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Many studies have found that education is associated with better health, but the causal basis of this asso-
ciation is unclear. The current study used a co-twin control design to examine if differences in years of
education within twin pairs predict allostatic load. The strength of this design is that it controls for
genetic and other familial confounds shared between twins. The sample consisted of 381 twins (with
292 twins from 146 complete pairs; mean age = 57; 61% female) who participated in the biomarker pro-
ject of the Midlife Development in the United States (MIDUS) study. Individual-level analyses showed a
significant, negative association between years of education and allostatic load, but this association was
explained entirely by familial influences shared between twins. The results of this study suggest that
schooling does not itself protect against allostatic load.

� 2016 Elsevier Inc. All rights reserved.
1. Introduction response to environmental demands. An example of allostasis is
A large and growing literature has examined the relationship
between education and health (Albouy and Lequien, 2009; Amin
et al., 2015; Arendt, 2005; Behrman et al., 2011; Buckles et al.,
2013; Clark and Royer, 2013; Fonseca and Zheng, 2011; Fujiwara
and Kawachi, 2009; Gruenewald et al., 2012; Jürges et al., 2013;
Lleras-Muney, 2005; Lundborg, 2013; Lundborg et al., 2012;
Madsen et al., 2014; Manor et al., 2004; Mazumder, 2008;
Meghir et al., 2012; Rosengren et al., 2009; Spasojevic, 2010;
Strand and Tverdal, 2004; van Kippersluis et al., 2011; Webbink
et al., 2010). Findings include that education is associated with bet-
ter self-reported health (Amin et al., 2015; Fujiwara and Kawachi,
2009; Lundborg, 2013), lower mortality (Buckles et al., 2013;
Lleras-Muney, 2005; Manor et al., 2004; van Kippersluis et al.,
2011), greater longevity (Lundborg et al., 2012), lower odds of
hypertension and diabetes (Fonseca and Zheng, 2011), reduced risk
for acute myocardial infarction (Rosengren et al., 2009), and fewer
chronic conditions (Lundborg, 2013).

An important index of health that has also been found to corre-
late with education is allostatic load. This term captures the cumu-
lative toll of dysregulation across major physiological systems,
including the cardiovascular, endocrine, metabolic, hypothala
mic–pituitary–adrenal (HPA), sympathetic, and immune systems
(McEwen, 2000; Taylor et al., 2011). Allostatic load is based on
the concept of allostasis, which refers to bodily changes in
the fact that bears prepare for winter by eating larger amounts of
food and gaining body fat. Allostasis thus represents an effort to
adapt to the environment. But when environmental stressors are
chronic or persistent, ongoing adaptational efforts can lead to
physiological dysregulation. Allostatic load captures the cumula-
tive burden of this dysregulation, which is ‘‘the price the body
pays” for adaptation (McEwen, 2000; p. 110).

Of relevance to the current study, low education is a marker of
socioeonomic stress and may thus take a toll on physiological func-
tioning (e.g., Gruenewald et al., 2012). A few studies have specifi-
cally examined the association between education and allostatic
load (e.g., Gruenewald et al., 2012; Kubzansky et al., 1999), and
additional investigations have documented socioeconomic gradi-
ents in specific health indices that can be considered measures of
allostatic load (e.g., markers of inflammation; Loucks et al., 2010;
Pollitt et al., 2008). Collectively, these studies indicate that higher
levels of education are associated with a lower allostatic load,
denoting a healthier profile. The findings are consistent with the
rest of the literature in showing that higher levels of education
are related to better health.

Several explanations exist for the association between educa-
tion and better health, including that (1) more educated individu-
als are more health–literate and health–conscious (Buckles et al.,
2013), (2) more educated individuals are better positioned to
access health resources, including high-quality medical care
(Buckles et al., 2013; Lundborg, 2013), (3) low education is a
marker of socioeconomic adversity, which has been proposed to
up-regulate pro-inflammatory genes and down-regulate antiviral
genes, increasing risk for disease (Cole, 2013), and (4) unobserved
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factors, such as one’s genetic endowment and familial upbringing,
account for the association between education and health (Amin
et al., 2015; Madsen et al., 2014). Methodologically, it is challeng-
ing to adjudicate between these various causal and non-causal
hypotheses. Several studies have used sophisticated methodolo-
gies, such as instrumental variables or twin designs, to interrogate
causal claims. Whereas some of these studies have found enduring
evidence for an effect of education on health after taking steps to
control for confounding influences (Buckles et al., 2013; Fonseca
and Zheng, 2011; Lundborg, 2013; Lundborg et al., 2012;
Spasojevic, 2010; van Kippersluis et al., 2011), others have con-
cluded that evidence for a causal link is limited and not particularly
compelling (Albouy and Lequien, 2009; Amin et al., 2015; Behrman
et al., 2011; Clark and Royer, 2013; Fujiwara and Kawachi, 2009;
Madsen et al., 2014; Mazumder, 2008).

