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ABSTRACT

In a brain network, weak and nonsignificant edge weights be-
tween nodes signal spurious connections and are often thresh-
olded out of the network. The traditional practice of thresh-
olding edge weights at an arbitrary value can be problem-
atic. Network filtration provides an alternative by summa-
rizing the changes in the network topology with respect to
a broad range of thresholds. A well established network fil-
tration approach depends on the graphical-LASSO (least ab-
solute shrinkage and selection operator) model, where a se-
quence of binary networks are obtained based on non-zero
sparse inverse covariance (IC) estimates of partial correla-
tions at a range of sparsity parameters. The limitation of the
graphical-LASSO network model is that it relies on the struc-
tural information rather than actual entries of the sparse IC
matrices and therefore can only yield approximate dynamic
topological changes in the network. In the current study, we
propose a new network filtration approach based on least an-
gle regression (LARS) that yields exact filtration values at
which network topology changes, and apply it to study brain
connectivity in response to emotional stimuli across different
age groups via electroencephalographic (EEG) data.

Index Terms— LARS, EEG, network filtration, emotion,
brain connectivity

1. INTRODUCTION

Correlation-based network analysis has been widely used
to measure the strength of brain connectivity [1, 2]. In a
dense network, correlation matrices are often thresholded to
reveal strong and significant connections between nodes and
regions, followed by graph theoretic measures to quantify the
brain connectivity differences [3]. Nevertheless, thresholding
the correlation matrix at a single value provides only a snap-
shot of the network connectivity, thus losing a dynamic sense
of connectivity changes in the network. Most importantly,
the optimal choice of a single threshold can vary arbitrarily
across studies and affect consistency of interpretation [4].

Network filtration provides an alternate approach of
thresholding edge weights at a broad range of values and
summarizing changes in the network topology as the thresh-
old varies. An early development in this direction was the

sparse inverse covariance estimation (SICE) model proposed
in [5]. The model utilizes the popular graphical-LASSO
method to calculate LASSO-penalized maximum likelihood
estimates (MLE) of the inverse covariance (IC) matrix over
a range of sparsity parameters λ. However, the graphical-
LASSO method is not reliable in estimating the magnitude
of the non-zeros entries of the IC matrix due to its shrink-
age property. So only the structural information of zero and
non-zero entries is utilized in defining a binary network. At a
given λ, two nodes i and j are directly connected by an edge
if the (i, j)-entry in the λ-penalized IC matrix is non-zero.
As λ increases, nonzero entries thin out and a sequence of
binary networks corresponding to subgraphs of the complete
network is created via the disappearance of edges. Since
the magnitude estimation is not reliable, the model can only
yield approximate λ values where the topology of node clus-
ters changes. Also, topological information embedded in the
filtration of subgraphs was not fully exploited in [5]. Only
edge numbers within and between brain regions were used
to quantify changes in connectedness of node clusters and to
subsequently compare brain networks in Alzheimer’s patients
and normal controls.

In this paper, we propose a new network filtration method
named persistent LARS (pLARS) that accommodates a direct
and exact thresholding scheme through the LARS algorithm
[6]. We also utilize it to investigate whether age affects EEG
network connectivity in response to viewing pictures of pos-
itive, negative or neutral emotional content [7]. Our key
contributions are: (a) establishing a persistent data structure
in the LARS algorithm, and exploiting this structure to con-
struct a network filtration; (b) applying the pLARS model to
a 128-channel EEG dataset to determine possible aging effect
on EEG brain connectivity with respect to different types
of emotional stimuli. To the best of our knowledge, this is
the first study exploring a LARS filtration for a task-related
high-density EEG network.

2. METHOD

The LARS algorithm successively builds up a linear estimate
for a response vector over normalized vector covariates [6].
Suppose data vectors xi = (xi1, . . . , xin)

′, i = 1, . . . , p,
are centered and normalized EEG signals recorded at the p
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Fig. 3. Barcodes of pLARS networks and their pointwise t-
values for three emotional response periods of three picture-
viewing tasks; the x-axis represents the filtration value λ, and
the left and right y-axis represent the β0 Betti numbers and t-
values of pointwise two-sample t-tests respectively. The max-
imum absolute p-values are marked in each category.

nels, corrected myogenic artifacts by performing independent
component analysis (ICA) on the filtered EEG signals [10],
and spherically interpolated missing channels over the skull.
We then averaged over signals recorded on each subject in
periods viewing 30 pictures in the same category. Signals in
the fixation period were treated as baselines and subtracted
from signals in subsequent periods second by second.
LARS network filtration. Subjects were divided into two
age groups: young (below 60 years) and old (above 60 years),
and three emotional periods: emotional reactivity - 4s period
after picture onset; early recovery - 2s period after picture off-
set; late recovery - 2s period after early recovery (Figure 2).
The pLARS procedure is performed independently on data
from individual subjects for the three emotional periods in the
three valence categories. Figure 3 shows barcodes and respec-
tive t-values from pointwise two-sample t-tests. The barcodes
do not show clear group separation, and there is no highly
significant maximum absolute t-value. The permutation test
did not yield significant age effect on any cross category of
valence and emotional response period for a 5% significance
level with Bonferroni correction for 9 tests.

5. DISCUSSION

We conclude that there is no evidence of age effects on EEG
study we performed, possibly due to small sample size. Ad-
ditional study with increased sample size is warranted. Also,
we currently require solving LARS in full to threshold by
the MACCs. Further exploitation of the LARS structure may
yield an alternate filtration value that bypasses a full solution.
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