>Men</th>
<th>Women</th>
<th>Gender Diff</th>
<th>Men</th>
<th>Women</th>
<th>Gender diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in work hours</td>
<td>0.01***</td>
<td>0.01***</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gender differences calculated from a fully-interacted model. All hypothesis tests are two-tailed. **p < 0.001, *p < 0.01, p < 0.05.
overshadowed by the increase earlier in the life course as children are entering school-ages.

Moving from negative to positive spillover, Table 5 presents coefficients from models predicting change in positive WHS. Starting with the leftmost column, we find that becoming a new father is associated with an increase in positive WHS (β = 0.28, p < 0.05) becoming a new father is associated with a non-significant decline in positive WHS. The gender difference is significant at the p < 0.05 level. Moreover, we find that this association persists across models that adjust for age, other child variables, and change in work hours. In fact, the magnitude of the association between becoming a new father and positive WHS increases from β = 0.28 in the first model, to β = 0.38 in the final model, suggesting that differences in age, other child variables, and changes in work hours slightly suppress this association. This represents an increase of almost two-thirds a standard deviation of change in positive WHS (0.38/0.67). The gender difference between new mothers and new fathers remains significant after the model adjusts for changes in work hours. This suggests that gender differences in family structure and paid labor partially explain the gender difference in the relationship between parenting transitions and positive spillover.

While our sample of new parents are certainly atypical, the consistency in results across models provides support for the “breadwinner” hypothesis (H2a), where men feel like their work roles positively spill over into their home roles, possibly because remaining employed while becoming a father allows them to adhere to the breadwinner norm and provide for their growing families. We find no other significant association between parenting transitions in later stages of the life course, or other covariates, and changes in positive WHS.

Finally, we turn to results for positive HWS in Table 6. Starting with the bivariate results, we find that new mothers experience a decline in positive HWS (β = −0.48, p < 0.05). This decline is equivalent to two-thirds a standard deviation of change in positive HWS (0.48/0.72), and is one of the largest magnitudes of change in spillover that we observe in our analyses. After adjusting for age, the magnitude of the coefficient for new mothers increases to β = −0.56, which is over three-quarters of a standard deviation of change in positive HWS. The magnitude of decline for new fathers also increases after adjusting for age (β = −0.06 to β = −0.22) but is not statistically significant. We do not observe a significant gender difference between new fathers and new mothers in both the first and second models. The association between becoming a new mother and decline in positive HWS is due to having more children, and that changes in work hours slightly suppress this association. Again, we acknowledge the selectivity of our new-parent sample, but the consistency of the results across model specifications provides empirical support for H2b, where new mothers experience a decline in positive HWS.

Moreover, in examining predicted spillover change, we find that the changes in spillover associated with becoming a new mother is not only statistically different from those who remain childless, but is also
statistically different from becoming a mother to an adolescent, young adult, and adult child. These differences persist even with controls for own age, other child characteristics, and changes in work hours. This suggests that later parenting stages are associated with smaller declines in positive WHS for mothers (relative to becoming a mother), lending suggestive empirical support to H6, which hypothesized that mothers may be able to reap some benefits as their children age into adulthood. Although we do not observe increases in positive HWS, the smaller declines associated with being a mother to older children speaks to the idea that relative to earlier stages of parenthood, later stages could hold more rewards for mothers, with regards to positive spillover.

Discussion

In this study, we demonstrate the utility provided by a life course perspective in deepening our understanding of the compatibility or incompatibility between work and family roles. Our study uses two waves of data to describe within-person changes in work-home spillover that occur when men and women transition to different parenting stages. Our findings thus provide novel empirical evidence of life course patterns in all four dimensions of work-home spillover.

This study thus innovates on prior research in two ways. First, we find that even among our small, select new parent sample, becoming a new parent has ramifications for experiences of positive spillover. New fathers report increases in positive WHS (H2a, "Breadwinner hypothesis") and new mothers report decreases in positive HWS (H2b). This suggests that prior work, which primarily examined new parenthood and negative spillover, may have missed important influences of parenthood on positive spillover. These results thus highlight the importance of considering both positive and negative spillover experiences. It is possible that we do not observe associations with negative WHS (H1a and H1b) due to the nature of the new parent sample. If our sample of new parents are those who have delayed childbearing for earlier career gains, then it is possible that our findings diverge from prior literature as this is a group of working parents who have postponed parenthood to avoid conflict with their working lives. While this could have ameliorated perceptions of conflict, it does not preclude detecting changes in perceptions of work-home harmony. Indeed, it is also thus possible that we observe such a breadwinner pattern because men who have delayed fatherhood for earlier career gains may be in a better position to perceive work to home enrichment. As such, our findings speak to the need for further research on the relationship between the transition to parenthood and positive spillover, rather than an exclusive focus on negative spillover.