The discordant twin design is especially useful for investigating
causality in observational research (McGue et al., 2010). This
design examines if differences in an exposure variable (e.g., educa-
tion) within twin pairs are associated with an outcome of interest
(e.g., health). The strength of the design is that it controls for all
familial contributions to the exposure. Thus, in the case of monozy-
gotic (MZ) twins who are genetically identical, the design would
control for all confounds related to the rearing environment as well
as all genetic confounds. In the case of dizygotic (DZ) twins who
share about 50% of their genes on average, the discordant twin
design would partially control for genetic factors while fully con-
trolling for other familial factors. Seven discordant twin studies
have examined the association between education and health so
far. Results are mixed overall, with four studies (Amin et al.,
2015; Behrman et al., 2011; Fujiwara and Kawachi, 2009;
Madsen et al., 2014) indicating that shared familial factors largely
account for the association between education and health, two
studies (Lundborg, 2013; Lundborg et al., 2012) finding a residual
causal effect, and one study (Webbink et al., 2010) suggesting
the causal effect is evident only in men. In general, existing studies
find that education may result in better self-rated global health
(i.e., how participants rate their health overall; Amin et al., 2015;
Fujiwara and Kawachi, 2009; Lundborg, 2013). Evidence for a cau-
sal effect of education on more specific measures of health (e.g.,
body-mass index or cardiovascular disease) or health-related
behaviors (e.g., smoking) is much more limited.

Most studies have relied on survey data, hospital records, or reg-
istries in inferring health status (e.g., Amin et al., 2015; Behrman
et al., 2011; Fujiwara and Kawachi, 2009; Lundborg, 2013;
Lundborg et al., 2012; Madsen et al., 2014; Webbink et al., 2010),
and no twin study so far has included direct biological measures
of health. The current study builds on the extant literature by exam-
ining the relationship between years of education and a direct,
multi-systemmeasure of allostatic load that captures dysregulation
across the cardiovascular, inflammation, metabolic, HPA, sympa-
thetic, and parasympathetic systems. No prior studies of education
and allostatic load have used a discordant twin design. Thus, ours is
the first discordant twin study to investigate the causal
nature of the relationship between education and health using
directly measured biomarkers from multiple regulatory systems.
2. Methods

2.1. Participants

Data come from the MIDUS study, which examines physical
health, psychological wellbeing, and social responsibility through-
out midlife. The MIDUS sample is representative of non-
institutionalized English-speaking adults living in the United
States. Participants were recruited through random-digit dialing
in 1995–1996 and were assessed via a 30–45 min telephone inter-
view and two self-administered questionnaires that were mailed
to individuals. Available participants were re-assessed in 2004–
2006. At this second wave of assessment, participants were invited
to take part in additional MIDUS projects, including a biomarker
project. Data in the current study come primarily from the biomar-
ker project, which directly assesses biological indicators of health
via blood, urine, and saliva collections, physical exams, and psy-
chophysiological assessments. A total of 1255 participants, includ-
ing 388 twins, completed this biomarker assessment. The twin
participants were the focus of the current study.

Twin recruitment took place as part of the original MIDUS sam-
ple recruitment in 1995–1996 and involved screening 50,000
nationally representative households for the presence of twins.
Approximately 15% of respondents identified a twin in the family,
and 60% of those respondents gave the research team permission
to contact the twin. More information on twin recruitment can
be found in Kendler et al. (2000). Zygosity was determined by
querying twins about the extent to which they resemble each other
(e.g., the similarity of their eye and hair color and the degree to
which others have difficulty telling them apart). This approach
has been shown to classify over 90% of twins accurately (Krueger
and Johnson, 2002; Lykken et al., 1990).

Among the 388 twins who completed the biomarker project,
four twins (2 twin pairs) came from families with more than one
twin pair per family. These four twins were excluded from the
sample to achieve independence of observations between families.
Another two twins (1 twin pair) had insufficient biomarker data to
allow construction of an allostatic load index, and one other twin
was missing information on educational attainment, so these three
individuals were also not included in the current analyses. These
exclusions resulted in a sample size of 381 twins, with 292 twins
from 146 complete twin pairs (i.e., there were 89 singletons). This
final sample of 146 pairs included 81 MZ pairs, 37 same-sex DZ
pairs, 27 opposite-sex DZ pairs, and one pair of indeterminate
zygosity (this last pair was included in analyses that pooled MZ
and DZ pairs but was not included in analyses carried out sepa-
rately in MZ pairs and DZ pairs). Mean age in this sample was
57 years (SD = 11, range = 37–86), and 61% of participants were
female.

2.2. Procedures

The allostatic load index used in the current study was based on
biomarkers collected as part of the MIDUS biomarker project. Par-
ticipants completed all project procedures during an overnight stay
at one of three University General Clinical Research Centers
(GCRCs; University of California Los Angeles, Georgetown Univer-
sity, University of Wisconsin-Madison). During their stay, subjects
provided urine and blood samples, underwent heart rate variability
assessments, and completed cardiovascular testing. Urine was col-
lected during a 12-h protocol that began at 7:00 pm and ended at
7:00 am. Because participants provided urine samples overnight
while resting in an inpatient research center, their physical activity
levels were very low. The urine collection protocol thus minimized
potential effects of physical activity on urinary hormone levels.
Blood was collected in the morning while participants were fast-
ing. Fresh whole blood samples were subsequently assayed for gly-
cosylated hemoglobin (hemoglobin A1c), and frozen serum
samples were assayed for cholesterol biomarkers, inflammatory
biomarkers, and serum dehydroepiandrosterone sulfate. Most
samples were collected over a 5-year period and were assayed in
batches on an approximately annual basis. As a result, any given
batch contained samples that were frozen a year or more before
the assay as well as samples that were frozen only a month or
two before the assay. This was the protocol for the C-reactive
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protein (CRP), intercellular adhesion molecule-1 (ICAM-1), e-
Selectin, and fibrinogen assays, which were conducted at the
University of Vermont. The interleukin 6 (IL-6) assays were con-
ducted at the Biocore lab in Madison in larger batches with longer
lags between the assays.
Table 1
Description of each physiological system contributing to the allostatic load index.

Physiological systems Biomarkers

Sympathetic system Based on urinary epinephrine and
norepinephrine

Parasympathetic system Based on heart rate variability measures,
including the standard deviation of heartbeat-to-
heartbeat intervals (SDRR), the root mean square
of successive differences (RMSSD), and low-
frequency and high-frequency heart rate
variability

Hypothalamic–pituitary–
adrenal (HPA) axis

Based on urinary cortisol and serum
dehydroepiandrosterone sulfate (DHEA-S)

Inflammation Based on fibrinogen, plasma C-reactive protein
(CRP), serum interleukin 6 (IL-6), e-Selectin, and
the intercellular adhesion molecule-1 (ICAM-1)

Cardiovascular system Based on resting systolic blood pressure, resting
heart rate, and pulse pressure

Metabolic system—
glucose

Based on hemoglobin A1c (HbA1c), fasting
glucose, and insulin resistance quantified
through the homeostatic model assessment
(HOMA-IR)

Metabolic system—lipids Based on body–mass index (BMI), waist–hip
ratio (WHR), triglycerides, high density
lipoprotein (HDL) cholesterol, and low density
lipoprotein (LDL) cholesterol

Table 2
Descriptive statistics and high-risk cutpoint for biomarkers within each physiological syst

Physiological system and representative biomarkers N M

Sympathetic system
Urine epinephrine (lg/g) 288 2.06
Urine norepinephrine (lg/g) 290 27.94

Parasympathetic system
SDRR (m s) 274 35.40
RMSSD 274 21.88
Low-frequency HRV 274 401.3
High-frequency HRV 274 263.3

HPA axis
Urine cortisol (lg/g) 292 18.52
Blood DHEA-S (lg/dL) 292 100.5

Inflammation
Fibrinogen (mg/dL) 289 348.1
CRP (mg/L) 289 2.78
IL6 (pg/mL) 292 2.65
E-Selectin (ng/Ml) 292 43.05
ICAM-1 (ng/Ml) 292 275.6

Cardiovascular
Resting SBP (mmHg) 292 130.2
Resting heart rate (bpm) 291 70.36
Pulse pressure (SBP-DBP) 292 55.69

Metabolic-glucose
Hemoglobin A1c% 291 5.93
Fasting glucose 292 99.59
HOMA-IR 292 3.20

Metabolic-lipids
BMI 292 28.42
WHR 292 .88
Triglycerides (mg/dL) 292 125.9
HDL cholesterol (mg/dL) 292 56.96
LDL cholesterol (mg/dL) 292 108.0

Note: N = sample size; M = mean; SD = standard deviation; SDRR = standard deviation o
ences; HRV = heart rate variability; HPA = hypothalamic–pituitary–adrenal; DHEA-S = de
1 = intercellular adhesion molecule-1; SBP = systolic blood pressure; DBP = diastolic b
BMI = body-mass index; WHR = waist-hip ratio; HDL = high density lipoprotein; LDL = l
divided by urine creatinine levels to adjust for body size. Levels of urine epinephrine, n
Participants completed heart rate variability assessments in the
morning as part of a psychophysiology protocol. Their electrocar-
diographic (ECG) activity was monitored via electrodes for
11 min while they were seated. GCRC medical staff took partici-
pants’ cardiovascular measurements, including their systolic blood
pressure, heart rate, and pulse pressure, and also measured partic-
ipant height, weight, and waist and hip circumference.