Second, we observe significant changes in negative and positive spillover across the life course, even after the initial transition to parenthood.
We also observe only a small number of gender differences in the changes in spillover associated with parenting transitions, many of which are associated more with developmental processes rather than gender differences in parenting transitions. In line with some prior research, it appears that the main gender difference in spillover experiences occurs in the domain specificity of the experience. Men appear to be more susceptible to change in the work-to-home direction, whereas women appear more sensitive to the home-to-work direction. Rather than detecting significant gender differences, our findings reveal the importance of considering men’s fatherhood experiences over the life course (Kaufman, 2013; Williams, 2010). In particular, our results are consistent with the idea that a breadwinning norm could allow fathers to perceive harmony between their work and family roles across the life course. In contrast, gendered caregiving expectations for mothers may decrease compatibility between work and family roles for mothers across the life course.

Table 6
Coefficients and standard errors from change-score models of positive HWS MIDUS I and II (1996–2004), N = 1319.

<table>
<thead>
<tr>
<th>Parenting stage</th>
<th>M1: Bivariate</th>
<th>M1 + Age</th>
<th>M1 + Age + Other child vars</th>
<th>M1 + Age + Other Child Vars + Work hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Men</td>
<td>Women</td>
<td>Gender diff</td>
<td>Men</td>
</tr>
<tr>
<td>Remain never parent (ref)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>New Parent</td>
<td>-0.06</td>
<td>-0.48*</td>
<td>(0.12)</td>
<td>-0.22</td>
</tr>
<tr>
<td>Parenting school-aged child</td>
<td>-0.08</td>
<td>-0.09</td>
<td>(0.10)</td>
<td>-0.23</td>
</tr>
<tr>
<td>Parenting adolescent</td>
<td>-0.03</td>
<td>0.03</td>
<td>(0.08)</td>
<td>-0.20</td>
</tr>
<tr>
<td>Parenting young adult</td>
<td>0.04</td>
<td>0.07</td>
<td>(0.05)</td>
<td>-0.16</td>
</tr>
<tr>
<td>Parenting adult child</td>
<td>0.06</td>
<td>-0.03</td>
<td>(0.05)</td>
<td>-0.17</td>
</tr>
<tr>
<td>Remain parent to adult child</td>
<td>0.02</td>
<td>0.07</td>
<td>(0.06)</td>
<td>-0.26</td>
</tr>
<tr>
<td>Age at Baseline</td>
<td>0.005*</td>
<td>0.003</td>
<td>(0.002)</td>
<td>0.006*</td>
</tr>
<tr>
<td>Change in # of children</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>No change (ref)</td>
<td>-0.01</td>
<td>-0.03</td>
<td>(0.11)</td>
<td>0.01</td>
</tr>
<tr>
<td>Gain 1 child</td>
<td>0.07</td>
<td>0.02</td>
<td>(0.12)</td>
<td>0.07</td>
</tr>
<tr>
<td>Gain 2 children</td>
<td>0.01</td>
<td>0.01</td>
<td>(0.16)</td>
<td>0.01</td>
</tr>
<tr>
<td>Gain 3 or more children</td>
<td>-0.01</td>
<td>-0.01</td>
<td>(0.14)</td>
<td>-0.01</td>
</tr>
<tr>
<td>Lost child</td>
<td>-0.49***</td>
<td>0.06*</td>
<td>(0.06)</td>
<td>-0.49***</td>
</tr>
<tr>
<td>Youngest child age</td>
<td>-0.005</td>
<td>-0.007</td>
<td>(0.006)</td>
<td>-0.005</td>
</tr>
<tr>
<td>Change in work hours</td>
<td>-0.001</td>
<td>0.006**</td>
<td>(0.002)</td>
<td>-0.001</td>
</tr>
<tr>
<td>N</td>
<td>736</td>
<td>583</td>
<td>736</td>
<td>583</td>
</tr>
<tr>
<td>r2</td>
<td>0.004</td>
<td>0.014</td>
<td>0.009</td>
<td>0.016</td>
</tr>
</tbody>
</table>

Gender differences calculated from a fully-interacted model.
All hypothesis tests are two-tailed. ***p < 0.001, **p < 0.01, *p < 0.05.
sample, we included all three MIDUS sub-samples in our analyses, precluding the use of sampling weights, and limiting generalizability to the general U.S. population.