2.3. Measures

2.3.1. Allostatic load
Allostatic load was computed as the sum of seven physiological

risk indices, each of which was based on 2–5 directly measured
biomarkers. Table 1 lists the seven physiological systems con-
tributing to our allostatic load index, as well as the specific
biomarkers included in each system. For each biomarker, the
research team determined which individuals fell into a ‘‘high-risk
quartile,” corresponding to either the top quartile or the bottom
quartile depending on whether high or low values of the biomarker
typically confer risk for health problems. Table 2 provides descrip-
tive statistics for each biomarker, the ‘‘high-risk” cutpoint in the
MIDUS sample, and, when available, ‘‘high-risk” or ‘‘borderline”
cutpoints generally used in clinical practice. As can be seen from
the table, our high-risk cutpoints tended to correspond fairly clo-
sely to the typical clinical cutpoints.

A risk index was computed for each of the seven physiological
systems, with scores computed only for individuals with valid data
on at least half of the biomarkers in the physiological system. Each
risk index was calculated as the proportion of biomarkers in the
em.

SD High-risk cutpoint Clinical cutpoint

1.29 P2.54
13.09 P33.33

16.02 623.54
15.94 611.83

4 440.52 6113.96
7 430.78 654.16

19.11 P21.00
4 71.20 651.00

7 83.74 P390.00
3.92 P3.18 >3
2.63 P3.18
21.56 P50.58

7 99.48 P329.7

9 17.58 P143.00 P140 (P120)
11.26 P77.00 >90 (>80)
14.84 P65

.85 P6.10 P7 (> 6.4)
27.38 P105
4.02 P4.05

5.61 P32.31 P25,P30
.09 >.97 >1 (>.85, >.9)

1 76.48 P160.00 P200 (P150)
17.90 641.37 <40

5 35.52 P128.00 P160 (P130)

f heartbeat-to-heartbeat intervals; RMSSD = root mean square of successive differ-
hydroepiandrosterone sulfate; CRP = C-reactive protein; IL6 = interleukin 6; ICAM-
lood pressure; HOMA-IR = homeostatic model assessment of insulin resistance;
ow density lipoprotein. Urine epinephrine, norepinephrine, and cortisol levels are
orepinephrine, and cortisol (lg) are reported per level of creatinine (g).



Table 3
Demographic statistics for current sample and total biomarker sample.

Current sample Total biomarker sample
(n = 292) (n = 1255)

Sex 61% female 57% female

Age
Mean 56.85 57.32
Standard deviation SD = 11.17 SD = 11.55
Range (37–86) (35–86)

Years of education
Mean 14.75 14.83
Standard deviation SD = 2.53 SD = 2.51
Range (6–20) (6–20)

Allostatic load
Mean 1.66 1.77
Standard deviation SD = 1.12 SD = 1.07
Range (0–5.03) (0–5.03)
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physiological system that fell into the high-risk range for a given
individual. Scores on the risk indices ranged from 0 to 1, indicating
that, for any given participant, somewhere between 0% and 100% of
relevant biomarkers fell into the high-risk range. As mentioned
previously, allostatic load was equal to the sum of the seven risk
indices, and it was computed only for individuals with data on at
least 6 of the 7 physiological risk indices. In the event of a missing
risk index, imputation occurred, generally at the level of the risk
index. For more information on the original construction of the
allostatic load index, see Gruenewald et al. (2012).

The average allostatic load value was 1.66 (SD = 1.12, range =
0–5.03) in the current sample, with a possible (but unobserved)
maximum value of 7. Because it had a right-skewed distribution
(skew = .78), allostatic load was natural-log transformed, which
reduced the skew to �.08. After transformation, all observations
fell well within 3 standard deviations of the mean. Allostatic load
was subsequently standardized (to have a mean of 0 and a stan-
dard deviation of 1) for ease of interpretation.

2.3.2. Educational attainment
Education was assessed in a phone interview conducted during

the second wave of MIDUS assessment in 2004–2006. This variable
was measured as the amount of schooling participants had com-
pleted out of 12 possible levels, with the lowest level equal to
‘‘No school/some grade school (1–6)” and the highest level equal
to ‘‘Ph.D., Ed.D., M.D., D.D.S., LL.B., LL.D., J.D., or other professional
degree.” Education was recoded to measure approximate years of
education. The average number of years of education in the current
sample was 14.75 (SD = 2.53, range = 6–20). Because one observa-
tion fell just over 3 standard deviations below the mean, analyses
were run in two ways, including (1) retaining this observation in
the sample and (2) winsorizing the observation (i.e., replacing it
with the nearest observation that is within 3 standard deviations
of the mean). Winsorization did not alter any of our results (i.e.,
estimated regression coefficients for education differed by no more
than .002 units, and inferences about statistical significance were
unchanged). Presented in this article are results for the original
(i.e., unwinsorized) data with robust standard errors. Additional
results are available from the first author upon request.
3. Analytic plan

We first examined the association between education and allo-
static load in an individual-level regression analysis. This analysis
yields the individual-level effect of exposure (i.e., education) on
outcome (i.e., allostatic load), without controlling for genetic or
other familial confounding. Next, we applied a co-twin control
(CTC) design that has been previously employed to strengthen cau-
sal inference in observational twin research (e.g., Burt et al., 2010;
Huibregtse et al., 2011; Irons et al., 2015; McGue et al., 2010). This
design investigates if differences in education within twin pairs
predict allostatic load. The rationale is that if education directly
protects against allostatic load, then within twin pairs discordant
in years of education, the more educated twin should have lower
allostatic load than his or her less educated co-twin. The power
of this design lies in its ability to control for all genetic and envi-
ronmental factors shared by members of a twin pair.

In technical terms, the CTC design models the exposure variable
(i.e., education) in terms of a ‘‘within-twin pair” regression coeffi-
cient (bW) and a ‘‘between-twin pair” regression coefficient (bB):

Y ij ¼ b0 þ bWðXij � �Xi:Þ þ bB
�Xi:þ eij;

where Yij is the allostatic load outcome for individual j within the
ith twin pair, Xij is education for individual j within the ith twin pair,
and �Xi: is mean education for the ith twin pair.
The ‘‘between-pair” coefficient provides an approximation of
the individual-level effect in a standard regression analysis. The
‘‘within-pair” coefficient directly estimates the effect of exposure
(i.e., education) on outcome (i.e., allostatic load) within twin pairs,
and this effect controls for genetic and other familial confounding.

Analyses were run in SPSS software, using generalized estimat-
ing equations (GEE) with robust standard errors. Based on our sam-
ple of 146 twin pairs and a two-tailed alpha of .05, we had power of
at least 80% to detect an average within-pair effect accounting for
4.4% or more of variance. We had power of at least 70% to detect an
average within-pair effect accounting for as little as 3.2% of
variance.
4. Results

4.1. Descriptive statistics

Table 3 presents demographic statistics for the current sample,
as well as for the total biomarker sample. As can be seen from the
table, participants included in the current study were representa-
tive of the larger biomarker sample from which they derived in
terms of age, sex, education, and allostatic load.

4.2. Preliminary analyses

Preliminary correlational analyses show that our composite,
biologically based measure of allostatic load was moderately corre-
lated with various self-report measures of health (e.g., it correlated
.37 with extent of health limitations on vigorous activity,�.25 with
self-rated physical health, �.27 with self-rated overall health com-
pared to others of same age, .28 with suspected or confirmed heart
trouble, and .29 with diagnosed high blood pressure; all ps < .001),
indicating that our allostatic load variable captures information in
common with self-reported health without being entirely redun-
dant with self-reported health.

Results from an individual-level regression analysis of allostatic
load on education show that a 1-year increase in educational
attainment is associated with a reduction of .089 standard devia-
tion units in allostatic load (p = .001). Fig. 1 depicts the bivariate
association between education and allostatic load. This effect cor-
responds to a zero-order correlation of �.22. When age and sex
were included as controls, the effect of education on allostatic load
was somewhat reduced but still remained significant (see Table 4).

The twin correlation in allostatic load was .52 (MZ correlation:
.59, DZ correlation: .39), and the twin correlation in education was
.53 (MZ correlation: .72, DZ correlation: .38). Fig. 2 shows the
degree of twin resemblance with respect to allostatic load and edu-



Fig. 1. Association between allostatic load and years of education. Allostatic load was natural-log transformed and standardized to have a mean of 0 and a standard deviation
of 1.

Table 4
Individual-level regression analysis of allostatic load on education.