Moreover, while MIDUS is the only data source that collects spillover measures at two points in time, the ten-year lapse in measurement shapes our results in several ways. For one, respondents differ in the range of time between when they encountered their parenting transition (i.e., when their child aged into the specific age group), and when measurement of spillover occurred in W2. If we think parenting transitions are discrete moments in time, then respondents who more recently encountered the parenting transition will have their spillover measures more accurately reflect their parenting transition. This is why we consider categories of child development, rather than continuous child age, in order to estimate the average spillover experiences within specific parenting stages, as opposed to at a specific child’s age. The ten-year difference between W1 and W2 also influences our ability to observe spillover associated with the transition to parenting a school-aged child. Ideally, we would want to evaluate the change in spillover from parenting a newborn to parenting a school-aged child (ages 5–6). However, such a transition requires an observation window of five years, rather than the ten years that the MIDUS data provide. Our analytic solution to this issue was to combine parents of 5–6-year-olds with parents of older school-aged, preadolescent children, who were observed while parenting pre-school-aged children. Future research should utilize longitudinal data collected more frequently in order to more accurately assess the spillover consequences of parenting school-aged children.

Moreover, the length of time elapsed between waves means that parents might have had some time since their parenting transition to adjust their work and family situations in response to their children aging. In particular, respondents could have undergone several other working and family transitions between waves that could also shape work-home spillover. As such, our estimates of the degree to which change in spillover is associated with changes in parenting stage should be considered conservative estimates. This is another reason why future studies should collect spillover data from parents at more frequent time points to be able to assess more precisely how parenting stages can shape work-home spillover.

Additionally, our estimates of gender differences should be interpreted with caution. While we include all working parents, regardless of number of work hours, it is possible that mothers who perceive increased conflict between working and parenting, or decreased positive spillover, may select out of the labor force, and thus out of our analytic sample. For instance, while many mothers of young children do work for pay, it is still common for women to decrease their labor force participation, or exit the labor force entirely, when they become mothers (Sanchez & Thomson, 1997). This may extend past the transition into parenting for mothers, as mothers may leave the labor force while their children are school-aged, or adolescents, and perhaps not re-enter until their children are adults. Thus, we may have found few gender differences due to the similarity between men and women who remained in our analytic sample as they were able to maintain paid employment and while undergoing parenting transitions. Our estimates do not account for potential gender differences in employment decisions that are associated with family transitions.

Finally, given demographic changes, and subsequent social and political awareness of work-family issues in the United States over the last half-century, there are certain to be generational differences in work-family experiences (Blair-Loy, 2003). Given only two waves of data, it is possible for the parenting transitions we measured to overlap with period differences in parenting experiences (i.e., those parenting younger children could experience a different work-family environment than what those who are parenting adult children were exposed to when their children were younger). While we control for age, and focus on within-person changes rather than cross-sectional differences between groups with different parental statuses, our estimates could still be subject to period effects. Future research should aim to collect spillover measures more frequently and over a longer period of follow-up in order to disentangle period and cohort effects at the work-home interface.

Limitations aside, our study is among the first to demonstrate how parenting across the life course can shape within-person changes in the perceptions of conflict or enhancement between work and home domains. Our findings suggest that whether social roles are conflicting or enriching depend on the life course context within which these social roles are being performed. Moreover, prior research has found that positive and negative spillover can each contribute independently to well-being, as well as moderating the other, making it important that we focus research efforts on multiple dimensions of spillover (Gareis, Barnett, Ertel, & Berkman, 2009). As we continue to grapple with issues surrounding paid labor, family formation, and gender equality in the United States, it is important to realize that life course transitions like entering parenthood exert a continuous influence on men’s and women’s outcomes across their adult lives. This means that work-family policy ought to embrace a longer-term perspective. As opposed to focusing primarily on childbirth and pregnancy, policies that recognize that family formation involves a fundamental re-orientation of individuals’ lives can serve to better maintain the health and well-being of our workers. Recognition of the long-reaching consequences of these transitions can be informative for developing work and family policies that can support our workers and family members as they move through life course stages and achieve better lifelong work-family fit (Moen & Sweet, 2004).

Acknowledgements

The authors would like to thank Christy Erying, Pamela Herd, Alyn McCarty, James Raymo, Yu Xie, and three anonymous reviewers for their helpful comments on this manuscript. This research was supported in part by a National Institutes of Aging (NIA) training grant to the Population Studies Center at the University of Michigan (T32 AG000221) and at the University of Wisconsin (T32 AG00129). The authors gratefully acknowledge use of the services and facilities of the Population Studies Center at the University of Michigan, funded by National Institute of Child Health and Human Development (NICHD) Center Grant (R24 HD041028), the Center for Demography of Health and Aging at the University of Wisconsin-Madison, funded by NIA Center Grant (P30 AG17266), and the Center for Demography and Ecology (P2C HD047873), also at the University of Wisconsin-Madison.

References

Elder, G. H., Jr, Johnson, M. K., & Croteau, R. (2003). The emergence and development of