Allostatic load
(n = 292 individuals)
B
(SE)
p

Sex .081
(.110)
.462

Age .042
(.004)
<.001

Education �.056
(.023)
.015

Note: Shown are the regression coefficient, standard error, and p-
value for each predictor. Allostatic load was natural-log trans-
formed to normalize its distribution and was subsequently
standardized for ease of interpretation. Sex was coded 1 for men
and 2 for women. Generalized estimating equations were used
to account for the family structure.
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cation. The fact that the MZ twin correlation exceeds the DZ twin
correlation for allostatic load and education indicates that both
are genetically influenced and that the association between them
could potentially reflect common genetic factors.

For the CTC analysis, education was decomposed into two
terms: (a) the mean years of education per twin pair and (b) each
twin’s deviation from the pair mean. Fig. 3 shows the distribution
of these two variables for one twin per pair. The figure makes clear
that there is a non-trivial amount of within-pair variation in edu-
cation. Of the 146 twin pairs included in the analysis, 60 pairs were
concordant for years of education (36 MZ pairs, 11 same-sex DZ
pairs, 12 opposite-sex DZ pairs, and 1 pair of indeterminate zygos-
ity) and 86 pairs were discordant for years of education (45 MZ
pairs, 26 same-sex DZ pairs, 15 opposite-sex DZ pairs). On average,
twins from discordant pairs differed by 2.56 years of education
(SD = 1.93). Of note, twins from discordant pairs did not differ in
average years of education from twins from concordant pairs (dis-
cordant: M = 14.86, SD = 2.64; concordant: M = 14.59, SD = 2.36,
p = .367).
4.3. Co-twin control analysis

Table 5 shows the results of the CTC analysis. The between-pair
effect for education negatively predicted allostatic load, consistent
with more education being associated with lower allostatic load.
The within-pair effect for education was essentially zero. Neither
the within-pair effect nor the between-pair effect varied signifi-
cantly by zygosity (p > .05). Still, for completeness, Table 5 presents
results for MZ pairs and DZ pairs separately.

To test the robustness of our results, we ran additional CTC
analyses in three alternate ways. First, we ran the analysis with a
modified measure of allostatic load that reclassified individuals
currently using medications for health conditions to a ‘‘high-risk”
level on the affected biomarker (e.g., reclassifying individuals using
cholesterol-lowering drugs to ‘‘high-risk” on low density lipopro-
tein [LDL] cholesterol). This modified variable reclassified the risk
level of 122 participants out of the sample of 292 individuals.
The analysis conducted with this new variable produced very sim-
ilar results to the ones found for the original allostatic load mea-
sure (between-pair effect of education = �.071, p = .008; within-
pair effect of education = .020, p = .598). Second, we ran the CTC
analysis with the original (i.e., non-recoded) education variable,
which measured level of education on a 12-point scale ranging
from ‘‘No school/some grade school (1–6)” to ‘‘Ph.D., Ed.D., M.D.,
D.D.S., LL.B., LL.D., J.D., or other professional degree.” Results were
very similar (between-pair effect = �.074, p = .007; within-pair
effect = �.010, p = .795). Third, we ran the CTC analysis with all
twins (i.e., including the 89 singletons who participated without
their co-twin). For singletons in these analyses, mean education



Fig. 2. (a) MZ correlation in allostatic load, (b) DZ correlation in allostatic load, (c) MZ correlation in years of education, (d) DZ correlation in years of education.
MZ = monozygotic, DZ = dizygotic.

Fig. 3. Distribution of years of education between and within twin pairs. (a) shows the mean years of education per twin pair and (b) shows Twin 1’s deviation from the pair
mean in absolute terms.
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per twin pair was equal to the singleton’s years of educational
attainment, and the deviation from the pair mean was equal to
zero. This analysis produced essentially the same results
(between-pair effect of education = �.073, p < .001; within-pair
effect of education = .000, p = .999). Complete results are available
from the first author upon request.
4.4. Follow-up analyses

We followed up the analysis displayed in Table 5 to examine if
childhood socioeconomic disadvantage mediates the between-pair
effect of education on allostatic load. Our measure of childhood
socioeconomic disadvantage aggregated welfare status, relative



Table 5
Co-twin control analyses for association between education and allostatic load.

Allostatic load Allostatic load Allostatic load
(146 pairs) (64 DZ pairs) (81 MZ pairs)
B B B
(SE) (SE) (SE)
p p p

Sex .054 �.071 .129
(.110) (.159) (.156)
.621 .656 .407

Age .041 .034 .047
(.004) (.006) (.007)
<.001 <.001 <.001

Education between-pair �.075 �.081 �.066
(.026) (.035) (.039)
.004 .021 .089

Education within-pair .000 .007 �.002
(.038) (.047) (.057)
.990 .886 .969

Note: MZ = monozygotic; DZ = dizygotic.
Shown are the regression coefficient, standard error, and p-value for each predictor.
Allostatic load was natural-log transformed to normalize its distribution and was
subsequently standardized for ease of interpretation. Sex was coded 1 for men and
2 for women. One twin pair of indeterminate zygosity was included in the full
sample but not in the separate MZ or DZ analyses. Generalized estimating equations
were used to account for the family structure.
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poverty, and low parental education. Follow-up analysis revealed
that childhood socioeconomic disadvantage did not significantly
predict allostatic load (B = .021, p = .819), beyond age, sex,
between-pair education, and within-pair education. Additionally,
the between-pair effect of education was relatively unchanged
after the addition of childhood socioeconomic disadvantage
(between-pair effect of education = �.073, p = .005).

Because allostatic load is a composite variable, we also ran
follow-up analyses for each of the 7 physiological indices that con-
tribute to allostatic load. For the purpose of these analyses, we
retained the continuous distribution of the biomarkers instead of
dichotomizing them. Specifically, we standardized all biomarkers,
aggregated them within the 7 separate physiological systems,
and then standardized each of the 7 system-level variables. Our
analyses revealed that years of education was significantly associ-
ated with reduced risk for 2 of the 7 system-level variables (inflam-
mation and poor lipid metabolism, p < .05), after accounting for the
effects of age and sex. Co-twin control analyses showed that the
between-pair effect of education accounted for the reduced risk
(between-pair effect on inflammation = �.102, p < .001; between-
pair effect on lipid metabolism = �.113, p < .001). The within-pair
effect on inflammation did not reach statistical significance, but
there was a significant within-pair effect on lipid metabolism
(B = .072, p = .008), with additional years of education being associ-
ated with increased risk.

5. Discussion

The existing literature indicates that education is positively
associated with health, though it is unclear whether this relation-
ship is causal. Several studies have used sophisticated methodolo-
gies, such as instrumental variables or twin designs, to investigate
causality. They have produced rather conflicting findings, with
some supporting a causal relationship and others failing to do so.
A few studies have found that education may result in better
self-rated global health (Amin et al., 2015; Fujiwara and Kawachi,
2009; Lundborg, 2013), but evidence for a causal effect on more
specific measures of health and health behaviors is much more
limited. The current study made use of a discordant twin design
to control for familial confounds in examining the association
between education and a direct, biologically based measure of allo-
static load that captures physiological dysregulation across multi-
ple, major regulatory systems. Our initial individual-level analysis
showed a significant, negative relationship between education and
allostatic load, but the subsequent co-twin control analysis
revealed that this association is explained by familial influences
that are shared between twins. Moreover, we found that these
familial influences are separate from childhood socioeconomic dis-
advantage. Our findings align with those of most, though not all,
previous twin studies in indicating that the relationship between
education and objective health is not likely to be causal (Amin
et al., 2015; Behrman et al., 2011; Fujiwara and Kawachi, 2009;
Madsen et al., 2014).

We chose a multisystem measure of allostatic load as the out-
come because we wanted a comprehensive indicator of health,
and a previous study had already established the existence of an
association between education and the current measure of allo-
static load in the MIDUS sample (see Gruenewald et al., 2012). Nev-
ertheless, because allostatic load is a composite variable, we ran
follow-up analyses for each of the 7 physiological indices that con-
tribute to allostatic load. Our analyses showed that years of educa-
tion was significantly associated with reduced risk for
inflammation and poor lipid metabolism (p < .05), after accounting
for the effects of age and sex. Co-twin control analyses revealed
that the reduction in risk was due to familial factors that are shared
between twins, consistent with our overall findings for allostatic
load.

The current study has several strengths relative to other discor-
dant twin analyses. For example, a major contribution of this study
is its use of a direct, biologically based, and comprehensive mea-
sure of health that is able to pick up on subtle problems that
may not have been reported otherwise, as well as more serious
conditions. Moreover, concerns about measurement error are
reduced in this study. A common critique of discordant twin anal-
yses is that they exacerbate concerns about measurement error
given that error in the exposure variable is expected to attenuate
within-pair associations more than individual-level associations
(Boardman and Fletcher, 2015; McGue et al., 2010). There are
two reasons, however, why concerns about measurement error
are minimized in the current study. First, education was assessed
at two waves spaced 9–10 years apart, and the two variables cor-
related about .9 in twins who completed the biomarker assess-
ment, notwithstanding the fact that some twins acquired
additional schooling between the two waves. Second, measure-
ment error is an unlikely explanation for the particular pattern of
results observed in this study. Specifically, measurement error
would be expected to attenuate the MZ within-pair effect to a
greater degree than the DZ within-pair effect given that the MZ
twin correlation is higher than the DZ twin correlation (McGue
et al., 2010). In fact, we found that the MZ and DZ within-pair
effects were roughly the same and both equal to zero. Another crit-
icism that has been leveled against discordant twin analyses is that
discordant pairs constitute a proportionally small and potentially
unrepresentative subsample of all twin pairs, and they tend to
exhibit restricted within-pair variation in the exposure measure
(Boardman and Fletcher, 2015). Our sample, however, included
86 discordant pairs out of a total of 146 pairs, so analyses were
not based on a proportionally small and unrepresentative sample.
Additionally, discordant pairs in our study did not differ from con-
cordant pairs in terms of average years of education, indicating
that they were representative in that respect, too. As is evident
in Fig. 3, there was also a sufficient amount of within-pair educa-
tional variation.

This study also has a number of limitations. First, our sample
size was modest, meaning that we may have had relatively lower
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power to detect effects. Still, the fact that the within-pair effect on
allostatic load was essentially zero in both MZ pairs and DZ pairs
(see Table 5) indicates that there likely is no causal influence of
education on allostatic load. Second, there may have been selection
biases related to study participation, such that older participants
were healthier than the typical person their age. This would have
resulted in an unrepresentative sample of older individuals, espe-
cially since participants were included in the current analyses only
if their co-twin participated as well. The seriousness of this con-
cern is diminished by the fact that participants in the biomarker
project were comparable to the larger MIDUS cohort in terms of
demographic characteristics including age, race/ethnicity, marital
status, and income as well as health characteristics such as self-
rated health, number of health conditions, and impairments in
activities of daily living (Gruenewald et al., 2012). Additionally,
we observed a significant positive association between age and
allostatic load, suggesting that older individuals in our study had
a higher allostatic load, as would be expected. Third, the MIDUS
sample and the biomarker subsample were relatively well edu-
cated, which may have restricted variance in the exposure. Though
we did observe a fair amount of variation in education—even
within discordant pairs—it is possible that our findings would have
differed in a less educated sample. Still, our results are consistent
with what most previous twin studies have found (Amin et al.,
2015; Behrman et al., 2011; Fujiwara and Kawachi, 2009;
Madsen et al., 2014). Fourth, allostatic load is affected by a myriad
of factors—including stressful life experiences, substance use, and
lifestyle choices like diet and exercise—for which we did not con-
trol directly. Had our analyses suggested a potentially causal effect
of education on allostatic load, it would have been important to
examine whether any of these factors may mediate the effect of
education. Because we found that familial influences mediate the
association between education and allostatic load, it is less infor-
mative to control for these mostly non-familial confounds.

Of relevance to the current study, Frisell et al. (2012) noted that
within-twin pair regression coefficients (bW) in discordant sibling
designs are less biased than regular individual-level regression
coefficients (b) only when siblings resemble each other more with
respect to the full set of confounders than to the exposure variable.
For this reason, we include here a discussion of the degree to which
the exposure (i.e., education) and the confounders (e.g., cognitive
functioning, income, parental education) are likely to be shared
by family members. We reported previously that the overall twin
correlation in education is about .5 (without adjusting for age or
sex). Whereas some confounders may be less shared between
twins (e.g., adult income and lifestyle factors), most confounders
are likely to be more familial (e.g., cognitive functioning), with
many confounders being entirely familial (e.g., childhood school
system, parental education). Moreover, the pattern of results that
we observed in this study (i.e., bW closer to the null than b) is
not what would have been expected had the confounders been less
shared between twins compared to the exposure, especially given
that inverse confounding is unlikely in this case (i.e., confounders
are expected to relate to the outcome in the same direction as
the exposure).

In sum, the main finding of the current study is that the associ-
ation between education and an objective, multisystemmeasure of
allostatic load is not causal. Rather, familial factors of a genetic or
environmental nature simultaneously influence education and
allostatic load; these factors are separate from childhood socioeco-
nomic disadvantage. Our study expands on the existing literature
by using directly measured biomarkers of health instead of relying
on self-report. The major contribution of the current study is its
use of a sophisticated, multifaceted, and biologically based assess-
ment of allostatic load combined with an elegant twin design to
clarify causality. The implication of our finding is that education
may not directly lower allostatic load. As a result, policies aimed
at increasing schooling may not directly result in better observed
health outcomes.
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